#include "SkXfermode.h" #include "SkXfermode_proccoeff.h" #include "SkColorPriv.h" #include <arm_neon.h> #include "SkColor_opts_neon.h" #include "SkXfermode_opts_arm_neon.h" #define SkAlphaMulAlpha(a, b) SkMulDiv255Round(a, b) //////////////////////////////////////////////////////////////////////////////// // NEONized skia functions //////////////////////////////////////////////////////////////////////////////// static inline uint8x8_t SkAlphaMulAlpha_neon8(uint8x8_t color, uint8x8_t alpha) { uint16x8_t tmp; uint8x8_t ret; tmp = vmull_u8(color, alpha); tmp = vaddq_u16(tmp, vdupq_n_u16(128)); tmp = vaddq_u16(tmp, vshrq_n_u16(tmp, 8)); ret = vshrn_n_u16(tmp, 8); return ret; } static inline uint16x8_t SkAlphaMulAlpha_neon8_16(uint8x8_t color, uint8x8_t alpha) { uint16x8_t ret; ret = vmull_u8(color, alpha); ret = vaddq_u16(ret, vdupq_n_u16(128)); ret = vaddq_u16(ret, vshrq_n_u16(ret, 8)); ret = vshrq_n_u16(ret, 8); return ret; } static inline uint8x8_t SkDiv255Round_neon8_32_8(int32x4_t p1, int32x4_t p2) { uint16x8_t tmp; #ifdef SK_CPU_ARM64 tmp = vmovn_high_u32(vmovn_u32(vreinterpretq_u32_s32(p1)), vreinterpretq_u32_s32(p2)); #else tmp = vcombine_u16(vmovn_u32(vreinterpretq_u32_s32(p1)), vmovn_u32(vreinterpretq_u32_s32(p2))); #endif tmp += vdupq_n_u16(128); tmp += vshrq_n_u16(tmp, 8); return vshrn_n_u16(tmp, 8); } static inline uint16x8_t SkDiv255Round_neon8_16_16(uint16x8_t prod) { prod += vdupq_n_u16(128); prod += vshrq_n_u16(prod, 8); return vshrq_n_u16(prod, 8); } static inline uint8x8_t clamp_div255round_simd8_32(int32x4_t val1, int32x4_t val2) { uint8x8_t ret; uint32x4_t cmp1, cmp2; uint16x8_t cmp16; uint8x8_t cmp8, cmp8_1; // Test if <= 0 cmp1 = vcleq_s32(val1, vdupq_n_s32(0)); cmp2 = vcleq_s32(val2, vdupq_n_s32(0)); #ifdef SK_CPU_ARM64 cmp16 = vmovn_high_u32(vmovn_u32(cmp1), cmp2); #else cmp16 = vcombine_u16(vmovn_u32(cmp1), vmovn_u32(cmp2)); #endif cmp8_1 = vmovn_u16(cmp16); // Init to zero ret = vdup_n_u8(0); // Test if >= 255*255 cmp1 = vcgeq_s32(val1, vdupq_n_s32(255*255)); cmp2 = vcgeq_s32(val2, vdupq_n_s32(255*255)); #ifdef SK_CPU_ARM64 cmp16 = vmovn_high_u32(vmovn_u32(cmp1), cmp2); #else cmp16 = vcombine_u16(vmovn_u32(cmp1), vmovn_u32(cmp2)); #endif cmp8 = vmovn_u16(cmp16); // Insert 255 where true ret = vbsl_u8(cmp8, vdup_n_u8(255), ret); // Calc SkDiv255Round uint8x8_t div = SkDiv255Round_neon8_32_8(val1, val2); // Insert where false and previous test false cmp8 = cmp8 | cmp8_1; ret = vbsl_u8(cmp8, ret, div); // Return the final combination return ret; } //////////////////////////////////////////////////////////////////////////////// // 1 pixel modeprocs //////////////////////////////////////////////////////////////////////////////// // kSrcATop_Mode, //!< [Da, Sc * Da + (1 - Sa) * Dc] SkPMColor srcatop_modeproc_neon(SkPMColor src, SkPMColor dst) { unsigned sa = SkGetPackedA32(src); unsigned da = SkGetPackedA32(dst); unsigned isa = 255 - sa; uint8x8_t vda, visa, vsrc, vdst; vda = vdup_n_u8(da); visa = vdup_n_u8(isa); uint16x8_t vsrc_wide, vdst_wide; vsrc_wide = vmull_u8(vda, vreinterpret_u8_u32(vdup_n_u32(src))); vdst_wide = vmull_u8(visa, vreinterpret_u8_u32(vdup_n_u32(dst))); vsrc_wide += vdupq_n_u16(128); vsrc_wide += vshrq_n_u16(vsrc_wide, 8); vdst_wide += vdupq_n_u16(128); vdst_wide += vshrq_n_u16(vdst_wide, 8); vsrc = vshrn_n_u16(vsrc_wide, 8); vdst = vshrn_n_u16(vdst_wide, 8); vsrc += vdst; vsrc = vset_lane_u8(da, vsrc, 3); return vget_lane_u32(vreinterpret_u32_u8(vsrc), 0); } // kDstATop_Mode, //!