/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "OpenGLRenderer" // The highest z value can't be higher than (CASTER_Z_CAP_RATIO * light.z) #define CASTER_Z_CAP_RATIO 0.95f // When there is no umbra, then just fake the umbra using // centroid * (1 - FAKE_UMBRA_SIZE_RATIO) + outline * FAKE_UMBRA_SIZE_RATIO #define FAKE_UMBRA_SIZE_RATIO 0.05f // When the polygon is about 90 vertices, the penumbra + umbra can reach 270 rays. // That is consider pretty fine tessllated polygon so far. // This is just to prevent using too much some memory when edge slicing is not // needed any more. #define FINE_TESSELLATED_POLYGON_RAY_NUMBER 270 /** * Extra vertices for the corner for smoother corner. * Only for outer loop. * Note that we use such extra memory to avoid an extra loop. */ // For half circle, we could add EXTRA_VERTEX_PER_PI vertices. // Set to 1 if we don't want to have any. #define SPOT_EXTRA_CORNER_VERTEX_PER_PI 18 // For the whole polygon, the sum of all the deltas b/t normals is 2 * M_PI, // therefore, the maximum number of extra vertices will be twice bigger. #define SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER (2 * SPOT_EXTRA_CORNER_VERTEX_PER_PI) // For each RADIANS_DIVISOR, we would allocate one more vertex b/t the normals. #define SPOT_CORNER_RADIANS_DIVISOR (M_PI / SPOT_EXTRA_CORNER_VERTEX_PER_PI) // For performance, we use (1 - alpha) value for the shader input. #define TRANSFORMED_PENUMBRA_ALPHA 1.0f #define TRANSFORMED_UMBRA_ALPHA 0.0f #include <algorithm> #include <math.h> #include <stdlib.h> #include <utils/Log.h> #include "ShadowTessellator.h" #include "SpotShadow.h" #include "Vertex.h" #include "VertexBuffer.h" #include "utils/MathUtils.h" // TODO: After we settle down the new algorithm, we can remove the old one and // its utility functions. // Right now, we still need to keep it for comparison purpose and future expansion. namespace android { namespace uirenderer { static const float EPSILON = 1e-7; /** * For each polygon's vertex, the light center will project it to the receiver * as one of the outline vertex. * For each outline vertex, we need to store the position and normal. * Normal here is defined against the edge by the current vertex and the next vertex. */ struct OutlineData { Vector2 position; Vector2 normal; float radius; }; /** * For each vertex, we need to keep track of its angle, whether it is penumbra or * umbra, and its corresponding vertex index. */ struct SpotShadow::VertexAngleData { // The angle to the vertex from the centroid. float mAngle; // True is the vertex comes from penumbra, otherwise it comes from umbra. bool mIsPenumbra; // The index of the vertex described by this data. int mVertexIndex; void set(float angle, bool isPenumbra, int index) { mAngle = angle; mIsPenumbra = isPenumbra; mVertexIndex = index; } }; /** * Calculate the angle between and x and a y coordinate. * The atan2 range from -PI to PI. */ static float angle(const Vector2& point, const Vector2& center) { return atan2(point.y - center.y, point.x - center.x); } /** * Calculate the intersection of a ray with the line segment defined by two points. * * Returns a negative value in error conditions. * @param rayOrigin The start of the ray * @param dx The x vector of the ray * @param dy The y vector of the ray * @param p1 The first point defining the line segment * @param p2 The second point defining the line segment * @return The distance along the ray if it intersects with the line segment, negative if otherwise */ static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy, const Vector2& p1, const Vector2& p2) { // The math below is derived from solving this formula, basically the // intersection point should stay on both the ray and the edge of (p1, p2). // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]); float divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x); if (divisor == 0) return -1.0f; // error, invalid divisor #if DEBUG_SHADOW float interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor; if (interpVal < 0 || interpVal > 1) { ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal); } #endif float distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) + rayOrigin.x * (p2.y - p1.y)) / divisor; return distance; // may be negative in error cases } /** * Sort points by their X coordinates * * @param points the points as a Vector2 array. * @param pointsLength the number of vertices of the polygon. */ void SpotShadow::xsort(Vector2* points, int pointsLength) { auto cmp = [](const Vector2& a, const Vector2& b) -> bool { return a.x < b.x; }; std::sort(points, points + pointsLength, cmp); } /** * compute the convex hull of a collection of Points * * @param points the points as a Vector2 array. * @param pointsLength