//===-- StraightLineStrengthReduce.cpp - ------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements straight-line strength reduction (SLSR). Unlike loop // strength reduction, this algorithm is designed to reduce arithmetic // redundancy in straight-line code instead of loops. It has proven to be // effective in simplifying arithmetic statements derived from an unrolled loop. // It can also simplify the logic of SeparateConstOffsetFromGEP. // // There are many optimizations we can perform in the domain of SLSR. This file // for now contains only an initial step. Specifically, we look for strength // reduction candidates in the following forms: // // Form 1: B + i * S // Form 2: (B + i) * S // Form 3: &B[i * S] // // where S is an integer variable, and i is a constant integer. If we found two // candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2 // in a simpler way with respect to S1. For example, // // S1: X = B + i * S // S2: Y = B + i' * S => X + (i' - i) * S // // S1: X = (B + i) * S // S2: Y = (B + i') * S => X + (i' - i) * S // // S1: X = &B[i * S] // S2: Y = &B[i' * S] => &X[(i' - i) * S] // // Note: (i' - i) * S is folded to the extent possible. // // This rewriting is in general a good idea. The code patterns we focus on // usually come from loop unrolling, so (i' - i) * S is likely the same // across iterations and can be reused. When that happens, the optimized form // takes only one add starting from the second iteration. // // When such rewriting is possible, we call S1 a "basis" of S2. When S2 has // multiple bases, we choose to rewrite S2 with respect to its "immediate" // basis, the basis that is the closest ancestor in the dominator tree. // // TODO: // // - Floating point arithmetics when fast math is enabled. // // - SLSR may decrease ILP at the architecture level. Targets that are very // sensitive to ILP may want to disable it. Having SLSR to consider ILP is // left as future work. // // - When (i' - i) is constant but i and i' are not, we could still perform // SLSR. #include <vector> #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Module.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" using namespace llvm; using namespace PatternMatch; namespace { class StraightLineStrengthReduce : public FunctionPass { public: // SLSR candidate. Such a candidate must be in one of the forms described in // the header comments. struct Candidate : public ilist_node<Candidate> { enum Kind { Invalid, // reserved for the default constructor Add, // B + i * S Mul, // (B + i) * S GEP, // &B[..][i * S][..] }; Candidate() : CandidateKind(Invalid), Base(nullptr), Index(nullptr), Stride(nullptr), Ins(nullptr), Basis(nullptr) {} Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, Instruction *I) : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I), Basis(nullptr) {} Kind CandidateKind; const SCEV *Base; // Note that Index and Stride of a GEP candidate do not necessarily have the // same integer type. In that case, during rewriting, Stride will be // sign-extended or truncated to Index's type. ConstantInt *Index; Value *Stride; // The instruction this candidate corresponds to. It helps us to rewrite a // candidate with respect to its immediate basis. Note that one instruction // can correspond to multiple candidates depending on how you associate the // expression. For instance, // // (a + 1) * (b + 2) // // can be treated as // // <Base: a, Index: 1, Stride: b + 2> // // or // // <Base: b, Index: 2, Stride: a + 1> Instruction *Ins; // Points to the immediate basis of this candidate, or nullptr if we cannot // find any basis for this candidate. Candidate *Basis; }; static char ID; StraightLineStrengthReduce() : FunctionPass(ID), DL(nullptr), DT(nullptr), TTI(nullptr) { initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired<DominatorTreeWrapperPass>(); AU.addRequired<ScalarEvolution>(); AU.addRequired<TargetTransformInfoWrapperPass>(); // We do not modify the shape of the CFG. AU.setPreservesCFG(); } bool doInitialization(Module &M) override { DL = &M.getDataLayout(); return false; } bool runOnFunction(Function &F) override; private: // Returns true if Basis is a basis for C, i.e., Basis dominates C and they // share the same base and stride. bool isBasisFor(const Candidate &Basis, const Candidate &C); // Returns whether the candidate can be folded into an addressing mode. bool isFoldable(const Candidate &C, TargetTransformInfo *TTI, const DataLayout *DL); // Returns true if C is already in a simplest form and not worth being // rewritten. bool isSimplestForm(const Candidate &C); // Checks whether I is in