/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "PathOpsExtendedTest.h" #include "PathOpsThreadedCommon.h" #include "SkBitmap.h" #include "SkCanvas.h" #include "SkForceLinking.h" #include "SkMatrix.h" #include "SkPaint.h" #include "SkRTConf.h" #include "SkStream.h" #include "SkTaskGroup.h" #include "SkThread.h" #ifdef SK_BUILD_FOR_MAC #include <sys/sysctl.h> #endif __SK_FORCE_IMAGE_DECODER_LINKING; DEFINE_bool2(runFail, f, false, "run tests known to fail."); DEFINE_bool2(runBinary, f, false, "run tests known to fail binary sect."); static const char marker[] = "</div>\n" "\n" "<script type=\"text/javascript\">\n" "\n" "var testDivs = [\n"; static const char* opStrs[] = { "kDifference_SkPathOp", "kIntersect_SkPathOp", "kUnion_SkPathOp", "kXor_PathOp", "kReverseDifference_SkPathOp", }; static const char* opSuffixes[] = { "d", "i", "u", "o", }; #if DEBUG_SHOW_TEST_NAME static void showPathData(const SkPath& path) { SkPath::RawIter iter(path); uint8_t verb; SkPoint pts[4]; SkPoint firstPt = {0, 0}, lastPt = {0, 0}; bool firstPtSet = false; bool lastPtSet = true; while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { switch (verb) { case SkPath::kMove_Verb: if (firstPtSet && lastPtSet && firstPt != lastPt) { SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", lastPt.fX, lastPt.fY, firstPt.fX, firstPt.fY); lastPtSet = false; } firstPt = pts[0]; firstPtSet = true; continue; case SkPath::kLine_Verb: SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY); lastPt = pts[1]; lastPtSet = true; break; case SkPath::kQuad_Verb: SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY); lastPt = pts[2]; lastPtSet = true; break; case SkPath::kConic_Verb: SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}}, //weight=%1.9g\n", pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY, iter.conicWeight()); lastPt = pts[2]; lastPtSet = true; break; case SkPath::kCubic_Verb: SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY, pts[3].fX, pts[3].fY); lastPt = pts[3]; lastPtSet = true; break; case SkPath::kClose_Verb: if (firstPtSet && lastPtSet && firstPt != lastPt) { SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", lastPt.fX, lastPt.fY, firstPt.fX, firstPt.fY); } firstPtSet = lastPtSet = false; break; default: SkDEBUGFAIL("bad verb"); return; } } if (firstPtSet && lastPtSet && firstPt != lastPt) { SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", lastPt.fX, lastPt.fY, firstPt.fX, firstPt.fY); } } #endif void showOp(const SkPathOp op) { switch (op) { case kDifference_SkPathOp: SkDebugf("op difference\n"); break; case kIntersect_SkPathOp: SkDebugf("op intersect\n"); break; case kUnion_SkPathOp: SkDebugf("op union\n"); break; case kXOR_SkPathOp: SkDebugf("op xor\n"); break; case kReverseDifference_SkPathOp: SkDebugf("op reverse difference\n"); break; default: SkASSERT(0); } } #if DEBUG_SHOW_TEST_NAME static char hexorator(int x) { if (x < 10) { return x + '0'; } x -= 10; SkASSERT(x < 26); return x + 'A'; } #endif void ShowTestName(PathOpsThreadState* state, int a, int b, int c, int d) { #if DEBUG_SHOW_TEST_NAME state->fSerialNo[0] = hexorator(state->fA); state->fSerialNo[1] = hexorator(state->fB); state->fSerialNo[2] = hexorator(state->fC); state->fSerialNo[3] = hexorator(state->fD); state->fSerialNo[4] = hexorator(a); state->fSerialNo[5] = hexorator(b); state->fSerialNo[6] = hexorator(c); state->fSerialNo[7] = hexorator(d); state->fSerialNo[8] = '\0'; SkDebugf("%s\n", state->fSerialNo); if (strcmp(state->fSerialNo, state->fKey) == 0) { SkDebugf("%s\n", state->fPathStr); } #endif } const int bitWidth = 64; const int bitHeight = 64; static void scaleMatrix(const SkPath& one, const SkPath& two, SkMatrix& scale) { SkRect larger = one.getBounds(); larger.join(two.getBounds()); SkScalar largerWidth = larger.width(); if (largerWidth < 4) { largerWidth = 4; } SkScalar largerHeight = larger.height(); if (largerHeight < 4) { largerHeight = 4; } SkScalar hScale = (bitWidth - 2) / largerWidth; SkScalar vScale = (bitHeight - 2) / largerHeight; scale.reset(); scale.preScale(hScale, vScale); } static int pathsDrawTheSame(SkBitmap& bits, const SkPath& scaledOne, const SkPath& scaledTwo, int& error2x2) { if (bits.width() == 0) { bits.allocN32Pixels(bitWidth * 2, bitHeight); } SkCanvas canvas(bits); canvas.drawColor(SK_ColorWHITE); SkPaint paint; canvas.save(); const SkRect& bounds1 = scaledOne.getBounds(); canvas.translate(-bounds1.fLeft + 1, -bounds1.fTop + 1); canvas.drawPath(scaledOne, paint); canvas.restore(); canvas.save(); canvas.translate(-bounds1.fLeft + 1 + bitWidth, -bounds1.fTop + 1); canvas.drawPath(scaledTwo, paint); canvas.restore(); int errors2 = 0; int errors = 0; for (int y = 0; y < bitHeight - 1; ++y) { uint32_t* addr1 = bits.getAddr32(0, y); uint32_t* addr2 = bits.getAddr32(0, y + 1); uint32_t* addr3 = bits.getAddr32(bitWidth, y); uint32_t* addr4 = bits.getAddr32(bitWidth, y + 1); for (int x = 0; x < bitWidth - 1; ++x) { // count 2x2 blocks bool err = addr1[x] != addr3[x]; if (err) { errors2 += addr1[x + 1] != addr3[x + 1] && addr2[x] != addr4[x] && addr2[x + 1] != addr4[x + 1]; errors++; } } } error2x2 = errors2; return errors; } static int pathsDrawTheSame(const SkPath& one, const SkPath& two, SkBitmap& bits, SkPath& scaledOne, SkPath& scaledTwo, int& error2x2) { SkMatrix scale; scaleMatrix(one, two, scale); one.transform(scale, &scaledOne); two.transform(scale, &scaledTwo); return pathsDrawTheSame(bits, scaledOne, scaledTwo, error2x2); } bool drawAsciiPaths(const SkPath& one, const SkPath& two, bool drawPaths) { if (!drawPaths) { return true; } const SkRect& bounds1 = one.getBounds(); const SkRect& bounds2 = two.getBounds(); SkRect larger = bounds1; larger.join(bounds2); SkBitmap bits; char out[256]; int bitWidth = SkScalarCeilToInt(larger.width()) + 2; if (bitWidth * 2 + 1 >= (int) sizeof(out)) { return false; } int bitHeight = SkScalarCeilToInt(larger.height()) + 2; if (bitHeight >= (int) sizeof(out)) { return false; } bits.allocN32Pixels(bitWidth * 2, bitHeight); SkCanvas canvas(bits); canvas.drawColor(SK_ColorWHITE); SkPaint paint; canvas.save(); canvas.translate(-bounds1.fLeft + 1, -bounds1.fTop + 1); canvas.drawPath(one, paint); canvas.restore(); canvas.save(); canvas.translate(-bounds1.fLeft + 1 + bitWidth, -bounds1.fTop + 1); canvas.drawPath(two, paint); canvas.restore(); for (int y = 0; y < bitHeight; ++y) { uint32_t* addr1 = bits.getAddr32(0, y); int x; char* outPtr = out; for (x = 0; x < bitWidth; ++x) { *outPtr++ = addr1[x] == (uint32_t) -1 ? '_' : 'x'; } *outPtr++ = '|'; for (x = bitWidth; x < bitWidth * 2; ++x) { *outPtr++ = addr1[x] == (uint32_t) -1 ? '_' : 'x'; } *outPtr++ = '\0'; SkDebugf("%s\n", out); } return true; } int comparePaths(skiatest::Reporter* reporter, const char* filename, const SkPath& one, const SkPath& two, SkBitmap& bitmap) { int errors2x2; SkPath scaledOne, scaledTwo; (void) pathsDrawTheSame(one, two, bitmap, scaledOne, scaledTwo, errors2x2); if (errors2x2 == 0) { return 0; } const int MAX_ERRORS = 9; return errors2x2 > MAX_ERRORS ? errors2x2 : 0; } const int gTestFirst = 41; static int gTestNo = gTestFirst; static SkTDArray<SkPathOp> gTestOp; static void showPathOpPath(const char* testName, const SkPath& one, const SkPath& two, const SkPath& a, const SkPath& b, const SkPath& scaledOne, const SkPath& scaledTwo, const SkPathOp shapeOp, const SkMatrix& scale) { SkASSERT((unsigned) shapeOp < SK_ARRAY_COUNT(opStrs)); if (!testName) { testName = "xOp"; } SkDebugf("static void %s%d%s(skiatest::Reporter* reporter, const char* filename) {\n", testName, gTestNo, opSuffixes[shapeOp]); *gTestOp.append() = shapeOp; ++gTestNo; SkDebugf(" SkPath path, pathB;\n"); SkPathOpsDebug::ShowOnePath(a, "path", false); SkPathOpsDebug::ShowOnePath(b, "pathB", false); SkDebugf(" testPathOp(reporter, path, pathB, %s, filename);\n", opStrs[shapeOp]); SkDebugf("}\n"); drawAsciiPaths(scaledOne, scaledTwo, false); } void ShowTestArray(const char* testName) { if (!testName) { testName = "xOp"; } for (int x = gTestFirst; x < gTestNo; ++x) { SkDebugf(" TEST(%s%d%s),\n", testName, x, opSuffixes[gTestOp[x - gTestFirst]]); } } SK_DECLARE_STATIC_MUTEX(compareDebugOut3); static int comparePaths(skiatest::Reporter* reporter, const char* testName, const SkPath& one, const SkPath& scaledOne, const SkPath& two, const SkPath& scaledTwo, SkBitmap& bitmap, const SkPath& a, const SkPath& b, const SkPathOp shapeOp, const SkMatrix& scale, bool expectSuccess) { int errors2x2; const int MAX_ERRORS = 8; (void) pathsDrawTheSame(bitmap, scaledOne, scaledTwo, errors2x2); if (!expectSuccess) { if (errors2x2 < MAX_ERRORS) { REPORTER_ASSERT(reporter, 0); } return 0; } if (errors2x2 == 0) { return 0; } if (errors2x2 >= MAX_ERRORS) { SkAutoMutexAcquire autoM(compareDebugOut3); showPathOpPath(testName, one, two, a, b, scaledOne, scaledTwo, shapeOp, scale); SkDebugf("\n/*"); REPORTER_ASSERT(reporter, 0); SkDebugf(" */\n"); } return errors2x2 >= MAX_ERRORS ? errors2x2 : 0; } // Default values for when reporter->verbose() is false. static int testNumber = 55; static const char* testName = "pathOpTest"; static void writeTestName(const char* nameSuffix, SkMemoryWStream& outFile) { outFile.writeText(testName); outFile.writeDecAsText(testNumber); ++testNumber; if (nameSuffix) { outFile.writeText(nameSuffix); } } static void outputToStream(const char* pathStr, const char* pathPrefix, const char* nameSuffix, const char* testFunction, bool twoPaths, SkMemoryWStream& outFile) { #if 0 outFile.writeText("\n<div id=\""); writeTestName(nameSuffix, outFile); outFile.writeText("\">\n"); if (pathPrefix) { outFile.writeText(pathPrefix); } outFile.writeText(pathStr); outFile.writeText("</div>\n\n"); outFile.writeText(marker); outFile.writeText(" "); writeTestName(nameSuffix, outFile); outFile.writeText(",\n\n\n"); #endif outFile.writeText("static void "); writeTestName(nameSuffix, outFile); outFile.writeText("(skiatest::Reporter* reporter) {\n SkPath path"); if (twoPaths) { outFile.writeText(", pathB"); } outFile.writeText(";\n"); if (pathPrefix) { outFile.writeText(pathPrefix); } outFile.writeText(pathStr); outFile.writeText(" "); outFile.writeText(testFunction); outFile.writeText("\n}\n\n"); #if 0 outFile.writeText("static void (*firstTest)() = "); writeTestName(nameSuffix, outFile); outFile.writeText(";\n\n"); outFile.writeText("static struct {\n"); outFile.writeText(" void (*fun)();\n"); outFile.writeText(" const char* str;\n"); outFile.writeText("} tests[] = {\n"); outFile.writeText(" TEST("); writeTestName(nameSuffix, outFile); outFile.writeText("),\n"); #endif outFile.flush(); } SK_DECLARE_STATIC_MUTEX(simplifyDebugOut); bool testSimplify(SkPath& path, bool useXor, SkPath& out, PathOpsThreadState& state, const char* pathStr) { SkPath::FillType fillType = useXor ? SkPath::kEvenOdd_FillType : SkPath::kWinding_FillType; path.setFillType(fillType); state.fReporter->bumpTestCount(); if (!Simplify(path, &out)) { SkDebugf("%s did not expect failure\n", __FUNCTION__); REPORTER_ASSERT(state.fReporter, 0); return false; } if (!state.fReporter->verbose()) { return true; } int result = comparePaths(state.fReporter, NULL, path, out, *state.fBitmap); if (result) { SkAutoMutexAcquire autoM(simplifyDebugOut); char temp[8192]; sk_bzero(temp, sizeof(temp)); SkMemoryWStream stream(temp, sizeof(temp)); const char* pathPrefix = NULL; const char* nameSuffix = NULL; if (fillType == SkPath::kEvenOdd_FillType) { pathPrefix = " path.setFillType(SkPath::kEvenOdd_FillType);\n"; nameSuffix = "x"; } const char testFunction[] = "testSimplify(reporter, path);"; outputToStream(pathStr, pathPrefix, nameSuffix, testFunction, false, stream); SkDebugf("%s", temp); REPORTER_ASSERT(state.fReporter, 0); } state.fReporter->bumpTestCount(); return result == 0; } static bool inner_simplify(skiatest::Reporter* reporter, const SkPath& path, const char* filename, bool checkFail) { #if 0 && DEBUG_SHOW_TEST_NAME showPathData(path); #endif SkPath out; if (!Simplify(path, &out)) { SkDebugf("%s did not expect %s failure\n", __FUNCTION__, filename); REPORTER_ASSERT(reporter, 0); return false; } SkBitmap bitmap; int errors = comparePaths(reporter, filename, path, out, bitmap); if (!checkFail) { if (!errors) { SkDebugf("%s failing test %s now succeeds\n", __FUNCTION__, filename); REPORTER_ASSERT(reporter, 0); return false; } } else if (errors) { REPORTER_ASSERT(reporter, 0); } reporter->bumpTestCount(); return errors == 0; } bool testSimplify(skiatest::Reporter* reporter, const SkPath& path, const char* filename) { return inner_simplify(reporter, path, filename, true); } bool testSimplifyCheck(skiatest::Reporter* reporter, const SkPath& path, const char* filename, bool checkFail) { return inner_simplify(reporter, path, filename, checkFail); } #if DEBUG_SHOW_TEST_NAME static void showName(const SkPath& a, const SkPath& b, const SkPathOp shapeOp) { SkDebugf("\n"); showPathData(a); showOp(shapeOp); showPathData(b); } #endif bool OpDebug(const SkPath& one, const SkPath& two, SkPathOp op, SkPath* result, bool expectSuccess); static bool innerPathOp(skiatest::Reporter* reporter, const SkPath& a, const SkPath& b, const SkPathOp shapeOp, const char* testName, bool expectSuccess) { #if 0 && DEBUG_SHOW_TEST_NAME showName(a, b, shapeOp); #endif SkPath out; if (!OpDebug(a, b, shapeOp, &out, expectSuccess)) { SkDebugf("%s did not expect failure\n", __FUNCTION__); REPORTER_ASSERT(reporter, 0); return false; } if (!reporter->verbose()) { return true; } SkPath pathOut, scaledPathOut; SkRegion rgnA, rgnB, openClip, rgnOut; openClip.setRect(-16000, -16000, 16000, 16000); rgnA.setPath(a, openClip); rgnB.setPath(b, openClip); rgnOut.op(rgnA, rgnB, (SkRegion::Op) shapeOp); rgnOut.getBoundaryPath(&pathOut); SkMatrix scale; scaleMatrix(a, b, scale); SkRegion scaledRgnA, scaledRgnB, scaledRgnOut; SkPath scaledA, scaledB; scaledA.addPath(a, scale); scaledA.setFillType(a.getFillType()); scaledB.addPath(b, scale); scaledB.setFillType(b.getFillType()); scaledRgnA.setPath(scaledA, openClip); scaledRgnB.setPath(scaledB, openClip); scaledRgnOut.op(scaledRgnA, scaledRgnB, (SkRegion::Op) shapeOp); scaledRgnOut.getBoundaryPath(&scaledPathOut); SkBitmap bitmap; SkPath scaledOut; scaledOut.addPath(out, scale); scaledOut.setFillType(out.getFillType()); int result = comparePaths(reporter, testName, pathOut, scaledPathOut, out, scaledOut, bitmap, a, b, shapeOp, scale, expectSuccess); reporter->bumpTestCount(); return result == 0; } bool testPathOp(skiatest::Reporter* reporter, const SkPath& a, const SkPath& b, const SkPathOp shapeOp, const char* testName) { return innerPathOp(reporter, a, b, shapeOp, testName, true); } bool testPathOpCheck(skiatest::Reporter* reporter, const SkPath& a, const SkPath& b, const SkPathOp shapeOp, const char* testName, bool checkFail) { return innerPathOp(reporter, a, b, shapeOp, testName, checkFail); } bool