/****************************************************************************** * * Copyright (C) 1999-2012 Broadcom Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ /****************************************************************************** * * This file contains security manager protocol utility functions * ******************************************************************************/ #include "bt_target.h" #if SMP_INCLUDED == TRUE #if SMP_DEBUG == TRUE #include <stdio.h> #endif #include <string.h> #include "bt_utils.h" #include "btm_ble_api.h" #include "smp_int.h" #include "btm_int.h" #include "btm_ble_int.h" #include "hcimsgs.h" #include "aes.h" #include "p_256_ecc_pp.h" #include "device/include/controller.h" #ifndef SMP_MAX_ENC_REPEAT #define SMP_MAX_ENC_REPEAT 3 #endif static void smp_rand_back(tBTM_RAND_ENC *p); static void smp_generate_confirm(tSMP_CB *p_cb, tSMP_INT_DATA *p_data); static void smp_generate_ltk_cont(tSMP_CB *p_cb, tSMP_INT_DATA *p_data); static void smp_generate_y(tSMP_CB *p_cb, tSMP_INT_DATA *p); static void smp_generate_rand_vector (tSMP_CB *p_cb, tSMP_INT_DATA *p); static void smp_process_stk(tSMP_CB *p_cb, tSMP_ENC *p); static void smp_calculate_comfirm_cont(tSMP_CB *p_cb, tSMP_ENC *p); static void smp_process_confirm(tSMP_CB *p_cb, tSMP_ENC *p); static void smp_process_compare(tSMP_CB *p_cb, tSMP_ENC *p); static void smp_process_ediv(tSMP_CB *p_cb, tSMP_ENC *p); static BOOLEAN smp_calculate_legacy_short_term_key(tSMP_CB *p_cb, tSMP_ENC *output); static void smp_continue_private_key_creation(tSMP_CB *p_cb, tBTM_RAND_ENC *p); static void smp_process_private_key(tSMP_CB *p_cb); static void smp_finish_nonce_generation(tSMP_CB *p_cb); static void smp_process_new_nonce(tSMP_CB *p_cb); static const tSMP_ACT smp_encrypt_action[] = { smp_generate_compare, /* SMP_GEN_COMPARE */ smp_generate_confirm, /* SMP_GEN_CONFIRM*/ smp_generate_stk, /* SMP_GEN_STK*/ smp_generate_ltk_cont, /* SMP_GEN_LTK */ smp_generate_ltk, /* SMP_GEN_DIV_LTK */ smp_generate_rand_vector, /* SMP_GEN_RAND_V */ smp_generate_y, /* SMP_GEN_EDIV */ smp_generate_passkey, /* SMP_GEN_TK */ smp_generate_srand_mrand_confirm, /* SMP_GEN_SRAND_MRAND */ smp_generate_rand_cont /* SMP_GEN_SRAND_MRAND_CONT */ }; #define SMP_PASSKEY_MASK 0xfff00000 void smp_debug_print_nbyte_little_endian(UINT8 *p, const UINT8 *key_name, UINT8 len) { #if SMP_DEBUG == TRUE int ind, x; int col_count = 32; int row_count; UINT8 p_buf[512]; SMP_TRACE_WARNING("%s(LSB ~ MSB):", key_name); memset(p_buf, 0, sizeof(p_buf)); row_count = len % col_count ? len / col_count + 1: len / col_count; ind = 0; for (int row = 0; row < row_count; row++) { for (int column = 0, x = 0; (ind < len) && (column < col_count); column++, ind++) { x += sprintf((char *)&p_buf[x], "%02x ", p[ind]); } SMP_TRACE_WARNING(" [%03d]: %s", row * col_count, p_buf); } #endif } void smp_debug_print_nbyte_big_endian (UINT8 *p, const UINT8 *key_name, UINT8 len) { #if SMP_DEBUG == TRUE UINT8 p_buf[512]; SMP_TRACE_WARNING("%s(MSB ~ LSB):", key_name); memset(p_buf, 0, sizeof(p_buf)); nrows = len % ncols ? len / ncols + 1: len / ncols; int ind = 0; int ncols = 32; /* num entries in one line */ int nrows; /* num lines */ int x; for (int row = 0; row < nrows; row++) { for (int col = 0, x = 0; (ind < len) && (col < ncols); col++, ind++) { x += sprintf ((char *)&p_buf[len-x-1], "%02x ", p[ind]); } SMP_TRACE_WARNING("[%03d]: %s", row * ncols, p_buf); } #endif } /******************************************************************************* ** ** Function smp_encrypt_data ** ** Description This function is called to encrypt data. ** It uses AES-128 encryption algorithm. ** Plain_text is encrypted using key, the result is at p_out. ** ** Returns void ** *******************************************************************************/ BOOLEAN smp_encrypt_data (UINT8 *key, UINT8 key_len, UINT8 *plain_text, UINT8 pt_len, tSMP_ENC *p_out) { aes_context ctx; UINT8 *p_start = NULL; UINT8 *p = NULL; UINT8 *p_rev_data = NULL; /* input data in big endilan format */ UINT8 *p_rev_key = NULL; /* input key in big endilan format */ UINT8 *p_rev_output = NULL; /* encrypted output in big endilan format */ SMP_TRACE_DEBUG ("%s", __func__); if ( (p_out == NULL ) || (key_len != SMP_ENCRYT_KEY_SIZE) ) { SMP_TRACE_ERROR ("%s failed", __func__); return FALSE; } if ((p_start = (UINT8 *)GKI_getbuf((SMP_ENCRYT_DATA_SIZE*4))) == NULL) { SMP_TRACE_ERROR ("%s failed unable to allocate buffer", __func__); return FALSE; } if (pt_len > SMP_ENCRYT_DATA_SIZE) pt_len = SMP_ENCRYT_DATA_SIZE; memset(p_start, 0, SMP_ENCRYT_DATA_SIZE * 4); p = p_start; ARRAY_TO_STREAM (p, plain_text, pt_len); /* byte 0 to byte 15 */ p_rev_data = p = p_start + SMP_ENCRYT_DATA_SIZE; /* start at byte 16 */ REVERSE_ARRAY_TO_STREAM (p, p_start, SMP_ENCRYT_DATA_SIZE); /* byte 16 to byte 31 */ p_rev_key = p; /* start at byte 32 */ REVERSE_ARRAY_TO_STREAM (p, key, SMP_ENCRYT_KEY_SIZE); /* byte 32 to byte 47 */ #if SMP_DEBUG == TRUE && SMP_DEBUG_VERBOSE == TRUE smp_debug_print_nbyte_little_endian(key, (const UINT8 *)"Key", SMP_ENCRYT_KEY_SIZE); smp_debug_print_nbyte_little_endian(p_start, (const