< [Sa, Sa * Dc + Sc * (1 - Da)] SkPMColor dstatop_modeproc_neon(SkPMColor src, SkPMColor dst) { unsigned sa = SkGetPackedA32(src); unsigned da = SkGetPackedA32(dst); unsigned ida = 255 - da; uint8x8_t vsa, vida, vsrc, vdst; vsa = vdup_n_u8(sa); vida = vdup_n_u8(ida); uint16x8_t vsrc_wide, vdst_wide; vsrc_wide = vmull_u8(vida, vreinterpret_u8_u32(vdup_n_u32(src))); vdst_wide = vmull_u8(vsa, vreinterpret_u8_u32(vdup_n_u32(dst))); vsrc_wide += vdupq_n_u16(128); vsrc_wide += vshrq_n_u16(vsrc_wide, 8); vdst_wide += vdupq_n_u16(128); vdst_wide += vshrq_n_u16(vdst_wide, 8); vsrc = vshrn_n_u16(vsrc_wide, 8); vdst = vshrn_n_u16(vdst_wide, 8); vsrc += vdst; vsrc = vset_lane_u8(sa, vsrc, 3); return vget_lane_u32(vreinterpret_u32_u8(vsrc), 0); } // kXor_Mode [Sa + Da - 2 * Sa * Da, Sc * (1 - Da) + (1 - Sa) * Dc] SkPMColor xor_modeproc_neon(SkPMColor src, SkPMColor dst) { unsigned sa = SkGetPackedA32(src); unsigned da = SkGetPackedA32(dst); unsigned ret_alpha = sa + da - (SkAlphaMulAlpha(sa, da) << 1); unsigned isa = 255 - sa; unsigned ida = 255 - da; uint8x8_t vsrc, vdst, visa, vida; uint16x8_t vsrc_wide, vdst_wide; visa = vdup_n_u8(isa); vida = vdup_n_u8(ida); vsrc = vreinterpret_u8_u32(vdup_n_u32(src)); vdst = vreinterpret_u8_u32(vdup_n_u32(dst)); vsrc_wide = vmull_u8(vsrc, vida); vdst_wide = vmull_u8(vdst, visa); vsrc_wide += vdupq_n_u16(128); vsrc_wide += vshrq_n_u16(vsrc_wide, 8); vdst_wide += vdupq_n_u16(128); vdst_wide += vshrq_n_u16(vdst_wide, 8); vsrc = vshrn_n_u16(vsrc_wide, 8); vdst = vshrn_n_u16(vdst_wide, 8); vsrc += vdst; vsrc = vset_lane_u8(ret_alpha, vsrc, 3); return vget_lane_u32(vreinterpret_u32_u8(vsrc), 0); } // kPlus_Mode SkPMColor plus_modeproc_neon(SkPMColor src, SkPMColor dst) { uint8x8_t vsrc, vdst; vsrc = vreinterpret_u8_u32(vdup_n_u32(src)); vdst = vreinterpret_u8_u32(vdup_n_u32(dst)); vsrc = vqadd_u8(vsrc, vdst); return vget_lane_u32(vreinterpret_u32_u8(vsrc), 0); } // kModulate_Mode SkPMColor modulate_modeproc_neon(SkPMColor src, SkPMColor dst) { uint8x8_t vsrc, vdst, vres; uint16x8_t vres_wide; vsrc = vreinterpret_u8_u32(vdup_n_u32(src)); vdst = vreinterpret_u8_u32(vdup_n_u32(dst)); vres_wide = vmull_u8(vsrc, vdst); vres_wide += vdupq_n_u16(128); vres_wide += vshrq_n_u16(vres_wide, 8); vres = vshrn_n_u16(vres_wide, 8); return vget_lane_u32(vreinterpret_u32_u8(vres), 0); } //////////////////////////////////////////////////////////////////////////////// // 8 pixels modeprocs //////////////////////////////////////////////////////////////////////////////// uint8x8x4_t dstover_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { uint8x8x4_t ret; uint16x8_t src_scale; src_scale = vsubw_u8(vdupq_n_u16(256), dst.val[NEON_A]); ret.val[NEON_A] = dst.val[NEON_A] + SkAlphaMul_neon8(src.val[NEON_A], src_scale); ret.val[NEON_R] = dst.val[NEON_R] + SkAlphaMul_neon8(src.val[NEON_R], src_scale); ret.val[NEON_G] = dst.val[NEON_G] + SkAlphaMul_neon8(src.val[NEON_G], src_scale); ret.val[NEON_B] = dst.val[NEON_B] + SkAlphaMul_neon8(src.val[NEON_B], src_scale); return ret; } uint8x8x4_t srcin_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { uint8x8x4_t ret; uint16x8_t scale; scale = SkAlpha255To256_neon8(dst.val[NEON_A]); ret.val[NEON_A] = SkAlphaMul_neon8(src.val[NEON_A], scale); ret.val[NEON_R] = SkAlphaMul_neon8(src.val[NEON_R], scale); ret.val[NEON_G] = SkAlphaMul_neon8(src.val[NEON_G], scale); ret.val[NEON_B] = SkAlphaMul_neon8(src.val[NEON_B], scale); return