/* * Copyright 2012 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBitmapProcState_opts_SSSE3.h" #include "SkColorPriv.h" #include "SkPaint.h" #include "SkUtils.h" /* With the exception of the compilers that don't support it, we always build the * SSSE3 functions and enable the caller to determine SSSE3 support. However for * compilers that do not support SSSE3 we provide a stub implementation. */ #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 #include <tmmintrin.h> // SSSE3 // adding anonymous namespace seemed to force gcc to inline directly the // instantiation, instead of creating the functions // S32_generic_D32_filter_DX_SSSE3<true> and // S32_generic_D32_filter_DX_SSSE3<false> which were then called by the // external functions. namespace { // In this file, variations for alpha and non alpha versions are implemented // with a template, as it makes the code more compact and a bit easier to // maintain, while making the compiler generate the same exact code as with // two functions that only differ by a few lines. // Prepare all necessary constants for a round of processing for two pixel // pairs. // @param xy is the location where the xy parameters for four pixels should be // read from. It is identical in concept with argument two of // S32_{opaque}_D32_filter_DX methods. // @param mask_3FFF vector of 32 bit constants containing 3FFF, // suitable to mask the bottom 14 bits of a XY value. // @param mask_000F vector of 32 bit constants containing 000F, // suitable to mask the bottom 4 bits of a XY value. // @param sixteen_8bit vector of 8 bit components containing the value 16. // @param mask_dist_select vector of 8 bit components containing the shuffling // parameters to reorder x[0-3] parameters. // @param all_x_result vector of 8 bit components that will contain the // (4x(x3), 4x(x2), 4x(x1), 4x(x0)) upon return. // @param sixteen_minus_x vector of 8 bit components, containing // (4x(16 - x3), 4x(16 - x2), 4x(16 - x1), 4x(16 - x0)) inline void PrepareConstantsTwoPixelPairs(const uint32_t* xy, const __m128i& mask_3FFF, const __m128i& mask_000F, const __m128i& sixteen_8bit, const __m128i& mask_dist_select, __m128i* all_x_result, __m128i* sixteen_minus_x, int* x0, int* x1) { const __m128i xx = _mm_loadu_si128(reinterpret_cast<const __m128i *>(xy)); // 4 delta X // (x03, x02, x01, x00) const __m128i x0_wide = _mm_srli_epi32(xx, 18); // (x13, x12, x11, x10) const __m128i x1_wide = _mm_and_si128(xx, mask_3FFF); _mm_storeu_si128(reinterpret_cast<__m128i *>(x0), x0_wide); _mm_storeu_si128(reinterpret_cast<__m128i *>(x1), x1_wide); __m128i all_x = _mm_and_si128(_mm_srli_epi32(xx, 14), mask_000F); // (4x(x3), 4x(x2), 4x(x1), 4x(x0)) all_x = _mm_shuffle_epi8(all_x, mask_dist_select); *all_x_result = all_x; // (4x(16-x3), 4x(16-x2), 4x(16-x1), 4x(16-x0)) *sixteen_minus_x = _mm_sub_epi8(sixteen_8bit, all_x); } // Prepare all necessary constants for a round of processing for two pixel // pairs. // @param xy is the location where the xy parameters for four pixels should be // read from. It is identical in concept with argument two of // S32_{opaque}_D32_filter_DXDY methods. // @param mask_3FFF vector of 32 bit constants containing 3FFF, // suitable to mask the bottom 14 bits of a XY value. // @param mask_000F vector of 32 bit constants containing 000F, // suitable to mask the bottom 4 bits of a XY value. // @param sixteen_8bit vector of 8 bit components containing the value 16. // @param mask_dist_select vector of 8 bit components containing the shuffling // parameters to reorder x[0-3] parameters. // @param all_xy_result