UINT8 *)"Plain text", SMP_ENCRYT_DATA_SIZE); #endif p_rev_output = p; aes_set_key(p_rev_key, SMP_ENCRYT_KEY_SIZE, &ctx); aes_encrypt(p_rev_data, p, &ctx); /* outputs in byte 48 to byte 63 */ p = p_out->param_buf; REVERSE_ARRAY_TO_STREAM (p, p_rev_output, SMP_ENCRYT_DATA_SIZE); #if SMP_DEBUG == TRUE && SMP_DEBUG_VERBOSE == TRUE smp_debug_print_nbyte_little_endian(p_out->param_buf, (const UINT8 *)"Encrypted text", SMP_ENCRYT_KEY_SIZE); #endif p_out->param_len = SMP_ENCRYT_KEY_SIZE; p_out->status = HCI_SUCCESS; p_out->opcode = HCI_BLE_ENCRYPT; GKI_freebuf(p_start); return TRUE; } /******************************************************************************* ** ** Function smp_generate_passkey ** ** Description This function is called to generate passkey. ** ** Returns void ** *******************************************************************************/ void smp_generate_passkey(tSMP_CB *p_cb, tSMP_INT_DATA *p_data) { UNUSED(p_data); SMP_TRACE_DEBUG ("%s", __func__); p_cb->rand_enc_proc_state = SMP_GEN_TK; /* generate MRand or SRand */ if (!btsnd_hcic_ble_rand((void *)smp_rand_back)) smp_rand_back(NULL); } /******************************************************************************* ** ** Function smp_proc_passkey ** ** Description This function is called to process a passkey. ** ** Returns void ** *******************************************************************************/ void smp_proc_passkey(tSMP_CB *p_cb , tBTM_RAND_ENC *p) { UINT8 *tt = p_cb->tk; tSMP_KEY key; UINT32 passkey; /* 19655 test number; */ UINT8 *pp = p->param_buf; SMP_TRACE_DEBUG ("%s", __func__); STREAM_TO_UINT32(passkey, pp); passkey &= ~SMP_PASSKEY_MASK; /* truncate by maximum value */ while (passkey > BTM_MAX_PASSKEY_VAL) passkey >>= 1; /* save the TK */ memset(p_cb->tk, 0, BT_OCTET16_LEN); UINT32_TO_STREAM(tt, passkey); key.key_type = SMP_KEY_TYPE_TK; key.p_data = p_cb->tk; if (p_cb->p_callback) { (*p_cb->p_callback)(SMP_PASSKEY_NOTIF_EVT, p_cb->pairing_bda, (tSMP_EVT_DATA *)&passkey); } if (p_cb->selected_association_model == SMP_MODEL_SEC_CONN_PASSKEY_DISP) { smp_sm_event(&smp_cb, SMP_KEY_READY_EVT, &passkey); } else { smp_sm_event(p_cb, SMP_KEY_READY_EVT, (tSMP_INT_DATA *)&key); } } /******************************************************************************* ** ** Function smp_generate_stk ** ** Description This function is called to generate STK calculated by running ** AES with the TK value as key and a concatenation of the random ** values. ** ** Returns void ** *******************************************************************************/ void smp_generate_stk(tSMP_CB *p_cb, tSMP_INT_DATA *p_data) { UNUSED(p_data); tSMP_ENC output; tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN; SMP_TRACE_DEBUG ("%s", __func__); if (p_cb->le_secure_connections_mode_is_used) { SMP_TRACE_WARNING ("FOR LE SC LTK IS USED INSTEAD OF STK"); output.param_len = SMP_ENCRYT_KEY_SIZE; output.status = HCI_SUCCESS; output.opcode = HCI_BLE_ENCRYPT; memcpy(output.param_buf, p_cb->ltk, SMP_ENCRYT_DATA_SIZE); } else if (!smp_calculate_legacy_short_term_key(p_cb, &output)) { SMP_TRACE_ERROR("%s failed", __func__); smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status); return; } smp_process_stk(p_cb, &output); } /******************************************************************************* ** ** Function smp_generate_srand_mrand_confirm ** ** Description This function is called to start the second pairing phase by ** start generating random number. ** ** ** Returns void ** *******************************************************************************/ void smp_generate_srand_mrand_confirm(tSMP_CB *p_cb, tSMP_INT_DATA *p_data) { UNUSED(p_data); SMP_TRACE_DEBUG ("%s", __func__); p_cb->rand_enc_proc_state = SMP_GEN_SRAND_MRAND; /* generate MRand or SRand */ if (!btsnd_hcic_ble_rand((void *)smp_rand_back)) smp_rand_back(NULL); } /******************************************************************************* ** ** Function smp_generate_rand_cont ** ** Description This function is called to generate another 64 bits random for ** MRand or Srand. ** ** Returns void ** *******************************************************************************/ void smp_generate_rand_cont(tSMP_CB *p_cb, tSMP_INT_DATA *p_data) { UNUSED(p_data); SMP_TRACE_DEBUG ("%s", __func__); p_cb->rand_enc_proc_state = SMP_GEN_SRAND_MRAND_CONT; /* generate 64 MSB of MRand or SRand */ if (!btsnd_hcic_ble_rand((void *)smp_rand_back)) smp_rand_back(NULL); } /******************************************************************************* ** ** Function smp_generate_ltk ** ** Description This function is called: ** - in legacy pairing - to calculate LTK, starting with DIV ** generation; ** - in LE Secure Connections pairing over LE transport - to process LTK ** already generated to encrypt LE link; ** - in LE Secure Connections pairing over BR/EDR transport - to start ** BR/EDR Link Key processing. ** ** Returns void ** *******************************************************************************/ void smp_generate_ltk(tSMP_CB *p_cb, tSMP_INT_DATA *p_data) { UNUSED(p_data); BOOLEAN div_status; SMP_TRACE_DEBUG ("%s", __FUNCTION__); if (smp_get_br_state() == SMP_BR_STATE_BOND_PENDING) { smp_br_process_link_key(p_cb, NULL); return; } else if (p_cb->le_secure_connections_mode_is_used) { smp_process_secure_connection_long_term_key(); return; } div_status = btm_get_local_div(p_cb->pairing_bda, &p_cb->div); if (div_status) { smp_generate_ltk_cont(p_cb, NULL); } else { SMP_TRACE_DEBUG ("Generate DIV for LTK"); p_cb->rand_enc_proc_state = SMP_GEN_DIV_LTK; /* generate MRand or SRand */ if (!btsnd_hcic_ble_rand((void *)smp_rand_back)) smp_rand_back(NULL); } } /******************************************************************************* ** ** Function smp_compute_csrk ** ** Description This function is called to calculate CSRK ** ** ** Returns void ** *******************************************************************************/ void smp_compute_csrk(tSMP_CB *p_cb, tSMP_INT_DATA *p_data) { UNUSED(p_data); BT_OCTET16 er; UINT8 buffer[4]; /* for (r || DIV) r=1*/ UINT16 r=1; UINT8 *p=buffer; tSMP_ENC output; tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN; SMP_TRACE_DEBUG ("smp_compute_csrk div=%x", p_cb->div); BTM_GetDeviceEncRoot(er); /* CSRK = d1(ER, DIV, 1) */ UINT16_TO_STREAM(p, p_cb->div); UINT16_TO_STREAM(p, r); if (!SMP_Encrypt(er, BT_OCTET16_LEN, buffer, 4, &output)) { SMP_TRACE_ERROR("smp_generate_csrk failed"); if (p_cb->smp_over_br) { smp_br_state_machine_event(p_cb, SMP_BR_AUTH_CMPL_EVT, &status); } else { smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status); } } else { memcpy((void *)p_cb->csrk, output.param_buf, BT_OCTET16_LEN); smp_send_csrk_info(p_cb, NULL); } } /******************************************************************************* ** ** Function smp_generate_csrk ** ** Description This function is called to calculate CSRK, starting with DIV ** generation. ** ** ** Returns void ** *******************************************************************************/ void smp_generate_csrk(tSMP_CB *p_cb, tSMP_INT_DATA *p_data) { UNUSED(p_data); BOOLEAN div_status; SMP_TRACE_DEBUG ("smp_generate_csrk"); div_status = btm_get_local_div(p_cb->pairing_bda, &p_cb->div); if (div_status) { smp_compute_csrk(p_cb, NULL); } else { SMP_TRACE_DEBUG ("Generate DIV for CSRK"); p_cb->rand_enc_proc_state = SMP_GEN_DIV_CSRK; if (!btsnd_hcic_ble_rand((void *)smp_rand_back)) smp_rand_back(NULL); } } /******************************************************************************* ** Function smp_concatenate_peer ** add pairing command sent from local device into p1. *******************************************************************************/ void smp_concatenate_local( tSMP_CB *p_cb, UINT8 **p_data, UINT8 op_code) { UINT8 *p = *p_data; SMP_TRACE_DEBUG ("%s", __func__); UINT8_TO_STREAM(p, op_code); UINT8_TO_STREAM(p, p_cb->local_io_capability); UINT8_TO_STREAM(p, p_cb->loc_oob_flag); UINT8_TO_STREAM(p, p_cb->loc_auth_req); UINT8_TO_STREAM(p, p_cb->loc_enc_size); UINT8_TO_STREAM(p, p_cb->local_i_key); UINT8_TO_STREAM(p, p_cb->local_r_key); *p_data = p; } /******************************************************************************* ** Function smp_concatenate_peer ** add pairing command received from peer device into p1. *******************************************************************************/ void smp_concatenate_peer( tSMP_CB *p_cb, UINT8 **p_data, UINT8 op_code) { UINT8 *p = *p_data; SMP_TRACE_DEBUG ("smp_concatenate_peer "); UINT8_TO_STREAM(p, op_code); UINT8_TO_STREAM(p, p_cb->peer_io_caps); UINT8_TO_STREAM(p, p_cb->peer_oob_flag); UINT8_TO_STREAM(p, p_cb->peer_auth_req); UINT8_TO_STREAM(p, p_cb->peer_enc_size); UINT8_TO_STREAM(p, p_cb->peer_i_key); UINT8_TO_STREAM(p, p_cb->peer_r_key); *p_data = p; } /******************************************************************************* ** ** Function smp_gen_p1_4_confirm ** ** Description Generate Confirm/Compare Step1: ** p1 = pres || preq || rat' || iat' ** ** Returns void ** *******************************************************************************/ void smp_gen_p1_4_confirm( tSMP_CB *p_cb, BT_OCTET16 p1) { UINT8 *p = (UINT8 *)p1; tBLE_ADDR_TYPE addr_type = 0; BD_ADDR remote_bda; SMP_TRACE_DEBUG ("smp_gen_p1_4_confirm"); if (!BTM_ReadRemoteConnectionAddr(p_cb->pairing_bda, remote_bda, &addr_type)) { SMP_TRACE_ERROR("can not generate confirm for unknown device"); return; } BTM_ReadConnectionAddr( p_cb->pairing_bda, p_cb->local_bda, &p_cb->addr_type); if (p_cb->role == HCI_ROLE_MASTER) { /* LSB : rat': initiator's(local) address type */ UINT8_TO_STREAM(p, p_cb->addr_type); /* LSB : iat': responder's address type */ UINT8_TO_STREAM(p, addr_type); /* concatinate preq */ smp_concatenate_local(p_cb, &p, SMP_OPCODE_PAIRING_REQ); /* concatinate pres */ smp_concatenate_peer(p_cb, &p, SMP_OPCODE_PAIRING_RSP); } else { /* LSB : iat': initiator's address type */ UINT8_TO_STREAM(p, addr_type); /* LSB : rat': responder's(local) address type */ UINT8_TO_STREAM(p, p_cb->addr_type); /* concatinate preq */ smp_concatenate_peer(p_cb, &p, SMP_OPCODE_PAIRING_REQ); /* concatinate pres */ smp_concatenate_local(p_cb, &p, SMP_OPCODE_PAIRING_RSP); } #if SMP_DEBUG == TRUE SMP_TRACE_DEBUG("p1 = pres || preq || rat' || iat'"); smp_debug_print_nbyte_little_endian ((UINT8 *)p1, (const UINT8 *)"P1", 16); #endif } /******************************************************************************* ** ** Function smp_gen_p2_4_confirm ** ** Description Generate Confirm/Compare Step2: ** p2 = padding || ia || ra ** ** Returns void ** *******************************************************************************/ void smp_gen_p2_4_confirm( tSMP_CB *p_cb, BT_OCTET16 p2) { UINT8 *p = (UINT8 *)p2; BD_ADDR remote_bda; tBLE_ADDR_TYPE addr_type = 0; if (!BTM_ReadRemoteConnectionAddr(p_cb->pairing_bda, remote_bda, &addr_type)) { SMP_TRACE_ERROR("can not generate confirm p2 for unknown device"); return; } SMP_TRACE_DEBUG ("smp_gen_p2_4_confirm"); memset(p, 0, sizeof(BT_OCTET16)); if (p_cb->role == HCI_ROLE_MASTER) { /* LSB ra */ BDADDR_TO_STREAM(p, remote_bda); /* ia */ BDADDR_TO_STREAM(p, p_cb->local_bda); } else { /* LSB ra */ BDADDR_TO_STREAM(p, p_cb->local_bda); /* ia */ BDADDR_TO_STREAM(p, remote_bda); } #if SMP_DEBUG == TRUE SMP_TRACE_DEBUG("p2 = padding || ia || ra"); smp_debug_print_nbyte_little_endian(p2, (const UINT8 *)"p2", 16); #endif } /******************************************************************************* ** ** Function smp_calculate_comfirm ** ** Description This function is called to calculate Confirm value. ** ** Returns void ** *******************************************************************************/ void smp_calculate_comfirm (tSMP_CB *p_cb, BT_OCTET16 rand, BD_ADDR bda) { UNUSED(bda); BT_OCTET16 p1; tSMP_ENC output; tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN; SMP_TRACE_DEBUG ("smp_calculate_comfirm "); /* generate p1 = pres || preq || rat' || iat' */ smp_gen_p1_4_confirm(p_cb, p1); /* p1 = rand XOR p1 */ smp_xor_128(p1, rand); smp_debug_print_nbyte_little_endian ((UINT8 *)p1, (const UINT8 *)"P1' = r XOR p1", 16); /* calculate e(k, r XOR p1), where k = TK */ if (!SMP_Encrypt(p_cb->tk, BT_OCTET16_LEN, p1, BT_OCTET16_LEN, &output)) { SMP_TRACE_ERROR("smp_generate_csrk failed"); smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status); } else { smp_calculate_comfirm_cont(p_cb, &output); } } /******************************************************************************* ** ** Function smp_calculate_comfirm_cont ** ** Description This function is called when SConfirm/MConfirm is generated ** proceed to send the Confirm request/response to peer device. ** ** Returns void ** *******************************************************************************/ static void smp_calculate_comfirm_cont(tSMP_CB *p_cb, tSMP_ENC *p) { BT_OCTET16 p2; tSMP_ENC output; tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN; SMP_TRACE_DEBUG ("smp_calculate_comfirm_cont "); #if SMP_DEBUG == TRUE SMP_TRACE_DEBUG("Confirm step 1 p1' = e(k, r XOR p1) Generated"); smp_debug_print_nbyte_little_endian (p->param_buf, (const UINT8 *)"C1", 16); #endif smp_gen_p2_4_confirm(p_cb, p2); /* calculate p2 = (p1' XOR p2) */ smp_xor_128(p2, p->param_buf); smp_debug_print_nbyte_little_endian ((UINT8 *)p2, (const UINT8 *)"p2' = C1 xor p2", 16); /* calculate: Confirm = E(k, p1' XOR p2) */ if (!SMP_Encrypt(p_cb->tk, BT_OCTET16_LEN, p2, BT_OCTET16_LEN, &output)) { SMP_TRACE_ERROR("smp_calculate_comfirm_cont failed"); smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status); } else { switch (p_cb->rand_enc_proc_state) { case SMP_GEN_CONFIRM: smp_process_confirm(p_cb, &output); break; case SMP_GEN_COMPARE: smp_process_compare(p_cb, &output); break; } } } /******************************************************************************* ** ** Function smp_generate_confirm ** ** Description This function is called when a 48 bits random number is generated ** as SRand or MRand, continue to calculate Sconfirm or MConfirm. ** ** Returns void ** *******************************************************************************/ static void smp_generate_confirm(tSMP_CB *p_cb, tSMP_INT_DATA *p_data) { UNUSED(p_data); SMP_TRACE_DEBUG ("%s", __func__); p_cb->rand_enc_proc_state = SMP_GEN_CONFIRM; smp_debug_print_nbyte_little_endian ((UINT8 *)p_cb->rand, (const UINT8 *)"local rand", 16); smp_calculate_comfirm(p_cb, p_cb->rand, p_cb->pairing_bda); } /******************************************************************************* ** ** Function smp_generate_compare ** ** Description This function is called to generate SConfirm for Slave device, ** or MSlave for Master device. This function can be also used for ** generating Compare number for confirm value check. ** ** Returns void ** *******************************************************************************/ void smp_generate_compare (tSMP_CB *p_cb, tSMP_INT_DATA *p_data) { UNUSED(p_data); SMP_TRACE_DEBUG ("smp_generate_compare "); p_cb->rand_enc_proc_state = SMP_GEN_COMPARE; smp_debug_print_nbyte_little_endian ((UINT8 *)p_cb->rrand, (const UINT8 *)"peer rand", 16); smp_calculate_comfirm(p_cb, p_cb->rrand, p_cb->local_bda); } /******************************************************************************* ** ** Function smp_process_confirm ** ** Description This function is called when SConfirm/MConfirm is