ret; } uint8x8x4_t dstin_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { uint8x8x4_t ret; uint16x8_t scale; scale = SkAlpha255To256_neon8(src.val[NEON_A]); ret = SkAlphaMulQ_neon8(dst, scale); return ret; } uint8x8x4_t srcout_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { uint8x8x4_t ret; uint16x8_t scale = vsubw_u8(vdupq_n_u16(256), dst.val[NEON_A]); ret = SkAlphaMulQ_neon8(src, scale); return ret; } uint8x8x4_t dstout_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { uint8x8x4_t ret; uint16x8_t scale = vsubw_u8(vdupq_n_u16(256), src.val[NEON_A]); ret = SkAlphaMulQ_neon8(dst, scale); return ret; } uint8x8x4_t srcatop_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { uint8x8x4_t ret; uint8x8_t isa; isa = vsub_u8(vdup_n_u8(255), src.val[NEON_A]); ret.val[NEON_A] = dst.val[NEON_A]; ret.val[NEON_R] = SkAlphaMulAlpha_neon8(src.val[NEON_R], dst.val[NEON_A]) + SkAlphaMulAlpha_neon8(dst.val[NEON_R], isa); ret.val[NEON_G] = SkAlphaMulAlpha_neon8(src.val[NEON_G], dst.val[NEON_A]) + SkAlphaMulAlpha_neon8(dst.val[NEON_G], isa); ret.val[NEON_B] = SkAlphaMulAlpha_neon8(src.val[NEON_B], dst.val[NEON_A]) + SkAlphaMulAlpha_neon8(dst.val[NEON_B], isa); return ret; } uint8x8x4_t dstatop_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { uint8x8x4_t ret; uint8x8_t ida; ida = vsub_u8(vdup_n_u8(255), dst.val[NEON_A]); ret.val[NEON_A] = src.val[NEON_A]; ret.val[NEON_R] = SkAlphaMulAlpha_neon8(src.val[NEON_R], ida) + SkAlphaMulAlpha_neon8(dst.val[NEON_R], src.val[NEON_A]); ret.val[NEON_G] = SkAlphaMulAlpha_neon8(src.val[NEON_G], ida) + SkAlphaMulAlpha_neon8(dst.val[NEON_G], src.val[NEON_A]); ret.val[NEON_B] = SkAlphaMulAlpha_neon8(src.val[NEON_B], ida) + SkAlphaMulAlpha_neon8(dst.val[NEON_B], src.val[NEON_A]); return ret; } uint8x8x4_t xor_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { uint8x8x4_t ret; uint8x8_t isa, ida; uint16x8_t tmp_wide, tmp_wide2; isa = vsub_u8(vdup_n_u8(255), src.val[NEON_A]); ida = vsub_u8(vdup_n_u8(255), dst.val[NEON_A]); // First calc alpha tmp_wide = vmovl_u8(src.val[NEON_A]); tmp_wide = vaddw_u8(tmp_wide, dst.val[NEON_A]); tmp_wide2 = vshll_n_u8(SkAlphaMulAlpha_neon8(src.val[NEON_A], dst.val[NEON_A]), 1); tmp_wide = vsubq_u16(tmp_wide, tmp_wide2); ret.val[NEON_A] = vmovn_u16(tmp_wide); // Then colors ret.val[NEON_R] = SkAlphaMulAlpha_neon8(src.val[NEON_R], ida) + SkAlphaMulAlpha_neon8(dst.val[NEON_R], isa); ret.val[NEON_G] = SkAlphaMulAlpha_neon8(src.val[NEON_G], ida) + SkAlphaMulAlpha_neon8(dst.val[NEON_G], isa); ret.val[NEON_B] = SkAlphaMulAlpha_neon8(src.val[NEON_B], ida) + SkAlphaMulAlpha_neon8(dst.val[NEON_B], isa); return ret; } uint8x8x4_t plus_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { uint8x8x4_t ret; ret.val[NEON_A] = vqadd_u8(src.val[NEON_A], dst.val[NEON_A]); ret.val[NEON_R] = vqadd_u8(src.val[NEON_R], dst.val[NEON_R]); ret.val[NEON_G] = vqadd_u8(src.val[NEON_G], dst.val[NEON_G]); ret.val[NEON_B] = vqadd_u8(src.val[NEON_B], dst.val[NEON_B]); return ret; } uint8x8x4_t modulate_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { uint8x8x4_t ret; ret.val[NEON_A] = SkAlphaMulAlpha_neon8(src.val[NEON_A], dst.val[NEON_A]); ret.val[NEON_R] = SkAlphaMulAlpha_neon8(src.val[NEON_R], dst.val[NEON_R]); ret.val[NEON_G] = SkAlphaMulAlpha_neon8(src.val[NEON_G], dst.val[NEON_G]); ret.val[NEON_B] = SkAlphaMulAlpha_neon8(src.val[NEON_B], dst.val[NEON_B]); return