the number of vertices of the polygon. * @param retPoly pre allocated array of floats to put the vertices * @return the number of points in the polygon 0 if no intersection */ int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) { xsort(points, pointsLength); int n = pointsLength; Vector2 lUpper[n]; lUpper[0] = points[0]; lUpper[1] = points[1]; int lUpperSize = 2; for (int i = 2; i < n; i++) { lUpper[lUpperSize] = points[i]; lUpperSize++; while (lUpperSize > 2 && !ccw( lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y, lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y, lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) { // Remove the middle point of the three last lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x; lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y; lUpperSize--; } } Vector2 lLower[n]; lLower[0] = points[n - 1]; lLower[1] = points[n - 2]; int lLowerSize = 2; for (int i = n - 3; i >= 0; i--) { lLower[lLowerSize] = points[i]; lLowerSize++; while (lLowerSize > 2 && !ccw( lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y, lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y, lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) { // Remove the middle point of the three last lLower[lLowerSize - 2] = lLower[lLowerSize - 1]; lLowerSize--; } } // output points in CW ordering const int total = lUpperSize + lLowerSize - 2; int outIndex = total - 1; for (int i = 0; i < lUpperSize; i++) { retPoly[outIndex] = lUpper[i]; outIndex--; } for (int i = 1; i < lLowerSize - 1; i++) { retPoly[outIndex] = lLower[i]; outIndex--; } // TODO: Add test harness which verify that all the points are inside the hull. return total; } /** * Test whether the 3 points form a counter clockwise turn. * * @return true if a right hand turn */ bool SpotShadow::ccw(float ax, float ay, float bx, float by, float cx, float cy) { return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON; } /** * Sort points about a center point * * @param poly The in and out polyogon as a Vector2 array. * @param polyLength The number of vertices of the polygon. * @param center the center ctr[0] = x , ctr[1] = y to sort around. */ void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) { quicksortCirc(poly, 0, polyLength - 1, center); } /** * Swap points pointed to by i and j */ void SpotShadow::swap(Vector2* points, int i, int j) { Vector2 temp = points[i]; points[i] = points[j]; points[j] = temp; } /** * quick sort implementation about the center. */ void SpotShadow::quicksortCirc(Vector2* points, int low, int high, const Vector2& center) { int i = low, j = high; int p = low + (high - low) / 2; float pivot = angle(points[p], center); while (i <= j) { while (angle(points[i], center) > pivot) { i++; } while (angle(points[j], center) < pivot) { j--; } if (i <= j) { swap(points, i, j); i++; j--; } } if (low < j) quicksortCirc(points, low, j, center); if (i < high) quicksortCirc(points, i, high, center); } /** * Test whether a point is inside the polygon. * * @param testPoint the point to test * @param poly the polygon * @return true if the testPoint is inside the poly. */ bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint, const Vector2* poly, int len) { bool c = false; float testx = testPoint.x; float testy = testPoint.y; for (int i = 0, j = len - 1; i < len; j = i++) { float startX = poly[j].x; float startY = poly[j].y; float endX = poly[i].x; float endY = poly[i].y; if (((endY > testy) != (startY > testy)) && (testx < (startX - endX) * (testy - endY) / (startY - endY) + endX)) { c = !c; } } return c; } /** * Make the polygon turn clockwise. * * @param polygon the polygon as a Vector2 array. * @param len the number of points of the polygon */ void SpotShadow::makeClockwise(Vector2* polygon, int len) { if (polygon == nullptr || len == 0) { return; } if (!ShadowTessellator::isClockwise(polygon, len)) { reverse(polygon, len); } } /** * Reverse the polygon * * @param polygon the polygon as a Vector2 array * @param len the number of points of the polygon */ void SpotShadow::reverse(Vector2* polygon, int len) { int n = len / 2; for (int i = 0; i < n; i++) { Vector2 tmp = polygon[i]; int k = len - 1 - i; polygon[i] = polygon[k]; polygon[k] = tmp; } } /** * Compute a horizontal circular polygon about point (x , y , height) of radius * (size) * * @param points number of the points of the output polygon. * @param lightCenter the center of the light. * @param size the light size. * @param ret result polygon. */ void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter, float size, Vector3* ret) { // TODO: Caching all the sin / cos values and store them in a look up table. for (int i = 0; i < points; i++) { float angle = 2 * i * M_PI / points; ret[i].x = cosf(angle) * size + lightCenter.x; ret[i].y = sinf(angle) * size + lightCenter.y; ret[i].z = lightCenter.z; } } /** * From light center, project one vertex to the z=0 surface and get the outline. * * @param outline The result which is the outline position. * @param lightCenter The center of light. * @param polyVertex The input polygon's vertex. * * @return float The ratio of (polygon.z / light.z - polygon.z) */ float SpotShadow::projectCasterToOutline(Vector2& outline, const Vector3& lightCenter, const Vector3& polyVertex) { float lightToPolyZ = lightCenter.z - polyVertex.z; float ratioZ = CASTER_Z_CAP_RATIO; if (lightToPolyZ != 0) { // If any caster's vertex is almost above the light, we just keep it as 95% // of the height of the light. ratioZ = MathUtils::clamp(polyVertex.z / lightToPolyZ, 0.0f, CASTER_Z_CAP_RATIO); } outline.x = polyVertex.x - ratioZ * (lightCenter.x - polyVertex.x); outline.y = polyVertex.y - ratioZ * (lightCenter.y - polyVertex.y); return ratioZ; } /** * Generate the shadow spot light of shape lightPoly and a object poly * * @param isCasterOpaque whether the caster is opaque * @param lightCenter the center of the light * @param lightSize the radius of the light * @param poly x,y,z vertexes of a convex polygon that occludes the light source * @param polyLength number of vertexes of the occluding polygon * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return * empty strip if error. */ void SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3& lightCenter, float lightSize, const Vector3* poly, int polyLength, const Vector3& polyCentroid, VertexBuffer& shadowTriangleStrip) { if (CC_UNLIKELY(lightCenter.z <= 0)) { ALOGW("Relative Light Z is not positive. No spot shadow!"); return; } if (CC_UNLIKELY(polyLength < 3)) { #if DEBUG_SHADOW ALOGW("Invalid polygon length. No spot shadow!"); #endif return; } OutlineData outlineData[polyLength]; Vector2 outlineCentroid; // Calculate the projected outline for each polygon's vertices from the light center. // // O Light // / // / // . Polygon vertex // / // / // O Outline vertices // // Ratio = (Poly - Outline) / (Light - Poly) // Outline.x = Poly.x - Ratio * (Light.x - Poly.x) // Outline's radius / Light's radius = Ratio // Compute the last outline vertex to make sure we can get the normal and outline // in one single loop. projectCasterToOutline(outlineData[polyLength - 1].position, lightCenter, poly[polyLength - 1]); // Take the outline's polygon, calculate the normal for each outline edge. int currentNormalIndex = polyLength - 1; int nextNormalIndex = 0; for (int i = 0; i < polyLength; i++) { float ratioZ = projectCasterToOutline(outlineData[i].position, lightCenter, poly[i]); outlineData[i].radius = ratioZ * lightSize; outlineData[currentNormalIndex].normal = ShadowTessellator::calculateNormal( outlineData[currentNormalIndex].position, outlineData[nextNormalIndex].position); currentNormalIndex = (currentNormalIndex + 1) % polyLength; nextNormalIndex++; } projectCasterToOutline(outlineCentroid, lightCenter, polyCentroid); int penumbraIndex = 0; // Then each polygon's vertex produce at minmal 2 penumbra vertices. // Since the size can be dynamic here, we keep track of the size and update // the real size at the end. int allocatedPenumbraLength = 2 * polyLength + SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER; Vector2 penumbra[allocatedPenumbraLength]; int totalExtraCornerSliceNumber = 0; Vector2 umbra[polyLength]; // When centroid is covered by all circles from outline, then we consider // the umbra is invalid, and we will tune down the shadow strength. bool hasValidUmbra = true; // We need the minimal of RaitoVI to decrease the spot shadow strength accordingly. float minRaitoVI = FLT_MAX; for (int i = 0; i < polyLength; i++) { // Generate all the penumbra's vertices only using the (outline vertex + normal * radius) // There is no guarantee that the penumbra is still convex, but for // each outline vertex, it will connect to all its corresponding penumbra vertices as // triangle fans. And for neighber penumbra vertex, it will be a trapezoid. // // Penumbra Vertices marked as Pi // Outline Vertices marked as Vi // (P3) // (P2) | ' (P4) // (P1)' | | ' // ' | | ' // (P0) ------------------------------------------------(P5) // | (V0) |(V1) // | | // | | // | | // | | // | | // | | // | | // | | // (V3)-----------------------------------(V2) int preNormalIndex = (i + polyLength - 1) % polyLength; const Vector2& previousNormal = outlineData[preNormalIndex].normal; const Vector2& currentNormal = outlineData[i].normal; // Depending on how roundness we want for each corner, we can subdivide // further here and/or introduce some heuristic to decide how much the // subdivision should