vector of 8 bit components that will contain the // (4x(y1), 4x(y0), 4x(x1), 4x(x0)) upon return. // @param sixteen_minus_x vector of 8 bit components, containing // (4x(16-y1), 4x(16-y0), 4x(16-x1), 4x(16-x0)). inline void PrepareConstantsTwoPixelPairsDXDY(const uint32_t* xy, const __m128i& mask_3FFF, const __m128i& mask_000F, const __m128i& sixteen_8bit, const __m128i& mask_dist_select, __m128i* all_xy_result, __m128i* sixteen_minus_xy, int* xy0, int* xy1) { const __m128i xy_wide = _mm_loadu_si128(reinterpret_cast<const __m128i *>(xy)); // (x10, y10, x00, y00) __m128i xy0_wide = _mm_srli_epi32(xy_wide, 18); // (y10, y00, x10, x00) xy0_wide = _mm_shuffle_epi32(xy0_wide, _MM_SHUFFLE(2, 0, 3, 1)); // (x11, y11, x01, y01) __m128i xy1_wide = _mm_and_si128(xy_wide, mask_3FFF); // (y11, y01, x11, x01) xy1_wide = _mm_shuffle_epi32(xy1_wide, _MM_SHUFFLE(2, 0, 3, 1)); _mm_storeu_si128(reinterpret_cast<__m128i *>(xy0), xy0_wide); _mm_storeu_si128(reinterpret_cast<__m128i *>(xy1), xy1_wide); // (x1, y1, x0, y0) __m128i all_xy = _mm_and_si128(_mm_srli_epi32(xy_wide, 14), mask_000F); // (y1, y0, x1, x0) all_xy = _mm_shuffle_epi32(all_xy, _MM_SHUFFLE(2, 0, 3, 1)); // (4x(y1), 4x(y0), 4x(x1), 4x(x0)) all_xy = _mm_shuffle_epi8(all_xy, mask_dist_select); *all_xy_result = all_xy; // (4x(16-y1), 4x(16-y0), 4x(16-x1), 4x(16-x0)) *sixteen_minus_xy = _mm_sub_epi8(sixteen_8bit, all_xy); } // Helper function used when processing one pixel pair. // @param pixel0..3 are the four input pixels // @param scale_x vector of 8 bit components to multiply the pixel[0:3]. This // will contain (4x(x1, 16-x1), 4x(x0, 16-x0)) // or (4x(x3, 16-x3), 4x(x2, 16-x2)) // @return a vector of 16 bit components containing: // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0) inline __m128i ProcessPixelPairHelper(uint32_t pixel0, uint32_t pixel1, uint32_t pixel2, uint32_t pixel3, const __m128i& scale_x) { __m128i a0, a1, a2, a3; // Load 2 pairs of pixels a0 = _mm_cvtsi32_si128(pixel0); a1 = _mm_cvtsi32_si128(pixel1); // Interleave pixels. // (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0) a0 = _mm_unpacklo_epi8(a0, a1); a2 = _mm_cvtsi32_si128(pixel2); a3 = _mm_cvtsi32_si128(pixel3); // (0, 0, 0, 0, 0, 0, 0, 0, Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2) a2 = _mm_unpacklo_epi8(a2, a3); // two pairs of pixel pairs, interleaved. // (Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2, // Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0) a0 = _mm_unpacklo_epi64(a0, a2); // multiply and sum to 16 bit components. // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0) // At that point, we use up a bit less than 12 bits for each 16 bit // component: // All components are less than 255. So, // C0 * (16 - x) + C1 * x <= 255 * (16 - x) + 255 * x = 255 * 16. return _mm_maddubs_epi16(a0, scale_x); } // Scale back the results after multiplications to the [0:255] range, and scale // by alpha when has_alpha is true. // Depending on whether one set or two sets of multiplications had been applied, // the results have to be shifted by four places (dividing by 16), or shifted // by eight places (dividing by 256), since each multiplication is by a quantity // in the range [0:16]. template<bool has_alpha, int scale> inline __m128i ScaleFourPixels(__m128i* pixels, const __m128i& alpha) { // Divide each 16 bit component by 16 (or 256 depending on scale). *pixels = _mm_srli_epi16(*pixels, scale); if (has_alpha) { // Multiply by alpha. *pixels = _mm_mullo_epi16(*pixels, alpha); // Divide each 16 bit component by 256. *pixels = _mm_srli_epi16(*pixels, 8); } return *pixels; } // Wrapper to calculate two output pixels from four input pixels. The // arguments are the same as ProcessPixelPairHelper. Technically, there are // eight input pixels, but since sub_y == 0, the factors applied to half of the // pixels is zero (sub_y), and are therefore omitted here to save on some // processing. // @param alpha when has_alpha is true, scale all resulting components by this // value. // @return a vector of 16 bit components containing: // ((Aa2 * (16 - x1) + Aa3 * x1) * alpha, ..., // (Ra0 * (16 - x0) + Ra1 * x0) * alpha) (when has_alpha is true) // otherwise // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0) // In both cases, the results are renormalized (divided by 16) to match the // expected formats when storing back the results into memory. template<bool has_alpha> inline __m128i ProcessPixelPairZeroSubY(uint32_t pixel0, uint32_t pixel1, uint32_t pixel2, uint32_t pixel3, const __m128i& scale_x, const __m128i& alpha) { __m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3, scale_x); return ScaleFourPixels<has_alpha, 4>(&sum, alpha); } // Same as ProcessPixelPairZeroSubY, expect processing one output pixel at a // time instead of two. As in the above function, only two pixels are needed // to generate a single pixel since sub_y == 0. // @return same as ProcessPixelPairZeroSubY, except that only the bottom 4 // 16 bit components are set. template<bool has_alpha> inline __m128i ProcessOnePixelZeroSubY(uint32_t pixel0, uint32_t pixel1, __m128i scale_x, __m128i alpha) { __m128i a0 = _mm_cvtsi32_si128(pixel0); __m128i a1 = _mm_cvtsi32_si128(pixel1); // Interleave a0 = _mm_unpacklo_epi8(a0, a1); // (a0 * (16-x) + a1 * x) __m128i sum = _mm_maddubs_epi16(a0, scale_x); return ScaleFourPixels<has_alpha, 4>(&sum, alpha); } // Methods when sub_y != 0 // Same as ProcessPixelPairHelper, except that the values are scaled by y. // @param y vector of 16 bit components containing 'y' values. There are two // cases in practice, where y will contain the sub_y constant, or will // contain the 16 - sub_y constant. // @return vector of 16 bit components containing: // (y * (Aa2 * (16 - x1) + Aa3 * x1), ... , y * (Ra0 * (16 - x0) + Ra1 * x0)) inline __m128i ProcessPixelPair(uint32_t pixel0, uint32_t pixel1, uint32_t pixel2, uint32_t pixel3, const __m128i& scale_x, const __m128i& y) { __m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3, scale_x); // first row times 16-y or y depending on whether 'y' represents one or // the other. // Values will be up to 255 * 16 * 16 = 65280. // (y * (Aa2 * (16 - x1) + Aa3 * x1), ... , // y * (Ra0 * (16 - x0) + Ra1 * x0)) sum = _mm_mullo_epi16(sum, y); return sum; } // Process two pixel pairs out of eight input pixels. // In other methods, the distinct pixels are passed one by one, but in this // case, the rows, and index offsets to the pixels into the row are passed // to generate the 8 pixels. // @param row0..1 top and bottom row where to find input pixels. // @param x0..1 offsets into the row for all eight input pixels. // @param all_y vector of 16 bit components containing the constant sub_y // @param neg_y vector of 16 bit components containing the constant 16 - sub_y // @param alpha vector of 16 bit components containing the alpha value to scale // the results by, when has_alpha is true. // @return // (alpha * ((16-y) * (Aa2 * (16-x1) + Aa3 * x1) + // y * (Aa2' * (16-x1) + Aa3' * x1)), // ... // alpha * ((16-y) * (Ra0 * (16-x0) + Ra1 * x0) + // y * (Ra0' * (16-x0) + Ra1' * x0)) // With the factor alpha removed when has_alpha is false. // The values are scaled