//===- SimplifyCFGPass.cpp - CFG Simplification Pass ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements dead code elimination and basic block merging, along // with a collection of other peephole control flow optimizations. For example: // // * Removes basic blocks with no predecessors. // * Merges a basic block into its predecessor if there is only one and the // predecessor only has one successor. // * Eliminates PHI nodes for basic blocks with a single predecessor. // * Eliminates a basic block that only contains an unconditional branch. // * Changes invoke instructions to nounwind functions to be calls. // * Change things like "if (x) if (y)" into "if (x&y)". // * etc.. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/SimplifyCFG.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Scalar.h" using namespace llvm; #define DEBUG_TYPE "simplifycfg" static cl::opt<unsigned> UserBonusInstThreshold("bonus-inst-threshold", cl::Hidden, cl::init(1), cl::desc("Control the number of bonus instructions (default = 1)")); STATISTIC(NumSimpl, "Number of blocks simplified"); /// mergeEmptyReturnBlocks - If we have more than one empty (other than phi /// node) return blocks, merge them together to promote recursive block merging. static bool mergeEmptyReturnBlocks(Function &F) { bool Changed = false; BasicBlock *RetBlock = nullptr; // Scan all the blocks in the function, looking for empty return blocks. for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; ) { BasicBlock &BB = *BBI++; // Only look at return blocks. ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()); if (!Ret) continue; // Only look at the block if it is empty or the only other thing in it is a // single PHI node that is the operand to the return. if (Ret != &BB.front()) { // Check for something else in the block. BasicBlock::iterator I = Ret; --I; // Skip over debug info. while (isa<DbgInfoIntrinsic>(I) && I != BB.begin()) --I; if (!isa<DbgInfoIntrinsic>(I) && (!isa<PHINode>(I) || I != BB.begin() || Ret->getNumOperands() == 0 || Ret->getOperand(0) != I)) continue; } // If this is the first returning block, remember it and keep going. if (!RetBlock) { RetBlock = &BB; continue; } // Otherwise, we found a duplicate return block. Merge the two. Changed = true; // Case when there is no input to the return or when the returned values // agree is trivial. Note that they can't agree if there are phis in the // blocks. if (Ret->getNumOperands() == 0 || Ret->getOperand(0) == cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0)) { BB.replaceAllUsesWith(RetBlock); BB.eraseFromParent(); continue; } // If the canonical return block has no PHI node, create one now. PHINode *RetBlockPHI = dyn_cast<PHINode>(RetBlock->begin()); if (!RetBlockPHI) { Value *InVal = cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0); pred_iterator PB = pred_begin(RetBlock), PE = pred_end(RetBlock); RetBlockPHI = PHINode::Create(Ret->getOperand(0)->getType(), std::distance(PB, PE), "merge", &RetBlock->front()); for (pred_iterator PI = PB; PI != PE; ++PI) RetBlockPHI->addIncoming(InVal, *PI); RetBlock->getTerminator()->setOperand(0, RetBlockPHI); } // Turn BB into a block that just unconditionally branches to the return // block. This handles the case when the two return blocks have a common // predecessor but that return different things. RetBlockPHI->addIncoming(Ret->getOperand(0), &BB); BB.getTerminator()->eraseFromParent(); BranchInst::Create(RetBlock, &BB); } return Changed; } /// iterativelySimplifyCFG - Call SimplifyCFG on all the blocks in the function, /// iterating until no more changes are made. static bool iterativelySimplifyCFG(Function &F, const TargetTransformInfo &TTI, AssumptionCache *AC, unsigned BonusInstThreshold) { bool Changed = false; bool LocalChange = true; while (LocalChange) { LocalChange = false; // Loop over all of the basic blocks and remove them if they are unneeded... // for (Function::iterator BBIt = F.begin(); BBIt != F.end(); ) { if (SimplifyCFG(BBIt++, TTI, BonusInstThreshold, AC)) { LocalChange = true; ++NumSimpl; } } Changed |= LocalChange; } return Changed; } static bool simplifyFunctionCFG(Function &F, const TargetTransformInfo &TTI, AssumptionCache *AC, int BonusInstThreshold) { bool EverChanged = removeUnreachableBlocks(F); EverChanged |= mergeEmptyReturnBlocks(F); EverChanged |= iterativelySimplifyCFG(F, TTI, AC, BonusInstThreshold); // If neither pass changed anything, we're done. if (!EverChanged) return false; // iterativelySimplifyCFG can (rarely) make some loops dead. If this happens, // removeUnreachableBlocks is needed to nuke them, which means we should // iterate between the two optimizations. We structure the code like this to // avoid reruning iterativelySimplifyCFG if the second pass of // removeUnreachableBlocks doesn't do anything. if (!removeUnreachableBlocks(F)) return true; do { EverChanged = iterativelySimplifyCFG(F, TTI, AC, BonusInstThreshold); EverChanged |= removeUnreachableBlocks(F); } while (EverChanged); return true; } SimplifyCFGPass::SimplifyCFGPass() : BonusInstThreshold(UserBonusInstThreshold) {} SimplifyCFGPass::SimplifyCFGPass(int BonusInstThreshold) : BonusInstThreshold(BonusInstThreshold) {} PreservedAnalyses SimplifyCFGPass::run(Function &F, AnalysisManager<Function> *AM) { auto &TTI = AM->getResult<TargetIRAnalysis>(F); auto &AC = AM->getResult<AssumptionAnalysis>(F); if (!simplifyFunctionCFG(F, TTI, &AC, BonusInstThreshold)) return PreservedAnalyses::none(); return PreservedAnalyses::all(); } namespace { struct CFGSimplifyPass : public FunctionPass { static char ID; // Pass identification, replacement for typeid unsigned BonusInstThreshold; CFGSimplifyPass(int T = -1) : FunctionPass(ID) { BonusInstThreshold = (T == -1) ? UserBonusInstThreshold : unsigned(T); initializeCFGSimplifyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { if (skipOptnoneFunction(F)) return false; AssumptionCache *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); const TargetTransformInfo &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); return simplifyFunctionCFG(F, TTI, AC, BonusInstThreshold); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired<AssumptionCacheTracker>(); AU.addRequired<TargetTransformInfoWrapperPass>(); } }; } char CFGSimplifyPass::ID = 0; INITIALIZE_PASS_BEGIN(CFGSimplifyPass, "simplifycfg", "Simplify the CFG", false, false) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_END(CFGSimplifyPass, "simplifycfg", "Simplify the CFG", false, false) // Public interface to the CFGSimplification pass FunctionPass *llvm::createCFGSimplificationPass(int Threshold) { return new CFGSimplifyPass(Threshold); }