be. int currentExtraSliceNumber = ShadowTessellator::getExtraVertexNumber( previousNormal, currentNormal, SPOT_CORNER_RADIANS_DIVISOR); int currentCornerSliceNumber = 1 + currentExtraSliceNumber; totalExtraCornerSliceNumber += currentExtraSliceNumber; #if DEBUG_SHADOW ALOGD("currentExtraSliceNumber should be %d", currentExtraSliceNumber); ALOGD("currentCornerSliceNumber should be %d", currentCornerSliceNumber); ALOGD("totalCornerSliceNumber is %d", totalExtraCornerSliceNumber); #endif if (CC_UNLIKELY(totalExtraCornerSliceNumber > SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER)) { currentCornerSliceNumber = 1; } for (int k = 0; k <= currentCornerSliceNumber; k++) { Vector2 avgNormal = (previousNormal * (currentCornerSliceNumber - k) + currentNormal * k) / currentCornerSliceNumber; avgNormal.normalize(); penumbra[penumbraIndex++] = outlineData[i].position + avgNormal * outlineData[i].radius; } // Compute the umbra by the intersection from the outline's centroid! // // (V) ------------------------------------ // | ' | // | ' | // | ' (I) | // | ' | // | ' (C) | // | | // | | // | | // | | // ------------------------------------ // // Connect a line b/t the outline vertex (V) and the centroid (C), it will // intersect with the outline vertex's circle at point (I). // Now, ratioVI = VI / VC, ratioIC = IC / VC // Then the intersetion point can be computed as Ixy = Vxy * ratioIC + Cxy * ratioVI; // // When all of the outline circles cover the the outline centroid, (like I is // on the other side of C), there is no real umbra any more, so we just fake // a small area around the centroid as the umbra, and tune down the spot // shadow's umbra strength to simulate the effect the whole shadow will // become lighter in this case. // The ratio can be simulated by using the inverse of maximum of ratioVI for // all (V). float distOutline = (outlineData[i].position - outlineCentroid).length(); if (CC_UNLIKELY(distOutline == 0)) { // If the outline has 0 area, then there is no spot shadow anyway. ALOGW("Outline has 0 area, no spot shadow!"); return; } float ratioVI = outlineData[i].radius / distOutline; minRaitoVI = MathUtils::min(minRaitoVI, ratioVI); if (ratioVI >= (1 - FAKE_UMBRA_SIZE_RATIO)) { ratioVI = (1 - FAKE_UMBRA_SIZE_RATIO); } // When we know we don't have valid umbra, don't bother to compute the // values below. But we can't skip the loop yet since we want to know the // maximum ratio. float ratioIC = 1 - ratioVI; umbra[i] = outlineData[i].position * ratioIC + outlineCentroid * ratioVI; } hasValidUmbra = (minRaitoVI <= 1.0); float shadowStrengthScale = 1.0; if (!hasValidUmbra) { #if DEBUG_SHADOW ALOGW("The object is too close to the light or too small, no real umbra!"); #endif for (int i = 0; i < polyLength; i++) { umbra[i] = outlineData[i].position * FAKE_UMBRA_SIZE_RATIO + outlineCentroid * (1 - FAKE_UMBRA_SIZE_RATIO); } shadowStrengthScale = 1.0 / minRaitoVI; } int penumbraLength = penumbraIndex; int umbraLength = polyLength; #if DEBUG_SHADOW ALOGD("penumbraLength is %d , allocatedPenumbraLength %d", penumbraLength, allocatedPenumbraLength); dumpPolygon(poly, polyLength, "input poly"); dumpPolygon(penumbra, penumbraLength, "penumbra"); dumpPolygon(umbra, umbraLength, "umbra"); ALOGD("hasValidUmbra is %d and shadowStrengthScale is %f", hasValidUmbra, shadowStrengthScale); #endif // The penumbra and umbra needs to be in convex shape to keep consistency // and quality. // Since we are still shooting rays to penumbra, it needs to be convex. // Umbra can be represented as a fan from the centroid, but visually umbra // looks nicer when it is convex. Vector2 finalUmbra[umbraLength]; Vector2 finalPenumbra[penumbraLength]; int finalUmbraLength = hull(umbra, umbraLength, finalUmbra); int finalPenumbraLength = hull(penumbra, penumbraLength, finalPenumbra); generateTriangleStrip(isCasterOpaque, shadowStrengthScale, finalPenumbra, finalPenumbraLength, finalUmbra, finalUmbraLength, poly, polyLength, shadowTriangleStrip, outlineCentroid); } /** * This is only for experimental purpose. * After intersections are calculated, we could smooth the polygon if needed. * So far, we don't think it is more appealing yet. * * @param level The level of smoothness. * @param rays The total number of rays. * @param rayDist (In and Out) The distance for each ray. * */ void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) { for (int k = 0; k < level; k++) { for (int i = 0; i < rays; i++) { float p1 = rayDist[(rays - 1 + i) % rays]; float p2 = rayDist[i]; float p3 = rayDist[(i + 1) % rays]; rayDist[i] = (p1 + p2 * 2 + p3) / 4; } } } // Index pair is meant for storing the tessellation information for the penumbra // area. One index must come from exterior tangent of the circles, the