generated ** proceed to send the Confirm request/response to peer device. ** ** Returns void ** *******************************************************************************/ static void smp_process_confirm(tSMP_CB *p_cb, tSMP_ENC *p) { tSMP_KEY key; SMP_TRACE_DEBUG ("%s", __FUNCTION__); memcpy(p_cb->confirm, p->param_buf, BT_OCTET16_LEN); #if (SMP_DEBUG == TRUE) SMP_TRACE_DEBUG("Confirm Generated"); smp_debug_print_nbyte_little_endian ((UINT8 *)p_cb->confirm, (const UINT8 *)"Confirm", 16); #endif key.key_type = SMP_KEY_TYPE_CFM; key.p_data = p->param_buf; smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key); } /******************************************************************************* ** ** Function smp_process_compare ** ** Description This function is called when Compare is generated using the ** RRand and local BDA, TK information. ** ** Returns void ** *******************************************************************************/ static void smp_process_compare(tSMP_CB *p_cb, tSMP_ENC *p) { tSMP_KEY key; SMP_TRACE_DEBUG ("smp_process_compare "); #if (SMP_DEBUG == TRUE) SMP_TRACE_DEBUG("Compare Generated"); smp_debug_print_nbyte_little_endian (p->param_buf, (const UINT8 *)"Compare", 16); #endif key.key_type = SMP_KEY_TYPE_CMP; key.p_data = p->param_buf; smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key); } /******************************************************************************* ** ** Function smp_process_stk ** ** Description This function is called when STK is generated ** proceed to send the encrypt the link using STK. ** ** Returns void ** *******************************************************************************/ static void smp_process_stk(tSMP_CB *p_cb, tSMP_ENC *p) { tSMP_KEY key; SMP_TRACE_DEBUG ("smp_process_stk "); #if (SMP_DEBUG == TRUE) SMP_TRACE_ERROR("STK Generated"); #endif smp_mask_enc_key(p_cb->loc_enc_size, p->param_buf); key.key_type = SMP_KEY_TYPE_STK; key.p_data = p->param_buf; smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key); } /******************************************************************************* ** ** Function smp_generate_ltk_cont ** ** Description This function is to calculate LTK = d1(ER, DIV, 0)= e(ER, DIV) ** ** Returns void ** *******************************************************************************/ static void smp_generate_ltk_cont(tSMP_CB *p_cb, tSMP_INT_DATA *p_data) { UNUSED(p_data); BT_OCTET16 er; tSMP_ENC output; tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN; SMP_TRACE_DEBUG ("%s", __func__); BTM_GetDeviceEncRoot(er); /* LTK = d1(ER, DIV, 0)= e(ER, DIV)*/ if (!SMP_Encrypt(er, BT_OCTET16_LEN, (UINT8 *)&p_cb->div, sizeof(UINT16), &output)) { SMP_TRACE_ERROR("%s failed", __func__); smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status); } else { /* mask the LTK */ smp_mask_enc_key(p_cb->loc_enc_size, output.param_buf); memcpy((void *)p_cb->ltk, output.param_buf, BT_OCTET16_LEN); smp_generate_rand_vector(p_cb, NULL); } } /******************************************************************************* ** ** Function smp_generate_y ** ** Description This function is to proceed generate Y = E(DHK, Rand) ** ** Returns void ** *******************************************************************************/ static void smp_generate_y(tSMP_CB *p_cb, tSMP_INT_DATA *p) { UNUSED(p); BT_OCTET16 dhk; tSMP_ENC output; tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN; SMP_TRACE_DEBUG ("smp_generate_y "); BTM_GetDeviceDHK(dhk); if (!SMP_Encrypt(dhk, BT_OCTET16_LEN, p_cb->enc_rand, BT_OCTET8_LEN, &output)) { SMP_TRACE_ERROR("smp_generate_y failed"); smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status); } else { smp_process_ediv(p_cb, &output); } } /******************************************************************************* ** ** Function smp_generate_rand_vector ** ** Description This function is called when LTK is generated, send state machine ** event to SMP. ** ** Returns void ** *******************************************************************************/ static void smp_generate_rand_vector (tSMP_CB *p_cb, tSMP_INT_DATA *p) { UNUSED(p); /* generate EDIV and rand now */ /* generate random vector */ SMP_TRACE_DEBUG ("smp_generate_rand_vector "); p_cb->rand_enc_proc_state = SMP_GEN_RAND_V; if (!btsnd_hcic_ble_rand((void *)smp_rand_back)) smp_rand_back(NULL); } /******************************************************************************* ** ** Function smp_process_ediv ** ** Description This function is to calculate EDIV = Y xor DIV ** ** Returns void ** *******************************************************************************/ static void smp_process_ediv(tSMP_CB *p_cb, tSMP_ENC *p) { tSMP_KEY key; UINT8 *pp= p->param_buf; UINT16 y; SMP_TRACE_DEBUG ("smp_process_ediv "); STREAM_TO_UINT16(y, pp); /* EDIV = Y xor DIV */ p_cb->ediv = p_cb->div ^ y; /* send LTK ready */ SMP_TRACE_ERROR("LTK ready"); key.key_type = SMP_KEY_TYPE_LTK; key.p_data = p->param_buf; smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key); } /******************************************************************************* ** ** Function