back to 16 bit components, but with only the bottom // 8 bits being set. template<bool has_alpha> inline __m128i ProcessTwoPixelPairs(const uint32_t* row0, const uint32_t* row1, const int* x0, const int* x1, const __m128i& scale_x, const __m128i& all_y, const __m128i& neg_y, const __m128i& alpha) { __m128i sum0 = ProcessPixelPair( row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]], scale_x, neg_y); __m128i sum1 = ProcessPixelPair( row1[x0[0]], row1[x1[0]], row1[x0[1]], row1[x1[1]], scale_x, all_y); // 2 samples fully summed. // ((16-y) * (Aa2 * (16-x1) + Aa3 * x1) + // y * (Aa2' * (16-x1) + Aa3' * x1), // ... // (16-y) * (Ra0 * (16 - x0) + Ra1 * x0)) + // y * (Ra0' * (16-x0) + Ra1' * x0)) // Each component, again can be at most 256 * 255 = 65280, so no overflow. sum0 = _mm_add_epi16(sum0, sum1); return ScaleFourPixels<has_alpha, 8>(&sum0, alpha); } // Similar to ProcessTwoPixelPairs except the pixel indexes. template<bool has_alpha> inline __m128i ProcessTwoPixelPairsDXDY(const uint32_t* row00, const uint32_t* row01, const uint32_t* row10, const uint32_t* row11, const int* xy0, const int* xy1, const __m128i& scale_x, const __m128i& all_y, const __m128i& neg_y, const __m128i& alpha) { // first row __m128i sum0 = ProcessPixelPair( row00[xy0[0]], row00[xy1[0]], row10[xy0[1]], row10[xy1[1]], scale_x, neg_y); // second row __m128i sum1 = ProcessPixelPair( row01[xy0[0]], row01[xy1[0]], row11[xy0[1]], row11[xy1[1]], scale_x, all_y); // 2 samples fully summed. // ((16-y1) * (Aa2 * (16-x1) + Aa3 * x1) + // y0 * (Aa2' * (16-x1) + Aa3' * x1), // ... // (16-y0) * (Ra0 * (16 - x0) + Ra1 * x0)) + // y0 * (Ra0' * (16-x0) + Ra1' * x0)) // Each component, again can be at most 256 * 255 = 65280, so no overflow. sum0 = _mm_add_epi16(sum0, sum1); return ScaleFourPixels<has_alpha, 8>(&sum0, alpha); } // Same as ProcessPixelPair, except that performing the math one output pixel // at a time. This means that only the bottom four 16 bit components are set. inline __m128i ProcessOnePixel(uint32_t pixel0, uint32_t pixel1, const __m128i& scale_x, const __m128i& y) { __m128i a0 = _mm_cvtsi32_si128(pixel0); __m128i a1 = _mm_cvtsi32_si128(pixel1); // Interleave // (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0) a0 = _mm_unpacklo_epi8(a0, a1); // (a0 * (16-x) + a1 * x) a0 = _mm_maddubs_epi16(a0, scale_x); // scale row by y return _mm_mullo_epi16(a0, y); } // Notes about the various tricks that are used in this implementation: // - specialization for sub_y == 0. // Statistically, 1/16th of the samples will have sub_y == 0. When this // happens, the math goes from: // (16 - x)*(16 - y)*a00 + x*(16 - y)*a01 + (16 - x)*y*a10 + x*y*a11 // to: // (16 - x)*a00 + 16*x*a01 // much simpler. The simplification makes for an easy boost in performance. // - calculating 4 output pixels at a time. // This allows loading the coefficients x0 and x1 and shuffling them to the // optimum location only once per loop, instead of twice per loop. // This also allows us to store the four pixels with a single store. // - Use of 2 special SSSE3 instructions (comparatively to the SSE2 instruction // version): // _mm_shuffle_epi8 : this allows us to spread the coefficients x[0-3] loaded // in 32 bit values to 8 bit values repeated four times. // _mm_maddubs_epi16 : this allows us to perform multiplications and additions // in one swoop of 8bit values storing the results in 16 bit values. This // instruction is actually crucial for the speed of the implementation since // as one can see in the SSE2 implementation, all inputs have to be used as // 16 bits because the results