other one // must come from the interior tangent of the circles. struct IndexPair { int outerIndex; int innerIndex; }; // For one penumbra vertex, find the cloest umbra vertex and return its index. inline int getClosestUmbraIndex(const Vector2& pivot, const Vector2* polygon, int polygonLength) { float minLengthSquared = FLT_MAX; int resultIndex = -1; bool hasDecreased = false; // Starting with some negative offset, assuming both umbra and penumbra are starting // at the same angle, this can help to find the result faster. // Normally, loop 3 times, we can find the closest point. int offset = polygonLength - 2; for (int i = 0; i < polygonLength; i++) { int currentIndex = (i + offset) % polygonLength; float currentLengthSquared = (pivot - polygon[currentIndex]).lengthSquared(); if (currentLengthSquared < minLengthSquared) { if (minLengthSquared != FLT_MAX) { hasDecreased = true; } minLengthSquared = currentLengthSquared; resultIndex = currentIndex; } else if (currentLengthSquared > minLengthSquared && hasDecreased) { // Early break b/c we have found the closet one and now the length // is increasing again. break; } } if(resultIndex == -1) { ALOGE("resultIndex is -1, the polygon must be invalid!"); resultIndex = 0; } return resultIndex; } // Allow some epsilon here since the later ray intersection did allow for some small // floating point error, when the intersection point is slightly outside the segment. inline bool sameDirections(bool isPositiveCross, float a, float b) { if (isPositiveCross) { return a >= -EPSILON && b >= -EPSILON; } else { return a <= EPSILON && b <= EPSILON; } } // Find the right polygon edge to shoot the ray at. inline int findPolyIndex(bool isPositiveCross, int startPolyIndex, const Vector2& umbraDir, const Vector2* polyToCentroid, int polyLength) { // Make sure we loop with a bound. for (int i = 0; i < polyLength; i++) { int currentIndex = (i + startPolyIndex) % polyLength; const Vector2& currentToCentroid = polyToCentroid[currentIndex]; const Vector2& nextToCentroid = polyToCentroid[(currentIndex + 1) % polyLength]; float currentCrossUmbra = currentToCentroid.cross(umbraDir); float umbraCrossNext = umbraDir.cross(nextToCentroid); if (sameDirections(isPositiveCross, currentCrossUmbra, umbraCrossNext)) { #if DEBUG_SHADOW ALOGD("findPolyIndex loop %d times , index %d", i, currentIndex ); #endif return currentIndex; } } LOG_ALWAYS_FATAL("Can't find the right polygon's edge from startPolyIndex %d", startPolyIndex); return -1; } // Generate the index pair for penumbra / umbra vertices, and more penumbra vertices // if needed. inline void genNewPenumbraAndPairWithUmbra(const Vector2* penumbra, int penumbraLength, const Vector2* umbra, int umbraLength, Vector2* newPenumbra, int& newPenumbraIndex, IndexPair* verticesPair, int& verticesPairIndex) { // In order to keep everything in just one loop, we need to pre-compute the // closest umbra vertex for the last penumbra vertex. int previousClosestUmbraIndex = getClosestUmbraIndex(penumbra[penumbraLength - 1], umbra, umbraLength); for (int i = 0; i < penumbraLength; i++) { const Vector2& currentPenumbraVertex = penumbra[i]; // For current penumbra vertex, starting from previousClosestUmbraIndex, // then check the next one until the distance increase. // The last one before the increase is the umbra vertex we need to pair with. float currentLengthSquared = (currentPenumbraVertex - umbra[previousClosestUmbraIndex]).lengthSquared(); int currentClosestUmbraIndex = previousClosestUmbraIndex; int indexDelta = 0; for (int j = 1; j < umbraLength; j++) { int newUmbraIndex = (previousClosestUmbraIndex + j) % umbraLength; float newLengthSquared = (currentPenumbraVertex - umbra[newUmbraIndex]).lengthSquared(); if (newLengthSquared > currentLengthSquared) { // currentClosestUmbraIndex is the umbra vertex's index which has // currently found smallest distance, so we can simply break here. break; } else { currentLengthSquared = newLengthSquared; indexDelta++; currentClosestUmbraIndex = newUmbraIndex; } } if (indexDelta > 1) { // For those umbra don't have penumbra, generate new penumbra vertices by interpolation. // // Assuming Pi for penumbra vertices, and Ui for umbra vertices. // In the case like below P1 paired with U1 and P2 paired with U5. // U2 to U4 are unpaired umbra vertices. // // P1 P2 // | | // U1 U2 U3 U4 U5 // // We will need to generate 3 more penumbra vertices P1.1, P1.2, P1.3 // to pair with U2 to U4. // // P1 P1.1 P1.2 P1.3 P2 // | | | | | // U1 U2 U3 U4 U5 // // That distance ratio b/t Ui to U1 and Ui to U5 decides its paired penumbra // vertex's location. int newPenumbraNumber = indexDelta - 1; float accumulatedDeltaLength[newPenumbraNumber]; float totalDeltaLength = 0; // To save