smp_calculate_legacy_short_term_key ** ** Description The function calculates legacy STK. ** ** Returns FALSE if out of resources, TRUE in other cases. ** *******************************************************************************/ BOOLEAN smp_calculate_legacy_short_term_key(tSMP_CB *p_cb, tSMP_ENC *output) { BT_OCTET16 ptext; UINT8 *p = ptext; SMP_TRACE_DEBUG ("%s", __func__); memset(p, 0, BT_OCTET16_LEN); if (p_cb->role == HCI_ROLE_MASTER) { memcpy(p, p_cb->rand, BT_OCTET8_LEN); memcpy(&p[BT_OCTET8_LEN], p_cb->rrand, BT_OCTET8_LEN); } else { memcpy(p, p_cb->rrand, BT_OCTET8_LEN); memcpy(&p[BT_OCTET8_LEN], p_cb->rand, BT_OCTET8_LEN); } BOOLEAN encrypted; /* generate STK = Etk(rand|rrand)*/ encrypted = SMP_Encrypt( p_cb->tk, BT_OCTET16_LEN, ptext, BT_OCTET16_LEN, output); if (!encrypted) { SMP_TRACE_ERROR("%s failed", __func__); } return encrypted; } /******************************************************************************* ** ** Function smp_create_private_key ** ** Description This function is called to create private key used to ** calculate public key and DHKey. ** The function starts private key creation requesting controller ** to generate [0-7] octets of private key. ** ** Returns void ** *******************************************************************************/ void smp_create_private_key(tSMP_CB *p_cb, tSMP_INT_DATA *p_data) { SMP_TRACE_DEBUG ("%s",__FUNCTION__); p_cb->rand_enc_proc_state = SMP_GENERATE_PRIVATE_KEY_0_7; if (!btsnd_hcic_ble_rand((void *)smp_rand_back)) smp_rand_back(NULL); } /******************************************************************************* ** ** Function smp_use_oob_private_key ** ** Description This function is called ** - to save the secret key used to calculate the public key used ** in calculations of commitment sent OOB to a peer ** - to use this secret key to recalculate the public key and ** start the process of sending this public key to the peer ** if secret/public keys have to be reused. ** If the keys aren't supposed to be reused, continue from the ** point from which request for OOB data was issued. ** ** Returns void ** *******************************************************************************/ void smp_use_oob_private_key(tSMP_CB *p_cb, tSMP_INT_DATA *p_data) { SMP_TRACE_DEBUG ("%s req_oob_type: %d, role: %d", __func__, p_cb->req_oob_type, p_cb->role); switch (p_cb->req_oob_type) { case SMP_OOB_BOTH: case SMP_OOB_LOCAL: SMP_TRACE_DEBUG("%s restore secret key", __func__) memcpy(p_cb->private_key, p_cb->sc_oob_data.loc_oob_data.private_key_used, BT_OCTET32_LEN); smp_process_private_key(p_cb); break; default: SMP_TRACE_DEBUG("%s create secret key anew", __func__); smp_set_state(SMP_STATE_PAIR_REQ_RSP); smp_decide_association_model(p_cb, NULL); break; } } /******************************************************************************* ** ** Function smp_continue_private_key_creation ** ** Description This function is used to continue private key creation. ** ** Returns void ** *******************************************************************************/ void smp_continue_private_key_creation (tSMP_CB *p_cb, tBTM_RAND_ENC *p) { UINT8 state = p_cb->rand_enc_proc_state & ~0x80; SMP_TRACE_DEBUG ("%s state=0x%x", __func__, state); switch (state) { case SMP_GENERATE_PRIVATE_KEY_0_7: memcpy((void *)p_cb->private_key, p->param_buf, p->param_len); p_cb->rand_enc_proc_state = SMP_GENERATE_PRIVATE_KEY_8_15; if (!btsnd_hcic_ble_rand((void *)smp_rand_back)) smp_rand_back(NULL); break; case SMP_GENERATE_PRIVATE_KEY_8_15: memcpy((void *)&p_cb->private_key[8], p->param_buf, p->param_len); p_cb->rand_enc_proc_state = SMP_GENERATE_PRIVATE_KEY_16_23; if (!btsnd_hcic_ble_rand((void *)smp_rand_back)) smp_rand_back(NULL); break; case SMP_GENERATE_PRIVATE_KEY_16_23: memcpy((void *)&p_cb->private_key[16], p->param_buf, p->param_len); p_cb->rand_enc_proc_state = SMP_GENERATE_PRIVATE_KEY_24_31; if (!btsnd_hcic_ble_rand((void *)smp_rand_back)) smp_rand_back(NULL); break; case SMP_GENERATE_PRIVATE_KEY_24_31: memcpy((void *)&p_cb->private_key[24], p->param_buf, p->param_len); smp_process_private_key (p_cb); break; default: break; } return; } /******************************************************************************* ** ** Function smp_process_private_key ** ** Description This function processes private key. ** It calculates public key and notifies SM that private key / ** public key pair is created. ** ** Returns void ** *******************************************************************************/ void smp_process_private_key(tSMP_CB *p_cb) { Point public_key; BT_OCTET32 private_key; SMP_TRACE_DEBUG ("%s", __FUNCTION__); memcpy(private_key, p_cb->private_key, BT_OCTET32_LEN); ECC_PointMult(&public_key, &(curve_p256.G), (DWORD*) private_key, KEY_LENGTH_DWORDS_P256); memcpy(p_cb->loc_publ_key.x, public_key.x, BT_OCTET32_LEN); memcpy(p_cb->loc_publ_key.y, public_key.y, BT_OCTET32_LEN); smp_debug_print_nbyte_little_endian (p_cb->private_key, (const UINT8 *)"private", BT_OCTET32_LEN); smp_debug_print_nbyte_little_endian (p_cb->loc_publ_key.x, (const UINT8 *)"local