are 16 bits. This basically allows us to process // twice as many pixel components per iteration. // // As a result, this method behaves faster than the traditional SSE2. The actual // boost varies greatly on the underlying architecture. template<bool has_alpha> void S32_generic_D32_filter_DX_SSSE3(const SkBitmapProcState& s, const uint32_t* xy, int count, uint32_t* colors) { SkASSERT(count > 0 && colors != NULL); SkASSERT(s.fFilterLevel != kNone_SkFilterQuality); SkASSERT(kN32_SkColorType == s.fBitmap->colorType()); if (has_alpha) { SkASSERT(s.fAlphaScale < 256); } else { SkASSERT(s.fAlphaScale == 256); } const uint8_t* src_addr = static_cast<const uint8_t*>(s.fBitmap->getPixels()); const size_t rb = s.fBitmap->rowBytes(); const uint32_t XY = *xy++; const unsigned y0 = XY >> 14; const uint32_t* row0 = reinterpret_cast<const uint32_t*>(src_addr + (y0 >> 4) * rb); const uint32_t* row1 = reinterpret_cast<const uint32_t*>(src_addr + (XY & 0x3FFF) * rb); const unsigned sub_y = y0 & 0xF; // vector constants const __m128i mask_dist_select = _mm_set_epi8(12, 12, 12, 12, 8, 8, 8, 8, 4, 4, 4, 4, 0, 0, 0, 0); const __m128i mask_3FFF = _mm_set1_epi32(0x3FFF); const __m128i mask_000F = _mm_set1_epi32(0x000F); const __m128i sixteen_8bit = _mm_set1_epi8(16); // (0, 0, 0, 0, 0, 0, 0, 0) const __m128i zero = _mm_setzero_si128(); __m128i alpha = _mm_setzero_si128(); if (has_alpha) { // 8x(alpha) alpha = _mm_set1_epi16(s.fAlphaScale); } if (sub_y == 0) { // Unroll 4x, interleave bytes, use pmaddubsw (all_x is small) while (count > 3) { count -= 4; int x0[4]; int x1[4]; __m128i all_x, sixteen_minus_x; PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F, sixteen_8bit, mask_dist_select, &all_x, &sixteen_minus_x, x0, x1); xy += 4; // First pair of pixel pairs. // (4x(x1, 16-x1), 4x(x0, 16-x0)) __m128i scale_x; scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x); __m128i sum0 = ProcessPixelPairZeroSubY<has_alpha>( row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]], scale_x, alpha); // second pair of pixel pairs // (4x (x3, 16-x3), 4x (16-x2, x2)) scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x); __m128i sum1 = ProcessPixelPairZeroSubY<has_alpha>( row0[x0[2]], row0[x1[2]], row0[x0[3]], row0[x1[3]], scale_x, alpha); // Pack lower 4 16 bit values of sum into lower 4 bytes. sum0 = _mm_packus_epi16(sum0, sum1); // Extract low int and store. _mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0); colors += 4; } // handle remainder while (count-- > 0) { uint32_t xx = *xy++; // x0:14 | 4 | x1:14 unsigned x0 = xx >> 18; unsigned x1 = xx & 0x3FFF; // 16x(x) const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F); // (16x(16-x)) __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x); scale_x = _mm_unpacklo_epi8(scale_x, all_x); __m128i sum = ProcessOnePixelZeroSubY<has_alpha>( row0[x0], row0[x1], scale_x, alpha); // Pack lower 4 16 bit values of sum into lower 4 bytes. sum = _mm_packus_epi16(sum, zero); // Extract low int and store. *colors++ = _mm_cvtsi128_si32(sum); } } else { // more general case, y != 0 // 8x(16) const __m128i sixteen_16bit = _mm_set1_epi16(16); // 8x (y) const __m128i all_y = _mm_set1_epi16(sub_y); // 8x (16-y) const __m128i neg_y = _mm_sub_epi16(sixteen_16bit, all_y); // Unroll 4x, interleave bytes, use pmaddubsw (all_x is small) while (count > 3) { count -= 4; int x0[4]; int x1[4]; __m128i all_x, sixteen_minus_x; PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F, sixteen_8bit, mask_dist_select, &all_x, &sixteen_minus_x, x0, x1); xy += 4; // First pair of pixel pairs // (4x(x1, 16-x1), 4x(x0, 