a candidate form. If so, adds all the matching forms // to Candidates, and tries to find the immediate basis for each of them. void allocateCandidatesAndFindBasis(Instruction *I); // Allocate candidates and find bases for Add instructions. void allocateCandidatesAndFindBasisForAdd(Instruction *I); // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a // candidate. void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS, Instruction *I); // Allocate candidates and find bases for Mul instructions. void allocateCandidatesAndFindBasisForMul(Instruction *I); // Splits LHS into Base + Index and, if succeeds, calls // allocateCandidatesAndFindBasis. void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS, Instruction *I); // Allocate candidates and find bases for GetElementPtr instructions. void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP); // A helper function that scales Idx with ElementSize before invoking // allocateCandidatesAndFindBasis. void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize, Instruction *I); // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate // basis. void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, Instruction *I); // Rewrites candidate C with respect to Basis. void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis); // A helper function that factors ArrayIdx to a product of a stride and a // constant index, and invokes allocateCandidatesAndFindBasis with the // factorings. void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize, GetElementPtrInst *GEP); // Emit code that computes the "bump" from Basis to C. If the candidate is a // GEP and the bump is not divisible by the element size of the GEP, this // function sets the BumpWithUglyGEP flag to notify its caller to bump the // basis using an ugly GEP. static Value *emitBump(const Candidate &Basis, const Candidate &C, IRBuilder<> &Builder, const DataLayout *DL, bool &BumpWithUglyGEP); const DataLayout *DL; DominatorTree *DT; ScalarEvolution *SE; TargetTransformInfo *TTI; ilist<Candidate> Candidates; // Temporarily holds all instructions that are unlinked (but not deleted) by // rewriteCandidateWithBasis. These instructions will be actually removed // after all rewriting finishes. std::vector<Instruction *> UnlinkedInstructions; }; } // anonymous namespace char StraightLineStrengthReduce::ID = 0; INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr", "Straight line strength reduction", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr", "Straight line strength reduction", false, false) FunctionPass *llvm::createStraightLineStrengthReducePass() { return new StraightLineStrengthReduce(); } bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis, const Candidate &C) { return (Basis.Ins != C.Ins && // skip the same instruction // Basis must dominate C in order to rewrite C with respect to Basis. DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) && // They share the same base, stride, and candidate kind. Basis.Base == C.Base && Basis.Stride == C.Stride && Basis.CandidateKind == C.CandidateKind); } static bool isGEPFoldable(GetElementPtrInst *GEP, const TargetTransformInfo *TTI, const DataLayout *DL) { GlobalVariable *BaseGV = nullptr; int64_t BaseOffset = 0; bool HasBaseReg = false; int64_t Scale = 0; if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getPointerOperand())) BaseGV = GV; else HasBaseReg = true; gep_type_iterator GTI = gep_type_begin(GEP); for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I, ++GTI) { if (isa<SequentialType>(*GTI)) { int64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); if (ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I)) { BaseOffset += ConstIdx->getSExtValue() * ElementSize; } else { // Needs scale register. if (Scale != 0) { // No addressing mode takes two scale registers. return false; } Scale = ElementSize; } } else { StructType *STy = cast<StructType>(*GTI); uint64_t Field = cast<ConstantInt>(*I)->getZExtValue(); BaseOffset += DL->getStructLayout(STy)->getElementOffset(Field); } } return TTI->isLegalAddressingMode(GEP->getType()->getElementType(), BaseGV, BaseOffset, HasBaseReg, Scale); } // Returns whether (Base + Index * Stride) can be folded to an addressing mode. static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride, TargetTransformInfo *TTI) { return TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true, Index->getSExtValue()); } bool StraightLineStrengthReduce::isFoldable(const Candidate &C, TargetTransformInfo *TTI, const DataLayout *DL) { if (C.CandidateKind == Candidate::Add) return isAddFoldable(C.Base, C.Index, C.Stride, TTI); if (C.CandidateKind == Candidate::GEP) return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI, DL); return false; } // Returns true if GEP has zero or one non-zero index. static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) { unsigned NumNonZeroIndices = 0; for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) { ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I); if (ConstIdx == nullptr || !ConstIdx->isZero()) ++NumNonZeroIndices; } return NumNonZeroIndices <= 1; } bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) { if (C.CandidateKind == Candidate::Add) { // B + 1 * S or B + (-1) * S return C.Index->isOne() || C.Index->isMinusOne(); } if (C.CandidateKind == Candidate::Mul) { // (B + 0) * S return C.Index->isZero(); } if (C.CandidateKind == Candidate::GEP) { // (char*)B + S or (char*)B - S return ((C.Index->isOne() || C.Index->isMinusOne()) && hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins))); } return false; } // TODO: We currently implement an algorithm whose time complexity is linear in // the number of existing candidates. However, we could do better by using // ScopedHashTable. Specifically, while traversing the dominator tree, we could // maintain all the candidates that dominate the basic block being traversed in // a ScopedHashTable. This hash table is indexed by the base and the stride of // a candidate. Therefore, finding the immediate basis of a candidate boils down // to one hash-table look up. void StraightLineStrengthReduce::allocateCandidatesAndFindBasis( Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, Instruction *I) { Candidate C(CT, B, Idx, S, I); // SLSR can complicate an instruction in two cases: // // 1. If we can fold I into an addressing mode, computing I is likely free or // takes only one instruction. // // 2. I is already in a simplest form. For example, when // X = B + 8 * S // Y = B + S, // rewriting Y to X - 7 * S is probably a bad idea. // // In the above cases, we still add I to the candidate list so that I can be // the basis of other candidates, but we leave I's basis blank so that I // won't be rewritten. if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) { // Try to compute the immediate basis of C. unsigned NumIterations = 0; // Limit the scan radius to avoid running in quadratice time. static const unsigned MaxNumIterations = 50; for (auto Basis = Candidates.rbegin(); Basis != Candidates.rend() && NumIterations < MaxNumIterations; ++Basis, ++NumIterations) { if (isBasisFor(*Basis, C)) { C.Basis = &(*Basis); break; } } } // Regardless of whether we find a basis for C, we need to push C to the // candidate list so that it can be the basis of other candidates. Candidates.push_back(C); } void StraightLineStrengthReduce::allocateCandidatesAndFindBasis( Instruction *I) { switch (I->getOpcode()) { case Instruction::Add: allocateCandidatesAndFindBasisForAdd(I); break; case Instruction::Mul: allocateCandidatesAndFindBasisForMul(I); break; case Instruction::GetElementPtr: allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I)); break; } } void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd( Instruction *I) { // Try matching B + i * S. if (!isa<IntegerType>(I->getType())) return; assert(I->getNumOperands() == 2 && "isn't I an add?"); Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); allocateCandidatesAndFindBasisForAdd(LHS, RHS, I); if (LHS != RHS) allocateCandidatesAndFindBasisForAdd(RHS, LHS, I); } void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd( Value *LHS, Value *RHS, Instruction *I) { Value *S = nullptr; ConstantInt *Idx = nullptr; if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) { // I = LHS + RHS = LHS + Idx * S allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I); } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) { // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx) APInt One(Idx->getBitWidth(), 1); Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue()); allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I); } else { // At least, I = LHS + 1 * RHS ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1); allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS, I); } } void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul( Value *LHS, Value *RHS, Instruction *I) { Value *B = nullptr; ConstantInt *Idx = nullptr; // Only handle the canonical operand ordering. if (match(LHS, m_Add(m_Value(B), m_ConstantInt(Idx)))) { // If LHS is in the form of "Base + Index", then I is in the form of // "(Base + Index) * RHS". allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I); } else { // Otherwise, at least try the form (LHS + 0) * RHS. ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0); allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS, I); } } void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul( Instruction *I) { // Try matching (B + i) * S. // TODO: we could extend SLSR to float and vector types. if (!isa<IntegerType>(I->getType())) return; assert(I->getNumOperands() == 2 && "isn't I a mul?"); Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); allocateCandidatesAndFindBasisForMul(LHS, RHS, I); if (LHS != RHS) { // Symmetrically, try to split RHS to Base + Index. allocateCandidatesAndFindBasisForMul(RHS, LHS, I); } } void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP( const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize, Instruction *I) { // I = B + sext(Idx *nsw S) * ElementSize // = B + (sext(Idx) * sext(S)) * ElementSize // = B + (sext(Idx) * ElementSize) * sext(S) // Casting to IntegerType is safe because we skipped vector GEPs. IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType())); ConstantInt *ScaledIdx = ConstantInt::get( IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true); allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I); } void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize, GetElementPtrInst *GEP) { // At least, ArrayIdx = ArrayIdx *nsw 1. allocateCandidatesAndFindBasisForGEP( Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1), ArrayIdx, ElementSize, GEP); Value *LHS = nullptr; ConstantInt *RHS = nullptr; // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx // itself. This would allow us to handle the shl case for free. However, // matching SCEVs has two issues: // // 1. this would complicate rewriting because the rewriting procedure // would have to translate SCEVs back to IR instructions. This translation // is difficult when LHS is further evaluated to a composite SCEV. // // 2. ScalarEvolution is designed to be control-flow oblivious. It tends // to strip nsw/nuw flags which are critical for SLSR to trace into // sext'ed multiplication. if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) { // SLSR is currently unsafe if i * S may overflow. // GEP = Base + sext(LHS *nsw RHS) * ElementSize allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP); } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) { // GEP = Base + sext(LHS <<nsw RHS) * ElementSize // = Base + sext(LHS *nsw (1 << RHS)) * ElementSize APInt One(RHS->getBitWidth(), 1); ConstantInt *PowerOf2 = ConstantInt::get(RHS->getContext(), One << RHS->getValue()); allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP); } } void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP( GetElementPtrInst *GEP) { // TODO: handle vector GEPs if (GEP->getType()->isVectorTy()) return; const SCEV *GEPExpr = SE->getSCEV(GEP); Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); gep_type_iterator GTI = gep_type_begin(GEP); for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) { if (!isa<SequentialType>(*GTI++)) continue; Value *ArrayIdx = *I; // Compute the byte offset of this index. uint64_t ElementSize = DL->getTypeAllocSize(*GTI); const SCEV *ElementSizeExpr = SE->getSizeOfExpr(IntPtrTy, *GTI); const SCEV *ArrayIdxExpr = SE->getSCEV(ArrayIdx); ArrayIdxExpr = SE->getTruncateOrSignExtend(ArrayIdxExpr, IntPtrTy); const SCEV *LocalOffset = SE->getMulExpr(ArrayIdxExpr, ElementSizeExpr, SCEV::FlagNSW); // The base of this candidate equals GEPExpr less the byte offset of this // index. const SCEV *Base = SE->getMinusSCEV(GEPExpr, LocalOffset); factorArrayIndex(ArrayIdx, Base, ElementSize, GEP); // When ArrayIdx is the sext of a value, we try to factor that value as // well. Handling this case is important because array indices are // typically sign-extended to the pointer size. Value *TruncatedArrayIdx = nullptr; if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx)))) factorArrayIndex(TruncatedArrayIdx, Base, ElementSize, GEP); } } // A helper function that unifies the bitwidth of A and B. static void unifyBitWidth(APInt &A, APInt &B) { if (A.getBitWidth() < B.getBitWidth()) A = A.sext(B.getBitWidth()); else if (A.getBitWidth() > B.getBitWidth()) B = B.sext(A.getBitWidth()); } Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis, const Candidate &C, IRBuilder<> &Builder, const DataLayout *DL, bool &BumpWithUglyGEP) { APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue(); unifyBitWidth(Idx, BasisIdx); APInt IndexOffset = Idx - BasisIdx; BumpWithUglyGEP = false; if (Basis.CandidateKind == Candidate::GEP) { APInt