time, cache the previous umbra vertex info outside the loop // and update each loop. Vector2 previousClosestUmbra = umbra[previousClosestUmbraIndex]; Vector2 skippedUmbra; // Use umbra data to precompute the length b/t unpaired umbra vertices, // and its ratio against the total length. for (int k = 0; k < indexDelta; k++) { int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength; skippedUmbra = umbra[skippedUmbraIndex]; float currentDeltaLength = (skippedUmbra - previousClosestUmbra).length(); totalDeltaLength += currentDeltaLength; accumulatedDeltaLength[k] = totalDeltaLength; previousClosestUmbra = skippedUmbra; } const Vector2& previousPenumbra = penumbra[(i + penumbraLength - 1) % penumbraLength]; // Then for each unpaired umbra vertex, create a new penumbra by the ratio, // and pair them togehter. for (int k = 0; k < newPenumbraNumber; k++) { float weightForCurrentPenumbra = 1.0f; if (totalDeltaLength != 0.0f) { weightForCurrentPenumbra = accumulatedDeltaLength[k] / totalDeltaLength; } float weightForPreviousPenumbra = 1.0f - weightForCurrentPenumbra; Vector2 interpolatedPenumbra = currentPenumbraVertex * weightForCurrentPenumbra + previousPenumbra * weightForPreviousPenumbra; int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength; verticesPair[verticesPairIndex].outerIndex = newPenumbraIndex; verticesPair[verticesPairIndex].innerIndex = skippedUmbraIndex; verticesPairIndex++; newPenumbra[newPenumbraIndex++] = interpolatedPenumbra; } } verticesPair[verticesPairIndex].outerIndex = newPenumbraIndex; verticesPair[verticesPairIndex].innerIndex = currentClosestUmbraIndex; verticesPairIndex++; newPenumbra[newPenumbraIndex++] = currentPenumbraVertex; previousClosestUmbraIndex = currentClosestUmbraIndex; } } // Precompute all the polygon's vector, return true if the reference cross product is positive. inline bool genPolyToCentroid(const Vector2* poly2d, int polyLength, const Vector2& centroid, Vector2* polyToCentroid) { for (int j = 0; j < polyLength; j++) { polyToCentroid[j] = poly2d[j] - centroid; // Normalize these vectors such that we can use epsilon comparison after // computing their cross products with another normalized vector. polyToCentroid[j].normalize(); } float refCrossProduct = 0; for (int j = 0; j < polyLength; j++) { refCrossProduct = polyToCentroid[j].cross(polyToCentroid[(j + 1) % polyLength]); if (refCrossProduct != 0) { break; } } return refCrossProduct > 0; } // For one umbra vertex, shoot an ray from centroid to it. // If the ray hit the polygon first, then return the intersection point as the // closer vertex. inline Vector2 getCloserVertex(const Vector2& umbraVertex, const Vector2& centroid, const Vector2* poly2d, int polyLength, const Vector2* polyToCentroid, bool isPositiveCross, int& previousPolyIndex) { Vector2 umbraToCentroid = umbraVertex - centroid; float distanceToUmbra = umbraToCentroid.length(); umbraToCentroid = umbraToCentroid / distanceToUmbra; // previousPolyIndex is updated for each item such that we can minimize the // looping inside findPolyIndex(); previousPolyIndex = findPolyIndex(isPositiveCross, previousPolyIndex, umbraToCentroid, polyToCentroid, polyLength); float dx = umbraToCentroid.x; float dy = umbraToCentroid.y; float distanceToIntersectPoly = rayIntersectPoints(centroid, dx, dy, poly2d[previousPolyIndex], poly2d[(previousPolyIndex + 1) % polyLength]); if (distanceToIntersectPoly < 0) { distanceToIntersectPoly = 0; } // Pick the closer one as the occluded area vertex. Vector2 closerVertex; if (distanceToIntersectPoly < distanceToUmbra) { closerVertex.x = centroid.x + dx * distanceToIntersectPoly; closerVertex.y = centroid.y + dy * distanceToIntersectPoly; } else { closerVertex = umbraVertex; } return closerVertex; } /** * Generate a triangle strip given two convex polygon **/ void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrengthScale, Vector2* penumbra, int penumbraLength, Vector2* umbra, int umbraLength, const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip, const Vector2& centroid) { bool hasOccludedUmbraArea = false; Vector2 poly2d[polyLength]; if (isCasterOpaque) { for (int i = 0; i < polyLength; i++) { poly2d[i].x = poly[i].x; poly2d[i].y = poly[i].y; } // Make sure the centroid is inside the umbra, otherwise, fall back to the // approach as if there is no occluded umbra area. if (testPointInsidePolygon(centroid, poly2d, polyLength)) { hasOccludedUmbraArea = true; } } // For each penumbra vertex, find its corresponding closest umbra vertex index. // // Penumbra Vertices marked as Pi // Umbra Vertices marked as Ui // (P3) // (P2) | ' (P4) // (P1)' | | ' // ' | | ' // (P0) ------------------------------------------------(P5) // | (U0) |(U1) // | | // | |(U2) (P5.1) // | | // | | // | | // | | // | | // | | // (U4)-----------------------------------(U3) (P6) // // At