testPathOpFailCheck(skiatest::Reporter* reporter, const SkPath& a, const SkPath& b, const SkPathOp shapeOp, const char* testName) { return innerPathOp(reporter, a, b, shapeOp, testName, false); } bool testPathFailOp(skiatest::Reporter* reporter, const SkPath& a, const SkPath& b, const SkPathOp shapeOp, const char* testName) { #if DEBUG_SHOW_TEST_NAME showName(a, b, shapeOp); #endif SkPath orig; orig.lineTo(54, 43); SkPath out = orig; if (Op(a, b, shapeOp, &out) ) { SkDebugf("%s test is expected to fail\n", __FUNCTION__); REPORTER_ASSERT(reporter, 0); return false; } SkASSERT(out == orig); return true; } SK_DECLARE_STATIC_MUTEX(gMutex); void initializeTests(skiatest::Reporter* reporter, const char* test) { #if 0 // doesn't work yet SK_CONF_SET("images.jpeg.suppressDecoderWarnings", true); SK_CONF_SET("images.png.suppressDecoderWarnings", true); #endif if (reporter->verbose()) { SkAutoMutexAcquire lock(gMutex); testName = test; size_t testNameSize = strlen(test); SkFILEStream inFile("../../experimental/Intersection/op.htm"); if (inFile.isValid()) { SkTDArray<char> inData; inData.setCount((int) inFile.getLength()); size_t inLen = inData.count(); inFile.read(inData.begin(), inLen); inFile.setPath(NULL); char* insert = strstr(inData.begin(), marker); if (insert) { insert += sizeof(marker) - 1; const char* numLoc = insert + 4 /* indent spaces */ + testNameSize - 1; testNumber = atoi(numLoc) + 1; } } } } void outputProgress(char* ramStr, const char* pathStr, SkPath::FillType pathFillType) { const char testFunction[] = "testSimplify(path);"; const char* pathPrefix = NULL; const char* nameSuffix = NULL; if (pathFillType == SkPath::kEvenOdd_FillType) { pathPrefix = " path.setFillType(SkPath::kEvenOdd_FillType);\n"; nameSuffix = "x"; } SkMemoryWStream rRamStream(ramStr, PATH_STR_SIZE); outputToStream(pathStr, pathPrefix, nameSuffix, testFunction, false, rRamStream); } void outputProgress(char* ramStr, const char* pathStr, SkPathOp op) { const char testFunction[] = "testOp(path);"; SkASSERT((size_t) op < SK_ARRAY_COUNT(opSuffixes)); const char* nameSuffix = opSuffixes[op]; SkMemoryWStream rRamStream(ramStr, PATH_STR_SIZE); outputToStream(pathStr, NULL, nameSuffix, testFunction, true, rRamStream); } void RunTestSet(skiatest::Reporter* reporter, TestDesc tests[], size_t count, void (*firstTest)(skiatest::Reporter* , const char* filename), void (*skipTest)(skiatest::Reporter* , const char* filename), void (*stopTest)(skiatest::Reporter* , const char* filename), bool reverse) { size_t index; if (firstTest) { index = count - 1; while (index > 0 && tests[index].fun != firstTest) { --index; } #if DEBUG_SHOW_TEST_NAME SkDebugf("\n<div id=\"%s\">\n", tests[index].str); #endif (*tests[index].fun)(reporter, tests[index].str); if (tests[index].fun == stopTest) { return; } } index = reverse ? count - 1 : 0; size_t last = reverse ? 0 : count - 1; bool foundSkip = !skipTest; do { if (tests[index].fun == skipTest) { foundSkip = true; } if (foundSkip && tests[index].fun != firstTest) { #if DEBUG_SHOW_TEST_NAME SkDebugf("\n<div id=\"%s\">\n", tests[index].str); #endif (*tests[index].fun)(reporter, tests[index].str); } if (tests[index].fun == stopTest || index == last) { break; } index += reverse ? -1 : 1; } while (true); #if DEBUG_SHOW_TEST_NAME SkDebugf( "\n" "</div>\n" "\n" "<script type=\"text/javascript\">\n" "\n" "var testDivs = [\n" ); index = reverse ? count - 1 : 0; last = reverse ? 0 : count - 1; foundSkip = !skipTest; do { if (tests[index].fun == skipTest) { foundSkip = true; } if (foundSkip && tests[index].fun != firstTest) { SkDebugf(" %s,\n", tests[index].str); } if (tests[index].fun == stopTest || index == last) { break; } index += reverse ? -1 : 1; } while (true); #endif }