/* This file is part of drd, a thread error detector. Copyright (C) 2006-2013 Bart Van Assche <bvanassche@acm.org>. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. The GNU General Public License is contained in the file COPYING. */ #include "drd_vc.h" #include "pub_tool_basics.h" // Addr, SizeT #include "pub_tool_libcassert.h" // tl_assert() #include "pub_tool_libcbase.h" // VG_(memcpy) #include "pub_tool_libcprint.h" // VG_(printf) #include "pub_tool_mallocfree.h" // VG_(malloc), VG_(free) /* Local function declarations. */ static void DRD_(vc_reserve)(VectorClock* const vc, const unsigned new_capacity); /* Function definitions. */ /** * Initialize the memory 'vc' points at as a vector clock with size 'size'. * If the pointer 'vcelem' is not null, it is assumed to be an array with * 'size' elements and it becomes the initial value of the vector clock. */ void DRD_(vc_init)(VectorClock* const vc, const VCElem* const vcelem, const unsigned size) { tl_assert(vc); vc->size = 0; vc->capacity = 0; vc->vc = 0; DRD_(vc_reserve)(vc, size); tl_assert(size == 0 || vc->vc != 0); if (vcelem) { VG_(memcpy)(vc->vc, vcelem, size * sizeof(vcelem[0])); vc->size = size; } #ifdef ENABLE_DRD_CONSISTENCY_CHECKS DRD_(vc_check)(vc); #endif } /** Reset vc to the empty vector clock. */ void DRD_(vc_cleanup)(VectorClock* const vc) { DRD_(vc_reserve)(vc, 0); } /** Copy constructor -- initializes *new. */ void DRD_(vc_copy)(VectorClock* const new, const VectorClock* const rhs) { DRD_(vc_init)(new, rhs->vc, rhs->size); } /** Assignment operator -- *lhs is already a valid vector clock. */ void DRD_(vc_assign)(VectorClock* const lhs, const VectorClock* const rhs) { DRD_(vc_cleanup)(lhs); DRD_(vc_copy)(lhs, rhs); } /** Increment the clock of thread 'tid' in vector clock 'vc'. */ void DRD_(vc_increment)(VectorClock* const vc, DrdThreadId const tid) { unsigned i; for (i = 0; i < vc->size; i++) { if (vc->vc[i].threadid == tid) { typeof(vc->vc[i].count) const oldcount = vc->vc[i].count; vc->vc[i].count++; // Check for integer overflow. tl_assert(oldcount < vc->vc[i].count); return; } } /* * The specified thread ID does not yet exist in the vector clock * -- insert it. */ { const VCElem vcelem = { tid, 1 }; VectorClock vc2; DRD_(vc_init)(&vc2, &vcelem, 1); DRD_(vc_combine)(vc, &vc2); DRD_(vc_cleanup)(&vc2); } } /** * @return True if vector clocks vc1 and vc2 are ordered, and false otherwise. * Order is as imposed by thread synchronization actions ("happens before"). */ Bool DRD_(vc_ordered)(const VectorClock* const vc1, const VectorClock* const vc2) { return DRD_(vc_lte)(vc1, vc2) || DRD_(vc_lte)(vc2, vc1); } /** Compute elementwise minimum. */ void DRD_(vc_min)(VectorClock* const result, const VectorClock* const rhs) { unsigned i; unsigned j; tl_assert(result); tl_assert(rhs); DRD_(vc_check)(result); /* Next, combine both vector clocks into one. */ i = 0; for (j = 0; j < rhs->size; j++) { while (i < result->size && result->vc[i].threadid < rhs->vc[j].threadid) { /* Thread ID is missing in second vector clock. Clear the count. */ result->vc[i].count = 0; i++; } if (i >= result->size) { break; } if (result->vc[i].threadid <= rhs->vc[j].threadid) { /* The thread ID is present in both vector clocks. Compute the */ /* minimum of vc[i].count and vc[j].count. */ tl_assert(result->vc[i].threadid == rhs->vc[j].threadid); if (rhs->vc[j].count < result->vc[i].count) { result->vc[i].count = rhs->vc[j].count; } } } DRD_(vc_check)(result); } /** * Compute elementwise maximum. */ void DRD_(vc_combine)(VectorClock* const result, const VectorClock* const rhs) { unsigned i; unsigned j; unsigned shared; unsigned new_size; tl_assert(result); tl_assert(rhs); // First count the number of shared thread id's. j = 0; shared = 0; for (i = 0; i < result->size; i++) { while (j < rhs->size && rhs->vc[j].threadid < result->vc[i].threadid) j++; if (j >= rhs->size) break; if (result->vc[i].threadid == rhs->vc[j].threadid) shared++; } DRD_(vc_check)(result); new_size = result->size + rhs->size - shared; if (new_size > result->capacity) DRD_(vc_reserve)(result, new_size); DRD_(vc_check)(result); // Next, combine both vector clocks