ElementSize( IndexOffset.getBitWidth(), DL->getTypeAllocSize( cast<GetElementPtrInst>(Basis.Ins)->getType()->getElementType())); APInt Q, R; APInt::sdivrem(IndexOffset, ElementSize, Q, R); if (R.getSExtValue() == 0) IndexOffset = Q; else BumpWithUglyGEP = true; } // Compute Bump = C - Basis = (i' - i) * S. // Common case 1: if (i' - i) is 1, Bump = S. if (IndexOffset.getSExtValue() == 1) return C.Stride; // Common case 2: if (i' - i) is -1, Bump = -S. if (IndexOffset.getSExtValue() == -1) return Builder.CreateNeg(C.Stride); // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may // have different bit widths. IntegerType *DeltaType = IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth()); Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType); if (IndexOffset.isPowerOf2()) { // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i). ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2()); return Builder.CreateShl(ExtendedStride, Exponent); } if ((-IndexOffset).isPowerOf2()) { // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i). ConstantInt *Exponent = ConstantInt::get(DeltaType, (-IndexOffset).logBase2()); return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent)); } Constant *Delta = ConstantInt::get(DeltaType, IndexOffset); return Builder.CreateMul(ExtendedStride, Delta); } void StraightLineStrengthReduce::rewriteCandidateWithBasis( const Candidate &C, const Candidate &Basis) { assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base && C.Stride == Basis.Stride); // We run rewriteCandidateWithBasis on all candidates in a post-order, so the // basis of a candidate cannot be unlinked before the candidate. assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked"); // An instruction can correspond to multiple candidates. Therefore, instead of // simply deleting an instruction when we rewrite it, we mark its parent as // nullptr (i.e. unlink it) so that we can skip the candidates whose // instruction is already rewritten. if (!C.Ins->getParent()) return; IRBuilder<> Builder(C.Ins); bool BumpWithUglyGEP; Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP); Value *Reduced = nullptr; // equivalent to but weaker than C.Ins switch (C.CandidateKind) { case Candidate::Add: case Candidate::Mul: if (BinaryOperator::isNeg(Bump)) { Reduced = Builder.CreateSub(Basis.Ins, BinaryOperator::getNegArgument(Bump)); } else { Reduced = Builder.CreateAdd(Basis.Ins, Bump); } break; case Candidate::GEP: { Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType()); bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds(); if (BumpWithUglyGEP) { // C = (char *)Basis + Bump unsigned AS = Basis.Ins->getType()->getPointerAddressSpace(); Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS); Reduced = Builder.CreateBitCast(Basis.Ins, CharTy); if (InBounds) Reduced = Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump); else Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump); Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType()); } else { // C = gep Basis, Bump // Canonicalize bump to pointer size. Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy); if (InBounds) Reduced = Builder.CreateInBoundsGEP(nullptr, Basis.Ins, Bump); else Reduced = Builder.CreateGEP(nullptr, Basis.Ins, Bump); } } break; default: llvm_unreachable("C.CandidateKind is invalid"); }; Reduced->takeName(C.Ins); C.Ins->replaceAllUsesWith(Reduced); C.Ins->dropAllReferences(); // Unlink C.Ins so that we can skip other candidates also corresponding to // C.Ins. The actual deletion is postponed to the end of runOnFunction. C.Ins->removeFromParent(); UnlinkedInstructions.push_back(C.Ins); } bool StraightLineStrengthReduce::runOnFunction(Function &F) { if (skipOptnoneFunction(F)) return false; TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); SE = &getAnalysis<ScalarEvolution>(); // Traverse the dominator tree in the depth-first order. This order makes sure // all bases of a candidate are in Candidates when we process it. for (auto node = GraphTraits<DominatorTree *>::nodes_begin(DT); node != GraphTraits<DominatorTree *>::nodes_end(DT); ++node) { for (auto &I : *node->getBlock()) allocateCandidatesAndFindBasis(&I); } // Rewrite candidates in the reverse depth-first order. This order makes sure // a candidate being rewritten is not a basis for any other candidate. while (!Candidates.empty()) { const Candidate &C = Candidates.back(); if (C.Basis != nullptr) { rewriteCandidateWithBasis(C, *C.Basis); } Candidates.pop_back(); } // Delete all unlink instructions. for (auto I : UnlinkedInstructions) { delete I; } bool Ret = !UnlinkedInstructions.empty(); UnlinkedInstructions.clear(); return Ret; }