ret; } static inline uint8x8_t srcover_color(uint8x8_t a, uint8x8_t b) { uint16x8_t tmp; tmp = vaddl_u8(a, b); tmp -= SkAlphaMulAlpha_neon8_16(a, b); return vmovn_u16(tmp); } uint8x8x4_t screen_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { uint8x8x4_t ret; ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]); ret.val[NEON_R] = srcover_color(src.val[NEON_R], dst.val[NEON_R]); ret.val[NEON_G] = srcover_color(src.val[NEON_G], dst.val[NEON_G]); ret.val[NEON_B] = srcover_color(src.val[NEON_B], dst.val[NEON_B]); return ret; } template <bool overlay> static inline uint8x8_t overlay_hardlight_color(uint8x8_t sc, uint8x8_t dc, uint8x8_t sa, uint8x8_t da) { /* * In the end we're gonna use (rc + tmp) with a different rc * coming from an alternative. * The whole value (rc + tmp) can always be expressed as * VAL = COM - SUB in the if case * VAL = COM + SUB - sa*da in the else case * * with COM = 255 * (sc + dc) * and SUB = sc*da + dc*sa - 2*dc*sc */ // Prepare common subexpressions uint16x8_t const255 = vdupq_n_u16(255); uint16x8_t sc_plus_dc = vaddl_u8(sc, dc); uint16x8_t scda = vmull_u8(sc, da); uint16x8_t dcsa = vmull_u8(dc, sa); uint16x8_t sada = vmull_u8(sa, da); // Prepare non common subexpressions uint16x8_t dc2, sc2; uint32x4_t scdc2_1, scdc2_2; if (overlay) { dc2 = vshll_n_u8(dc, 1); scdc2_1 = vmull_u16(vget_low_u16(dc2), vget_low_u16(vmovl_u8(sc))); #ifdef SK_CPU_ARM64 scdc2_2 = vmull_high_u16(dc2, vmovl_u8(sc)); #else scdc2_2 = vmull_u16(vget_high_u16(dc2), vget_high_u16(vmovl_u8(sc))); #endif } else { sc2 = vshll_n_u8(sc, 1); scdc2_1 = vmull_u16(vget_low_u16(sc2), vget_low_u16(vmovl_u8(dc))); #ifdef SK_CPU_ARM64 scdc2_2 = vmull_high_u16(sc2, vmovl_u8(dc)); #else scdc2_2 = vmull_u16(vget_high_u16(sc2), vget_high_u16(vmovl_u8(dc))); #endif } // Calc COM int32x4_t com1, com2; com1 = vreinterpretq_s32_u32( vmull_u16(vget_low_u16(const255), vget_low_u16(sc_plus_dc))); com2 = vreinterpretq_s32_u32( #ifdef SK_CPU_ARM64 vmull_high_u16(const255, sc_plus_dc)); #else vmull_u16(vget_high_u16(const255), vget_high_u16(sc_plus_dc))); #endif // Calc SUB int32x4_t sub1, sub2; sub1 = vreinterpretq_s32_u32(vaddl_u16(vget_low_u16(scda), vget_low_u16(dcsa))); #ifdef SK_CPU_ARM64 sub2 = vreinterpretq_s32_u32(vaddl_high_u16(scda, dcsa)); #else sub2 = vreinterpretq_s32_u32(vaddl_u16(vget_high_u16(scda), vget_high_u16(dcsa))); #endif sub1 = vsubq_s32(sub1, vreinterpretq_s32_u32(scdc2_1)); sub2 = vsubq_s32(sub2, vreinterpretq_s32_u32(scdc2_2)); // Compare 2*dc <= da uint16x8_t cmp; if (overlay) { cmp = vcleq_u16(dc2, vmovl_u8(da)); } else { cmp = vcleq_u16(sc2, vmovl_u8(sa)); } // Prepare variables int32x4_t val1_1, val1_2; int32x4_t val2_1, val2_2; uint32x4_t cmp1, cmp2; // Doing a signed lengthening allows to save a few instructions // thanks to sign extension. cmp1 = vreinterpretq_u32_s32(vmovl_s16(vreinterpret_s16_u16(vget_low_u16(cmp)))); #ifdef SK_CPU_ARM64 cmp2 = vreinterpretq_u32_s32(vmovl_high_s16(vreinterpretq_s16_u16(cmp))); #else cmp2 = vreinterpretq_u32_s32(vmovl_s16(vreinterpret_s16_u16(vget_high_u16(cmp)))); #endif // Calc COM - SUB val1_1 = com1 - sub1; val1_2 = com2 - sub2; // Calc COM + SUB - sa*da val2_1 = com1 + sub1; val2_2 = com2 + sub2; val2_1 = vsubq_s32(val2_1, vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(sada)))); #ifdef SK_CPU_ARM64 