into one. i = 0; for (j = 0; j < rhs->size; j++) { /* First of all, skip those clocks in result->vc[] for which there */ /* is no corresponding clock in rhs->vc[]. */ while (i < result->size && result->vc[i].threadid < rhs->vc[j].threadid) { i++; } /* If the end of *result is met, append rhs->vc[j] to *result. */ if (i >= result->size) { result->size++; result->vc[i] = rhs->vc[j]; } /* If clock rhs->vc[j] is not in *result, insert it. */ else if (result->vc[i].threadid > rhs->vc[j].threadid) { unsigned k; for (k = result->size; k > i; k--) { result->vc[k] = result->vc[k - 1]; } result->size++; result->vc[i] = rhs->vc[j]; } /* Otherwise, both *result and *rhs have a clock for thread */ /* result->vc[i].threadid == rhs->vc[j].threadid. Compute the maximum. */ else { tl_assert(result->vc[i].threadid == rhs->vc[j].threadid); if (rhs->vc[j].count > result->vc[i].count) { result->vc[i].count = rhs->vc[j].count; } } } DRD_(vc_check)(result); tl_assert(result->size == new_size); } /** Print the contents of vector clock 'vc'. */ void DRD_(vc_print)(const VectorClock* const vc) { HChar* str; if ((str = DRD_(vc_aprint)(vc)) != NULL) { VG_(printf)("%s", str); VG_(free)(str); } } /** * Print the contents of vector clock 'vc' to a newly allocated string. * The caller must call VG_(free)() on the return value of this function. */ HChar* DRD_(vc_aprint)(const VectorClock* const vc) { unsigned i; unsigned reserved; unsigned size; HChar* str = 0; tl_assert(vc); reserved = 64; size = 0; str = VG_(realloc)("drd.vc.aprint.1", str, reserved); if (! str) return str; size += VG_(snprintf)(str, reserved, "["); for (i = 0; i < vc->size; i++) { tl_assert(vc->vc); if (VG_(strlen)(str) + 32 > reserved) { reserved *= 2; str = VG_(realloc)("drd.vc.aprint.2", str, reserved); if (! str) return str; } size += VG_(snprintf)(str + size, reserved - size, "%s %d: %d", i > 0 ? "," : "", vc->vc[i].threadid, vc->vc[i].count); } size += VG_(snprintf)(str + size, reserved - size, " ]"); return str; } /** * Invariant test. * * The function below tests whether the following two conditions are * satisfied: * - size <= capacity. * - Vector clock elements are stored in thread ID order. * * If one of these conditions is not met, an assertion failure is triggered. */ void DRD_(vc_check)(const VectorClock* const vc) { unsigned i; tl_assert(vc->size <= vc->capacity); for (i = 1; i < vc->size; i++) tl_assert(vc->vc[i-1].threadid < vc->vc[i].threadid); } /** * Change the size of the memory block pointed at by vc->vc. * Changes capacity, but does not change size. If the size of the memory * block is increased, the newly allocated memory is not initialized. */ static void DRD_(vc_reserve)(VectorClock* const vc, const unsigned new_capacity) { tl_assert(vc); tl_assert(vc->capacity > VC_PREALLOCATED || vc->vc == 0 || vc->vc == vc->preallocated); if (new_capacity > vc->capacity) { if (vc->vc && vc->capacity > VC_PREALLOCATED) { tl_assert(vc->vc && vc->vc != vc->preallocated && vc->capacity > VC_PREALLOCATED); vc->vc = VG_(realloc)("drd.vc.vr.1", vc->vc, new_capacity * sizeof(vc->vc[0])); } else if (vc->vc && new_capacity > VC_PREALLOCATED) { tl_assert((vc->vc == 0 || vc->vc == vc->preallocated) && new_capacity > VC_PREALLOCATED && vc->capacity <= VC_PREALLOCATED); vc->vc = VG_(malloc)("drd.vc.vr.2", new_capacity * sizeof(vc->vc[0])); VG_(memcpy)(vc->vc, vc->preallocated, vc->capacity * sizeof(vc->vc[0])); } else if (vc->vc) { tl_assert(vc->vc == vc->preallocated && new_capacity <= VC_PREALLOCATED && vc->capacity <= VC_PREALLOCATED); } else if (new_capacity > VC_PREALLOCATED) { tl_assert(vc->vc == 0 && new_capacity > VC_PREALLOCATED && vc->capacity == 0); vc->vc = VG_(malloc)("drd.vc.vr.3", new_capacity * sizeof(vc->vc[0])); } else { tl_assert(vc->vc == 0 && new_capacity <= VC_PREALLOCATED && vc->capacity == 0); vc->vc = vc->preallocated; } vc->capacity = new_capacity; } else if (new_capacity == 0 && vc->vc) { if (vc->capacity > VC_PREALLOCATED) VG_(free)(vc->vc); vc->vc = 0; vc->capacity = 0; } tl_assert(new_capacity == 0 || vc->vc != 0); tl_assert(vc->capacity > VC_PREALLOCATED || vc->vc == 0 || vc->vc == vc->preallocated); }