least, like P0, P1, P2, they will find the matching umbra as U0. // If we jump over some umbra vertex without matching penumbra vertex, then // we will generate some new penumbra vertex by interpolation. Like P6 is // matching U3, but U2 is not matched with any penumbra vertex. // So interpolate P5.1 out and match U2. // In this way, every umbra vertex will have a matching penumbra vertex. // // The total pair number can be as high as umbraLength + penumbraLength. const int maxNewPenumbraLength = umbraLength + penumbraLength; IndexPair verticesPair[maxNewPenumbraLength]; int verticesPairIndex = 0; // Cache all the existing penumbra vertices and newly interpolated vertices into a // a new array. Vector2 newPenumbra[maxNewPenumbraLength]; int newPenumbraIndex = 0; // For each penumbra vertex, find its closet umbra vertex by comparing the // neighbor umbra vertices. genNewPenumbraAndPairWithUmbra(penumbra, penumbraLength, umbra, umbraLength, newPenumbra, newPenumbraIndex, verticesPair, verticesPairIndex); ShadowTessellator::checkOverflow(verticesPairIndex, maxNewPenumbraLength, "Spot pair"); ShadowTessellator::checkOverflow(newPenumbraIndex, maxNewPenumbraLength, "Spot new penumbra"); #if DEBUG_SHADOW for (int i = 0; i < umbraLength; i++) { ALOGD("umbra i %d, [%f, %f]", i, umbra[i].x, umbra[i].y); } for (int i = 0; i < newPenumbraIndex; i++) { ALOGD("new penumbra i %d, [%f, %f]", i, newPenumbra[i].x, newPenumbra[i].y); } for (int i = 0; i < verticesPairIndex; i++) { ALOGD("index i %d, [%d, %d]", i, verticesPair[i].outerIndex, verticesPair[i].innerIndex); } #endif // For the size of vertex buffer, we need 3 rings, one has newPenumbraSize, // one has umbraLength, the last one has at most umbraLength. // // For the size of index buffer, the umbra area needs (2 * umbraLength + 2). // The penumbra one can vary a bit, but it is bounded by (2 * verticesPairIndex + 2). // And 2 more for jumping between penumbra to umbra. const int newPenumbraLength = newPenumbraIndex; const int totalVertexCount = newPenumbraLength + umbraLength * 2; const int totalIndexCount = 2 * umbraLength + 2 * verticesPairIndex + 6; AlphaVertex* shadowVertices = shadowTriangleStrip.alloc<AlphaVertex>(totalVertexCount); uint16_t* indexBuffer = shadowTriangleStrip.allocIndices<uint16_t>(totalIndexCount); int vertexBufferIndex = 0; int indexBufferIndex = 0; // Fill the IB and VB for the penumbra area. for (int i = 0; i < newPenumbraLength; i++) { AlphaVertex::set(&shadowVertices[vertexBufferIndex++], newPenumbra[i].x, newPenumbra[i].y, TRANSFORMED_PENUMBRA_ALPHA); } for (int i = 0; i < umbraLength; i++) { AlphaVertex::set(&shadowVertices[vertexBufferIndex++], umbra[i].x, umbra[i].y, TRANSFORMED_UMBRA_ALPHA); } for (int i = 0; i < verticesPairIndex; i++) { indexBuffer[indexBufferIndex++] = verticesPair[i].outerIndex; // All umbra index need to be offseted by newPenumbraSize. indexBuffer[indexBufferIndex++] = verticesPair[i].innerIndex + newPenumbraLength; } indexBuffer[indexBufferIndex++] = verticesPair[0].outerIndex; indexBuffer[indexBufferIndex++] = verticesPair[0].innerIndex + newPenumbraLength; // Now fill the IB and VB for the umbra area. // First duplicated the index from previous strip and the first one for the // degenerated triangles. indexBuffer[indexBufferIndex] = indexBuffer[indexBufferIndex - 1]; indexBufferIndex++; indexBuffer[indexBufferIndex++] = newPenumbraLength + 0; // Save the first VB index for umbra area in order to close the loop. int savedStartIndex = vertexBufferIndex; if (hasOccludedUmbraArea) { // Precompute all the polygon's vector, and the reference cross product, // in order to find the right polygon edge for the ray to intersect. Vector2 polyToCentroid[polyLength]; bool isPositiveCross = genPolyToCentroid(poly2d, polyLength, centroid, polyToCentroid); // Because both the umbra and polygon are going in the same direction, // we can save the previous polygon index to make sure we have less polygon // vertex to compute for each ray. int previousPolyIndex = 0; for (int i = 0; i < umbraLength; i++) { // Shoot a ray from centroid to each umbra vertices and pick the one with // shorter distance to the centroid, b/t the umbra vertex or the intersection point. Vector2 closerVertex = getCloserVertex(umbra[i], centroid, poly2d, polyLength, polyToCentroid, isPositiveCross, previousPolyIndex); // We already stored the umbra vertices, just need to add the occlued umbra's ones. indexBuffer[indexBufferIndex++] = newPenumbraLength + i; indexBuffer[indexBufferIndex++] = vertexBufferIndex; AlphaVertex::set(&shadowVertices[vertexBufferIndex++], closerVertex.x, closerVertex.y, TRANSFORMED_UMBRA_ALPHA); } } else { // If there is no occluded umbra at all, then draw the triangle fan // starting from the centroid to all umbra vertices. int lastCentroidIndex = vertexBufferIndex; AlphaVertex::set(&shadowVertices[vertexBufferIndex++], centroid.x, centroid.y, TRANSFORMED_UMBRA_ALPHA); for (int i = 0; i < umbraLength; i++) { indexBuffer[indexBufferIndex++] = newPenumbraLength + i; indexBuffer[indexBufferIndex++] = lastCentroidIndex; } } // Closing the umbra area triangle's loop here. indexBuffer[indexBufferIndex++] = newPenumbraLength; indexBuffer[indexBufferIndex++] = savedStartIndex; // At the end, update the real index and vertex buffer size. shadowTriangleStrip.updateVertexCount(vertexBufferIndex); shadowTriangleStrip.updateIndexCount(indexBufferIndex); ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Spot Vertex Buffer"); ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Spot Index Buffer"); shadowTriangleStrip.setMeshFeatureFlags(VertexBuffer::kAlpha | VertexBuffer::kIndices); shadowTriangleStrip.computeBounds<AlphaVertex>(); } #if DEBUG_SHADOW #define TEST_POINT_NUMBER 128 /** * Calculate the bounds for generating random test points. */ void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound, Vector2& upperBound) { if (inVector.x < lowerBound.x) { lowerBound.x = inVector.x; } if (inVector.y < lowerBound.y) { lowerBound.y = inVector.y; } if (inVector.x > upperBound.x) { upperBound.x = inVector.x; } if (inVector.y > upperBound.y) { upperBound.y = inVector.y; } } /** * For debug purpose, when things go wrong, dump the whole polygon data. */ void SpotShadow::dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) { for (int i = 0; i < polyLength; i++) { ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y); } } /** * For debug purpose, when things go wrong, dump the whole polygon data. */ void SpotShadow::dumpPolygon(const Vector3* poly, int polyLength, const char* polyName) { for (int i = 0; i < polyLength; i++) { ALOGD("polygon %s i %d x %f y %f z %f", polyName, i, poly[i].x, poly[i].y, poly[i].z); } } /** * Test whether the polygon is convex. */ bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength, const char* name) { bool isConvex = true; for (int i = 0; i < polygonLength; i++) { Vector2 start = polygon[i]; Vector2 middle = polygon[(i + 1) % polygonLength]; Vector2 end = polygon[(i + 2) % polygonLength]; float delta = (float(middle.x) - start.x) * (float(end.y) - start.y) - (float(middle.y) - start.y) * (float(end.x) - start.x); bool isCCWOrCoLinear = (delta >= EPSILON); if (isCCWOrCoLinear) { ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f)," "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!", name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta); isConvex = false; break; } } return isConvex; } /** * Test whether or not the polygon (intersection) is within the 2 input polygons. * Using Marte Carlo method, we generate a random point, and if it is inside the * intersection, then it must be inside both source polygons. */ void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length, const Vector2* poly2, int poly2Length, const Vector2* intersection, int intersectionLength) { // Find the min and max of x and y. Vector2 lowerBound = {FLT_MAX, FLT_MAX}; Vector2 upperBound = {-FLT_MAX, -FLT_MAX}; for (int i = 0; i < poly1Length; i++) { updateBound(poly1[i], lowerBound, upperBound); } for (int i = 0; i < poly2Length; i++) { updateBound(poly2[i], lowerBound, upperBound); } bool dumpPoly = false; for (int k = 0; k < TEST_POINT_NUMBER; k++) { // Generate a random point between minX, minY and maxX, maxY. float randomX = rand() / float(RAND_MAX); float randomY = rand() / float(RAND_MAX); Vector2 testPoint; testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x); testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y); // If the random point is in both poly 1 and 2, then it must be intersection. if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) { if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) { dumpPoly = true; ALOGW("(Error Type 1): one point (%f, %f) in the intersection is" " not in the poly1", testPoint.x, testPoint.y); } if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) { dumpPoly = true; ALOGW("(Error Type 1): one point (%f, %f) in the intersection is" " not in the poly2", testPoint.x, testPoint.y); } } } if (dumpPoly) { dumpPolygon(intersection, intersectionLength, "intersection"); for (int i = 1; i < intersectionLength; i++) { Vector2 delta = intersection[i] - intersection[i - 1]; ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared()); } dumpPolygon(poly1, poly1Length, "poly 1"); dumpPolygon(poly2, poly2Length, "poly 2"); } } #endif }; // namespace uirenderer }; // namespace android