val2_2 = vsubq_s32(val2_2, vreinterpretq_s32_u32(vmovl_high_u16(sada))); #else val2_2 = vsubq_s32(val2_2, vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(sada)))); #endif // Insert where needed val1_1 = vbslq_s32(cmp1, val1_1, val2_1); val1_2 = vbslq_s32(cmp2, val1_2, val2_2); // Call the clamp_div255round function return clamp_div255round_simd8_32(val1_1, val1_2); } static inline uint8x8_t overlay_color(uint8x8_t sc, uint8x8_t dc, uint8x8_t sa, uint8x8_t da) { return overlay_hardlight_color<true>(sc, dc, sa, da); } uint8x8x4_t overlay_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { uint8x8x4_t ret; ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]); ret.val[NEON_R] = overlay_color(src.val[NEON_R], dst.val[NEON_R], src.val[NEON_A], dst.val[NEON_A]); ret.val[NEON_G] = overlay_color(src.val[NEON_G], dst.val[NEON_G], src.val[NEON_A], dst.val[NEON_A]); ret.val[NEON_B] = overlay_color(src.val[NEON_B], dst.val[NEON_B], src.val[NEON_A], dst.val[NEON_A]); return ret; } template <bool lighten> static inline uint8x8_t lighten_darken_color(uint8x8_t sc, uint8x8_t dc, uint8x8_t sa, uint8x8_t da) { uint16x8_t sd, ds, cmp, tmp, tmp2; // Prepare sd = vmull_u8(sc, da); ds = vmull_u8(dc, sa); // Do test if (lighten) { cmp = vcgtq_u16(sd, ds); } else { cmp = vcltq_u16(sd, ds); } // Assign if tmp = vaddl_u8(sc, dc); tmp2 = tmp; tmp -= SkDiv255Round_neon8_16_16(ds); // Calc else tmp2 -= SkDiv255Round_neon8_16_16(sd); // Insert where needed tmp = vbslq_u16(cmp, tmp, tmp2); return vmovn_u16(tmp); } static inline uint8x8_t darken_color(uint8x8_t sc, uint8x8_t dc, uint8x8_t sa, uint8x8_t da) { return lighten_darken_color<false>(sc, dc, sa, da); } uint8x8x4_t darken_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { uint8x8x4_t ret; ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]); ret.val[NEON_R] = darken_color(src.val[NEON_R], dst.val[NEON_R], src.val[NEON_A], dst.val[NEON_A]); ret.val[NEON_G] = darken_color(src.val[NEON_G], dst.val[NEON_G], src.val[NEON_A], dst.val[NEON_A]); ret.val[NEON_B] = darken_color(src.val[NEON_B], dst.val[NEON_B], src.val[NEON_A], dst.val[NEON_A]); return ret; } static inline uint8x8_t lighten_color(uint8x8_t sc, uint8x8_t dc, uint8x8_t sa, uint8x8_t da) { return lighten_darken_color<true>(sc, dc, sa, da); } uint8x8x4_t lighten_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { uint8x8x4_t ret; ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]); ret.val[NEON_R] = lighten_color(src.val[NEON_R], dst.val[NEON_R], src.val[NEON_A], dst.val[NEON_A]); ret.val[NEON_G] = lighten_color(src.val[NEON_G], dst.val[NEON_G], src.val[NEON_A], dst.val[NEON_A]); ret.val[NEON_B] = lighten_color(src.val[NEON_B], dst.val[NEON_B], src.val[NEON_A], dst.val[NEON_A]); return ret; } static inline uint8x8_t hardlight_color(uint8x8_t sc, uint8x8_t dc, uint8x8_t sa, uint8x8_t da) { return overlay_hardlight_color<false>(sc, dc, sa, da); } uint8x8x4_t hardlight_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { uint8x8x4_t ret; ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]); ret.val[NEON_R] = hardlight_color(src.val[NEON_R], dst.val[NEON_R], src.val[NEON_A], dst.val[NEON_A]); ret.val[NEON_G] = hardlight_color(src.val[NEON_G], dst.val[NEON_G], src.val[NEON_A], dst.val[NEON_A]); ret.val[NEON_B] = hardlight_color(src.val[NEON_B], dst.val[NEON_B], src.val[NEON_A], dst.val[NEON_A]); return ret; } static inline