16-x0)) __m128i scale_x; scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x); __m128i sum0 = ProcessTwoPixelPairs<has_alpha>( row0, row1, x0, x1, scale_x, all_y, neg_y, alpha); // second pair of pixel pairs // (4x (x3, 16-x3), 4x (16-x2, x2)) scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x); __m128i sum1 = ProcessTwoPixelPairs<has_alpha>( row0, row1, x0 + 2, x1 + 2, scale_x, all_y, neg_y, alpha); // Do the final packing of the two results // Pack lower 4 16 bit values of sum into lower 4 bytes. sum0 = _mm_packus_epi16(sum0, sum1); // Extract low int and store. _mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0); colors += 4; } // Left over. while (count-- > 0) { const uint32_t xx = *xy++; // x0:14 | 4 | x1:14 const unsigned x0 = xx >> 18; const unsigned x1 = xx & 0x3FFF; // 16x(x) const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F); // 16x (16-x) __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x); // (8x (x, 16-x)) scale_x = _mm_unpacklo_epi8(scale_x, all_x); // first row. __m128i sum0 = ProcessOnePixel(row0[x0], row0[x1], scale_x, neg_y); // second row. __m128i sum1 = ProcessOnePixel(row1[x0], row1[x1], scale_x, all_y); // Add both rows for full sample sum0 = _mm_add_epi16(sum0, sum1); sum0 = ScaleFourPixels<has_alpha, 8>(&sum0, alpha); // Pack lower 4 16 bit values of sum into lower 4 bytes. sum0 = _mm_packus_epi16(sum0, zero); // Extract low int and store. *colors++ = _mm_cvtsi128_si32(sum0); } } } /* * Similar to S32_generic_D32_filter_DX_SSSE3, we do not need to handle the * special case suby == 0 as suby is changing in every loop. */ template<bool has_alpha> void S32_generic_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s, const uint32_t* xy, int count, uint32_t* colors) { SkASSERT(count > 0 && colors != NULL); SkASSERT(s.fFilterLevel != kNone_SkFilterQuality); SkASSERT(kN32_SkColorType == s.fBitmap->colorType()); if (has_alpha) { SkASSERT(s.fAlphaScale < 256); } else { SkASSERT(s.fAlphaScale == 256); } const uint8_t* src_addr = static_cast<const uint8_t*>(s.fBitmap->getPixels()); const size_t rb = s.fBitmap->rowBytes(); // vector constants const __m128i mask_dist_select = _mm_set_epi8(12, 12, 12, 12, 8, 8, 8, 8, 4, 4, 4, 4, 0, 0, 0, 0); const __m128i mask_3FFF = _mm_set1_epi32(0x3FFF); const __m128i mask_000F = _mm_set1_epi32(0x000F); const __m128i sixteen_8bit = _mm_set1_epi8(16); __m128i alpha; if (has_alpha) { // 8x(alpha) alpha = _mm_set1_epi16(s.fAlphaScale); } // Unroll 2x, interleave bytes, use pmaddubsw (all_x is small) while (count >= 2) { int xy0[4]; int xy1[4]; __m128i all_xy, sixteen_minus_xy; PrepareConstantsTwoPixelPairsDXDY(xy, mask_3FFF, mask_000F, sixteen_8bit, mask_dist_select, &all_xy, &sixteen_minus_xy, xy0, xy1); // (4x(x1, 16-x1), 4x(x0, 16-x0)) __m128i scale_x = _mm_unpacklo_epi8(sixteen_minus_xy, all_xy); // (4x(0, y1), 4x(0, y0)) __m128i all_y = _mm_unpackhi_epi8(all_xy, _mm_setzero_si128()); __m128i neg_y = _mm_sub_epi16(_mm_set1_epi16(16), all_y); const uint32_t* row00 = reinterpret_cast<const uint32_t*>(src_addr + xy0[2] * rb); const uint32_t* row01 = reinterpret_cast<const uint32_t*>(src_addr + xy1[2] * rb); const uint32_t* row10 = reinterpret_cast<const uint32_t*>(src_addr + xy0[3] * rb); const uint32_t* row11 = reinterpret_cast<const uint32_t*>(src_addr + xy1[3] * rb); __m128i sum0 = ProcessTwoPixelPairsDXDY<has_alpha>( row00, row01, row10, row11, xy0, xy1, scale_x, all_y, neg_y, alpha); // Pack lower 4 16 bit values of sum into lower 4 bytes. sum0 = _mm_packus_epi16(sum0, _mm_setzero_si128()); // Extract low int and store. _mm_storel_epi64(reinterpret_cast<__m128i *>(colors), sum0); xy += 4; colors += 2; count -= 2; } // Handle the remainder while (count-- > 0) { uint32_t data = *xy++; unsigned y0 = data >> 14; unsigned y1 = data & 0x3FFF; unsigned subY = y0 & 0xF; y0 >>= 4; data = *xy++; unsigned x0 = data >> 14; unsigned x1 = data & 0x3FFF; unsigned subX = x0 & 0xF; x0 >>= 4; const uint32_t* row0 = reinterpret_cast<const uint32_t*>(src_addr + y0 * rb); const uint32_t* row1 = reinterpret_cast<const uint32_t*>(src_addr + y1 * rb); // 16x(x) const __m128i all_x = _mm_set1_epi8(subX); // 16x (16-x) __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x); // (8x (x, 16-x)) scale_x = _mm_unpacklo_epi8(scale_x, all_x); // 8x(16) const __m128i sixteen_16bit = _mm_set1_epi16(16); // 8x (y) const __m128i all_y = _mm_set1_epi16(subY); // 8x (16-y) const __m128i neg_y = _mm_sub_epi16(sixteen_16bit, all_y); // first row. __m128i sum0 = ProcessOnePixel(row0[x0], row0[x1], scale_x, neg_y); // second row. __m128i sum1 = ProcessOnePixel(row1[x0], row1[x1], scale_x, all_y); // Add both rows for full sample sum0 = _mm_add_epi16(sum0, sum1); sum0 = ScaleFourPixels<has_alpha, 8>(&sum0, alpha); // Pack lower 4 16 bit values of sum into lower 4 bytes. sum0 = _mm_packus_epi16(sum0, _mm_setzero_si128()); // Extract low int and store. *colors++ = _mm_cvtsi128_si32(sum0); } } } // namespace void S32_opaque_D32_filter_DX_SSSE3(const SkBitmapProcState& s, const uint32_t* xy, int count, uint32_t* colors) { S32_generic_D32_filter_DX_SSSE3<false>(s, xy, count, colors); } void S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState& s, const uint32_t* xy, int count, uint32_t* colors) { S32_generic_D32_filter_DX_SSSE3<true>(s, xy, count, colors); } void S32_opaque_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s, const uint32_t* xy, int count, uint32_t* colors) { S32_generic_D32_filter_DXDY_SSSE3<false>(s, xy, count, colors); } void S32_alpha_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s, const uint32_t* xy, int count, uint32_t* colors) { S32_generic_D32_filter_DXDY_SSSE3<true>(s, xy, count, colors); } void S32_D16_filter_DX_SSSE3(const SkBitmapProcState& s, const uint32_t* xy, int count, uint16_t* colors) { SkASSERT(254 >= count); SkAutoSTMalloc<254, uint32_t> colors32(count); S32_generic_D32_filter_DX_SSSE3<false>(s, xy, count, colors32); for(int i = 0; i < count; i++) { *colors++ = SkPixel32ToPixel16(colors32[i]); } } void S32_D16_filter_DXDY_SSSE3(const SkBitmapProcState& s, const uint32_t* xy, int count, uint16_t* colors) { SkASSERT(64 >= count); SkAutoSTMalloc<64, uint32_t> colors32(count); S32_generic_D32_filter_DXDY_SSSE3<false>(s, xy, count, colors32); for(int i = 0; i < count; i++) { *colors++ = SkPixel32ToPixel16(colors32[i]); } } #else // SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 void S32_opaque_D32_filter_DX_SSSE3(const SkBitmapProcState& s, const uint32_t* xy, int count, uint32_t* colors) { sk_throw(); } void S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState& s, const uint32_t* xy, int count, uint32_t* colors) { sk_throw(); } void S32_opaque_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s, const uint32_t* xy, int count, uint32_t* colors) { sk_throw(); } void S32_alpha_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s, const uint32_t* xy, int count, uint32_t* colors) { sk_throw(); } void S32_D16_filter_DX_SSSE3(const SkBitmapProcState& s, const uint32_t* xy, int count, uint16_t* colors) { sk_throw(); } void S32_D16_filter_DXDY_SSSE3(const SkBitmapProcState& s, const uint32_t* xy, int count, uint16_t* colors) { sk_throw(); } #endif