uint8x8_t difference_color(uint8x8_t sc, uint8x8_t dc, uint8x8_t sa, uint8x8_t da) { uint16x8_t sd, ds, tmp; int16x8_t val; sd = vmull_u8(sc, da); ds = vmull_u8(dc, sa); tmp = vminq_u16(sd, ds); tmp = SkDiv255Round_neon8_16_16(tmp); tmp = vshlq_n_u16(tmp, 1); val = vreinterpretq_s16_u16(vaddl_u8(sc, dc)); val -= vreinterpretq_s16_u16(tmp); val = vmaxq_s16(val, vdupq_n_s16(0)); val = vminq_s16(val, vdupq_n_s16(255)); return vmovn_u16(vreinterpretq_u16_s16(val)); } uint8x8x4_t difference_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { uint8x8x4_t ret; ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]); ret.val[NEON_R] = difference_color(src.val[NEON_R], dst.val[NEON_R], src.val[NEON_A], dst.val[NEON_A]); ret.val[NEON_G] = difference_color(src.val[NEON_G], dst.val[NEON_G], src.val[NEON_A], dst.val[NEON_A]); ret.val[NEON_B] = difference_color(src.val[NEON_B], dst.val[NEON_B], src.val[NEON_A], dst.val[NEON_A]); return ret; } static inline uint8x8_t exclusion_color(uint8x8_t sc, uint8x8_t dc, uint8x8_t sa, uint8x8_t da) { /* The equation can be simplified to 255(sc + dc) - 2 * sc * dc */ uint16x8_t sc_plus_dc, scdc, const255; int32x4_t term1_1, term1_2, term2_1, term2_2; /* Calc (sc + dc) and (sc * dc) */ sc_plus_dc = vaddl_u8(sc, dc); scdc = vmull_u8(sc, dc); /* Prepare constants */ const255 = vdupq_n_u16(255); /* Calc the first term */ term1_1 = vreinterpretq_s32_u32( vmull_u16(vget_low_u16(const255), vget_low_u16(sc_plus_dc))); term1_2 = vreinterpretq_s32_u32( #ifdef SK_CPU_ARM64 vmull_high_u16(const255, sc_plus_dc)); #else vmull_u16(vget_high_u16(const255), vget_high_u16(sc_plus_dc))); #endif /* Calc the second term */ term2_1 = vreinterpretq_s32_u32(vshll_n_u16(vget_low_u16(scdc), 1)); #ifdef SK_CPU_ARM64 term2_2 = vreinterpretq_s32_u32(vshll_high_n_u16(scdc, 1)); #else term2_2 = vreinterpretq_s32_u32(vshll_n_u16(vget_high_u16(scdc), 1)); #endif return clamp_div255round_simd8_32(term1_1 - term2_1, term1_2 - term2_2); } uint8x8x4_t exclusion_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { uint8x8x4_t ret; ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]); ret.val[NEON_R] = exclusion_color(src.val[NEON_R], dst.val[NEON_R], src.val[NEON_A], dst.val[NEON_A]); ret.val[NEON_G] = exclusion_color(src.val[NEON_G], dst.val[NEON_G], src.val[NEON_A], dst.val[NEON_A]); ret.val[NEON_B] = exclusion_color(src.val[NEON_B], dst.val[NEON_B], src.val[NEON_A], dst.val[NEON_A]); return ret; } static inline uint8x8_t blendfunc_multiply_color(uint8x8_t sc, uint8x8_t dc, uint8x8_t sa, uint8x8_t da) { uint32x4_t val1, val2; uint16x8_t scdc, t1, t2; t1 = vmull_u8(sc, vdup_n_u8(255) - da); t2 = vmull_u8(dc, vdup_n_u8(255) - sa); scdc = vmull_u8(sc, dc); val1 = vaddl_u16(vget_low_u16(t1), vget_low_u16(t2)); #ifdef SK_CPU_ARM64 val2 = vaddl_high_u16(t1, t2); #else val2 = vaddl_u16(vget_high_u16(t1), vget_high_u16(t2)); #endif val1 = vaddw_u16(val1, vget_low_u16(scdc)); #ifdef SK_CPU_ARM64 val2 = vaddw_high_u16(val2, scdc); #else val2 = vaddw_u16(val2, vget_high_u16(scdc)); #endif return clamp_div255round_simd8_32( vreinterpretq_s32_u32(val1), vreinterpretq_s32_u32(val2)); } uint8x8x4_t multiply_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { uint8x8x4_t ret; ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]); ret.val[NEON_R] = blendfunc_multiply_color(src.val[NEON_R], dst.val[NEON_R], src.val[NEON_A], dst.val[NEON_A]); ret.val[NEON_G] = blendfunc_multiply_color(src.val[NEON_G], dst.val[NEON_G], src.val[NEON_A], dst.val[NEON_A]); ret.val[NEON_B] = blendfunc_multiply_color(src.val[NEON_B], dst.val[NEON_B], src.val[NEON_A], dst.val[NEON_A]); return ret; } //////////////////////////////////////////////////////////////////////////////// typedef uint8x8x4_t (*SkXfermodeProcSIMD)(uint8x8x4_t src, uint8x8x4_t dst); extern SkXfermodeProcSIMD gNEONXfermodeProcs[]; void SkNEONProcCoeffXfermode::xfer32(SkPMColor* SK_RESTRICT dst, const SkPMColor* SK_RESTRICT src, int count, const SkAlpha* SK_RESTRICT aa) const { SkASSERT(dst && src && count >= 0); SkXfermodeProc proc = this->getProc(); SkXfermodeProcSIMD procSIMD = reinterpret_cast<SkXfermodeProcSIMD>(fProcSIMD); SkASSERT(procSIMD != NULL); if (NULL == aa) { // Unrolled NEON code // We'd like to just do this (modulo a few casts): // vst4_u8(dst, procSIMD(vld4_u8(src), vld4_u8(dst))); // src += 8; // dst += 8; // but that tends to generate miserable code. Here are a bunch of faster // workarounds for different architectures and compilers. while (count >= 8) { #ifdef SK_CPU_ARM32 uint8x8x4_t vsrc, vdst, vres; #if (__GNUC__ > 4) || ((__GNUC__ == 4) && (__GNUC_MINOR__ > 6)) asm volatile ( "vld4.u8 %h[vsrc], [%[src]]! \t\n" "vld4.u8 %h[vdst], [%[dst]] \t\n" : [vsrc] "=w" (vsrc), [vdst] "=w" (vdst), [src] "+&r" (src) : [dst] "r" (dst) : ); #else register uint8x8_t d0 asm("d0"); register uint8x8_t d1 asm("d1"); register uint8x8_t d2 asm("d2"); register uint8x8_t d3 asm("d3"); register uint8x8_t d4 asm("d4"); register uint8x8_t d5 asm("d5"); register uint8x8_t d6 asm("d6"); register uint8x8_t d7 asm("d7"); asm volatile ( "vld4.u8 {d0-d3},[%[src]]!;" "vld4.u8 {d4-d7},[%[dst]];" : "=w" (d0), "=w" (d1), "=w" (d2), "=w" (d3), "=w" (d4), "=w" (d5), "=w" (d6), "=w" (d7), [src] "+&r" (src) : [dst] "r" (dst) : ); vsrc.val[0] = d0; vdst.val[0] = d4; vsrc.val[1] = d1; vdst.val[1] = d5; vsrc.val[2] = d2; vdst.val[2] = d6; vsrc.val[3] = d3; vdst.val[3] = d7; #endif vres = procSIMD(vsrc, vdst); vst4_u8((uint8_t*)dst, vres); dst += 8; #else // #ifdef SK_CPU_ARM32 asm volatile ( "ld4 {v0.8b - v3.8b}, [%[src]], #32 \t\n" "ld4 {v4.8b - v7.8b}, [%[dst]] \t\n" "blr %[proc] \t\n" "st4 {v0.8b - v3.8b}, [%[dst]], #32 \t\n" : [src] "+&r" (src), [dst] "+&r" (dst) : [proc] "r" (procSIMD) : "cc", "memory", /* We don't know what proc is going to clobber so we must * add everything that is not callee-saved. */ "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18", "x30", /* x30 implicitly clobbered by blr */ "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31" ); #endif // #ifdef SK_CPU_ARM32 count -= 8; } // Leftovers for (int i = 0; i < count; i++) { dst[i] = proc(src[i], dst[i]); } } else { for (int i = count - 1; i >= 0; --i) { unsigned a = aa[i]; if (0 != a) { SkPMColor dstC = dst[i]; SkPMColor C = proc(src[i], dstC); if (a != 0xFF) { C = SkFourByteInterp_neon(C, dstC, a); } dst[i] = C; } } } } void SkNEONProcCoeffXfermode::xfer16(uint16_t* SK_RESTRICT dst, const SkPMColor* SK_RESTRICT src, int count, const SkAlpha* SK_RESTRICT aa) const { SkASSERT(dst && src && count >= 0); SkXfermodeProc proc = this->getProc(); SkXfermodeProcSIMD procSIMD = reinterpret_cast<SkXfermodeProcSIMD>(fProcSIMD); SkASSERT(procSIMD != NULL); if (NULL == aa) { while(count >= 8) { uint16x8_t vdst, vres16; uint8x8x4_t vdst32, vsrc, vres; vdst = vld1q_u16(dst); #ifdef SK_CPU_ARM64 vsrc = vld4_u8((uint8_t*)src); #else #if (__GNUC__ > 4) || ((__GNUC__ == 4) && (__GNUC_MINOR__ > 6)) asm volatile ( "vld4.u8 %h[vsrc], [%[src]]! \t\n" : [vsrc] "=w" (vsrc), [src] "+&r" (src) : : ); #else register uint8x8_t d0 asm("d0"); register uint8x8_t d1 asm("d1"); register uint8x8_t d2 asm("d2"); register uint8x8_t d3 asm("d3"); asm volatile ( "vld4.u8 {d0-d3},[%[src]]!;" : "=w" (d0), "=w" (d1), "=w" (d2), "=w" (d3), [src] "+&r" (src) : : ); vsrc.val[0] = d0; vsrc.val[1] = d1; vsrc.val[2] = d2; vsrc.val[3] = d3; #endif #endif // #ifdef SK_CPU_ARM64 vdst32 = SkPixel16ToPixel32_neon8(vdst); vres = procSIMD(vsrc, vdst32); vres16 = SkPixel32ToPixel16_neon8(vres); vst1q_u16(dst, vres16); count -= 8; dst += 8; #ifdef SK_CPU_ARM64 src += 8; #endif } for (int i = 0; i < count; i++) { SkPMColor dstC = SkPixel16ToPixel32(dst[i]); dst[i] = SkPixel32ToPixel16_ToU16(proc(src[i], dstC)); } } else { for (int i = count - 1; i >= 0; --i) { unsigned a = aa[i]; if (0 != a) { SkPMColor dstC = SkPixel16ToPixel32(dst[i]); SkPMColor C = proc(src[i], dstC); if (0xFF != a) { C = SkFourByteInterp_neon(C, dstC, a); } dst[i] = SkPixel32ToPixel16_ToU16(C); } } } } #ifndef SK_IGNORE_TO_STRING void SkNEONProcCoeffXfermode::toString(SkString* str) const { this->INHERITED::toString(str); } #endif //////////////////////////////////////////////////////////////////////////////// SkXfermodeProcSIMD gNEONXfermodeProcs[] = { NULL, // kClear_Mode NULL, // kSrc_Mode NULL, // kDst_Mode NULL, // kSrcOver_Mode dstover_modeproc_neon8, srcin_modeproc_neon8, dstin_modeproc_neon8, srcout_modeproc_neon8, dstout_modeproc_neon8, srcatop_modeproc_neon8, dstatop_modeproc_neon8, xor_modeproc_neon8, plus_modeproc_neon8, modulate_modeproc_neon8, screen_modeproc_neon8, overlay_modeproc_neon8, darken_modeproc_neon8, lighten_modeproc_neon8, NULL, // kColorDodge_Mode NULL, // kColorBurn_Mode hardlight_modeproc_neon8, NULL, // kSoftLight_Mode difference_modeproc_neon8, exclusion_modeproc_neon8, multiply_modeproc_neon8, NULL, // kHue_Mode NULL, // kSaturation_Mode NULL, // kColor_Mode NULL, // kLuminosity_Mode }; SK_COMPILE_ASSERT( SK_ARRAY_COUNT(gNEONXfermodeProcs) == SkXfermode::kLastMode + 1, mode_count_arm ); SkXfermodeProc gNEONXfermodeProcs1[] = { NULL, // kClear_Mode NULL, // kSrc_Mode NULL, // kDst_Mode NULL, // kSrcOver_Mode NULL, // kDstOver_Mode NULL, // kSrcIn_Mode NULL, // kDstIn_Mode NULL, // kSrcOut_Mode NULL, // kDstOut_Mode srcatop_modeproc_neon, dstatop_modeproc_neon, xor_modeproc_neon, plus_modeproc_neon, modulate_modeproc_neon, NULL, // kScreen_Mode NULL, // kOverlay_Mode NULL, // kDarken_Mode NULL, // kLighten_Mode NULL, // kColorDodge_Mode NULL, // kColorBurn_Mode NULL, // kHardLight_Mode NULL, // kSoftLight_Mode NULL, // kDifference_Mode NULL, // kExclusion_Mode NULL, // kMultiply_Mode NULL, // kHue_Mode NULL, // kSaturation_Mode NULL, // kColor_Mode NULL, // kLuminosity_Mode }; SK_COMPILE_ASSERT( SK_ARRAY_COUNT(gNEONXfermodeProcs1) == SkXfermode::kLastMode + 1, mode1_count_arm ); SkProcCoeffXfermode* SkPlatformXfermodeFactory_impl_neon(const ProcCoeff& rec, SkXfermode::Mode mode) { void* procSIMD = reinterpret_cast<void*>(gNEONXfermodeProcs[mode]); if (procSIMD != NULL) { return SkNEW_ARGS(SkNEONProcCoeffXfermode, (rec, mode, procSIMD)); } return NULL; } SkXfermodeProc SkPlatformXfermodeProcFactory_impl_neon(SkXfermode::Mode mode) { return gNEONXfermodeProcs1[mode]; }