public(x)", BT_OCTET32_LEN); smp_debug_print_nbyte_little_endian (p_cb->loc_publ_key.y, (const UINT8 *)"local public(y)", BT_OCTET32_LEN); p_cb->flags |= SMP_PAIR_FLAG_HAVE_LOCAL_PUBL_KEY; smp_sm_event(p_cb, SMP_LOC_PUBL_KEY_CRTD_EVT, NULL); } /******************************************************************************* ** ** Function smp_compute_dhkey ** ** Description The function: ** - calculates a new public key using as input local private ** key and peer public key; ** - saves the new public key x-coordinate as DHKey. ** ** Returns void ** *******************************************************************************/ void smp_compute_dhkey (tSMP_CB *p_cb) { Point peer_publ_key, new_publ_key; BT_OCTET32 private_key; SMP_TRACE_DEBUG ("%s", __FUNCTION__); memcpy(private_key, p_cb->private_key, BT_OCTET32_LEN); memcpy(peer_publ_key.x, p_cb->peer_publ_key.x, BT_OCTET32_LEN); memcpy(peer_publ_key.y, p_cb->peer_publ_key.y, BT_OCTET32_LEN); ECC_PointMult(&new_publ_key, &peer_publ_key, (DWORD*) private_key, KEY_LENGTH_DWORDS_P256); memcpy(p_cb->dhkey, new_publ_key.x, BT_OCTET32_LEN); smp_debug_print_nbyte_little_endian (p_cb->dhkey, (const UINT8 *)"Old DHKey", BT_OCTET32_LEN); smp_debug_print_nbyte_little_endian (p_cb->private_key, (const UINT8 *)"private", BT_OCTET32_LEN); smp_debug_print_nbyte_little_endian (p_cb->peer_publ_key.x, (const UINT8 *)"rem public(x)", BT_OCTET32_LEN); smp_debug_print_nbyte_little_endian (p_cb->peer_publ_key.y, (const UINT8 *)"rem public(y)", BT_OCTET32_LEN); smp_debug_print_nbyte_little_endian (p_cb->dhkey, (const UINT8 *)"Reverted DHKey", BT_OCTET32_LEN); } /******************************************************************************* ** ** Function smp_calculate_local_commitment ** ** Description The function calculates and saves local commmitment in CB. ** ** Returns void ** *******************************************************************************/ void smp_calculate_local_commitment(tSMP_CB *p_cb) { UINT8 random_input; SMP_TRACE_DEBUG("%s", __FUNCTION__); switch (p_cb->selected_association_model) { case SMP_MODEL_SEC_CONN_JUSTWORKS: case SMP_MODEL_SEC_CONN_NUM_COMP: if (p_cb->role == HCI_ROLE_MASTER) SMP_TRACE_WARNING ("local commitment calc on master is not expected \ for Just Works/Numeric Comparison models"); smp_calculate_f4(p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand, 0, p_cb->commitment); break; case SMP_MODEL_SEC_CONN_PASSKEY_ENT: case SMP_MODEL_SEC_CONN_PASSKEY_DISP: random_input = smp_calculate_random_input(p_cb->local_random, p_cb->round); smp_calculate_f4(p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand, random_input, p_cb->commitment); break; case SMP_MODEL_SEC_CONN_OOB: SMP_TRACE_WARNING ("local commitment calc is expected for OOB model BEFORE pairing"); smp_calculate_f4(p_cb->loc_publ_key.x, p_cb->loc_publ_key.x, p_cb->local_random, 0, p_cb->commitment); break; default: SMP_TRACE_ERROR("Association Model = %d is not used in LE SC", p_cb->selected_association_model); return; } SMP_TRACE_EVENT ("local commitment calculation is completed"); } /******************************************************************************* ** ** Function smp_calculate_peer_commitment ** ** Description The function calculates and saves peer commmitment at the ** provided output buffer. ** ** Returns void ** *******************************************************************************/ void smp_calculate_peer_commitment(tSMP_CB *p_cb, BT_OCTET16 output_buf) { UINT8 ri; SMP_TRACE_DEBUG ("%s", __FUNCTION__); switch (p_cb->selected_association_model) { case SMP_MODEL_SEC_CONN_JUSTWORKS: case SMP_MODEL_SEC_CONN_NUM_COMP: if (p_cb->role == HCI_ROLE_SLAVE) SMP_TRACE_WARNING ("peer commitment calc on slave is not expected \ for Just Works/Numeric Comparison models"); smp_calculate_f4(p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand, 0, output_buf); break; case SMP_MODEL_SEC_CONN_PASSKEY_ENT: case SMP_MODEL_SEC_CONN_PASSKEY_DISP: ri = smp_calculate_random_input(p_cb->peer_random, p_cb->round); smp_calculate_f4(p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand, ri, output_buf); break; case SMP_MODEL_SEC_CONN_OOB: smp_calculate_f4(p_cb->peer_publ_key.x, p_cb->peer_publ_key.x, p_cb->peer_random, 0, output_buf); break; default: SMP_TRACE_ERROR("Association Model = %d is not used in LE SC", p_cb->selected_association_model); return; } SMP_TRACE_EVENT ("peer commitment calculation is completed"); } /******************************************************************************* ** ** Function smp_calculate_f4 ** ** Description The function calculates ** C = f4(U, V, X, Z) = AES-CMAC (U||V||Z) ** X ** where ** input: U is 256 bit, ** V is 256 bit, ** X is 128 bit, ** Z is 8 bit, ** output: C is 128 bit. ** ** Returns void ** ** Note The LSB is the first octet, the MSB is the last octet of ** the AES-CMAC input/output stream. ** *******************************************************************************/ void smp_calculate_f4(UINT8 *u, UINT8 *v, UINT8 *x, UINT8 z, UINT8 *c) { UINT8 msg_len = BT_OCTET32_LEN /* U size */ + BT_OCTET32_LEN /* V size */ + 1 /* Z size */; UINT8 msg[BT_OCTET32_LEN + BT_OCTET32_LEN + 1]; UINT8 key[BT_OCTET16_LEN]; UINT8 cmac[BT_OCTET16_LEN]; UINT8 *p = NULL; #if SMP_DEBUG == TRUE UINT8 *p_prnt = NULL; #endif SMP_TRACE_DEBUG ("%s", __FUNCTION__); #if SMP_DEBUG == TRUE p_prnt = u; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"U", BT_OCTET32_LEN); p_prnt = v; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"V", BT_OCTET32_LEN); p_prnt = x; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"X", BT_OCTET16_LEN); p_prnt = &z; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"Z", 1); #endif p = msg; UINT8_TO_STREAM(p, z); ARRAY_TO_STREAM(p, v, BT_OCTET32_LEN); ARRAY_TO_STREAM(p, u, BT_OCTET32_LEN); #if SMP_DEBUG == TRUE p_prnt = msg; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"M", msg_len); #endif p = key; ARRAY_TO_STREAM(p, x, BT_OCTET16_LEN); #if SMP_DEBUG == TRUE p_prnt = key; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"K", BT_OCTET16_LEN); #endif aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac); #if SMP_DEBUG == TRUE p_prnt = cmac; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"AES_CMAC", BT_OCTET16_LEN); #endif p = c; ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN); } /******************************************************************************* ** ** Function smp_calculate_numeric_comparison_display_number ** ** Description The function calculates and saves number to display in numeric ** comparison association mode. ** ** Returns void ** *******************************************************************************/ void smp_calculate_numeric_comparison_display_number(tSMP_CB *p_cb, tSMP_INT_DATA *p_data) { SMP_TRACE_DEBUG ("%s", __func__); if (p_cb->role == HCI_ROLE_MASTER) { p_cb->number_to_display = smp_calculate_g2(p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand, p_cb->rrand); } else { p_cb->number_to_display = smp_calculate_g2(p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand, p_cb->rand); } if (p_cb->number_to_display >= (BTM_MAX_PASSKEY_VAL + 1)) { UINT8 reason; reason = p_cb->failure = SMP_PAIR_FAIL_UNKNOWN; smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &reason); return; } SMP_TRACE_EVENT("Number to display in numeric comparison = %d", p_cb->number_to_display); p_cb->cb_evt = SMP_NC_REQ_EVT; smp_sm_event(p_cb, SMP_SC_DSPL_NC_EVT, &p_cb->number_to_display); return; } /******************************************************************************* ** ** Function smp_calculate_g2 ** ** Description The function calculates ** g2(U, V, X, Y) = AES-CMAC (U||V||Y) mod 2**32 mod 10**6 ** X ** and ** Vres = g2(U, V, X, Y) mod 10**6 ** where ** input: U is 256 bit, ** V is 256 bit, ** X is 128 bit, ** Y is 128 bit, ** ** Returns Vres. ** Expected value has to be in the range [0 - 999999] i.e. [0 - 0xF423F]. ** Vres = 1000000 means that the calculation fails. ** ** Note The LSB is the first octet, the MSB is the last octet of ** the AES-CMAC input/output stream. ** *******************************************************************************/ UINT32 smp_calculate_g2(UINT8 *u, UINT8 *v, UINT8 *x, UINT8 *y) { UINT8 msg_len = BT_OCTET32_LEN /* U size */ + BT_OCTET32_LEN /* V size */ + BT_OCTET16_LEN /* Y size */; UINT8 msg[BT_OCTET32_LEN + BT_OCTET32_LEN + BT_OCTET16_LEN]; UINT8 key[BT_OCTET16_LEN]; UINT8 cmac[BT_OCTET16_LEN]; UINT8 *p = NULL; UINT32 vres; #if SMP_DEBUG == TRUE UINT8 *p_prnt = NULL; #endif SMP_TRACE_DEBUG ("%s", __FUNCTION__); p = msg; ARRAY_TO_STREAM(p, y, BT_OCTET16_LEN); ARRAY_TO_STREAM(p, v, BT_OCTET32_LEN); ARRAY_TO_STREAM(p, u, BT_OCTET32_LEN); #if SMP_DEBUG == TRUE p_prnt = u; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"U", BT_OCTET32_LEN); p_prnt = v; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"V", BT_OCTET32_LEN); p_prnt = x; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"X", BT_OCTET16_LEN); p_prnt = y; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"Y", BT_OCTET16_LEN); #endif p = key; ARRAY_TO_STREAM(p, x, BT_OCTET16_LEN); #if SMP_DEBUG == TRUE p_prnt = key; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"K", BT_OCTET16_LEN); #endif if(!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac)) { SMP_TRACE_ERROR("%s failed",__FUNCTION__); return (BTM_MAX_PASSKEY_VAL + 1); } #if SMP_DEBUG == TRUE p_prnt = cmac; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN); #endif /* vres = cmac mod 2**32 mod 10**6 */ p = &cmac[0]; STREAM_TO_UINT32(vres, p); #if SMP_DEBUG == TRUE p_prnt = (UINT8 *) &vres; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"cmac mod 2**32", 4); #endif while (vres > BTM_MAX_PASSKEY_VAL) vres -= (BTM_MAX_PASSKEY_VAL + 1); #if SMP_DEBUG == TRUE p_prnt = (UINT8 *) &vres; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"cmac mod 2**32 mod 10**6", 4); #endif SMP_TRACE_ERROR("Value for numeric comparison = %d", vres); return vres; } /******************************************************************************* ** ** Function smp_calculate_f5 ** ** Description The function provides two AES-CMAC that are supposed to be used as ** - MacKey (MacKey is used in pairing DHKey check calculation); ** - LTK (LTK is used to ecrypt the link after completion of Phase 2 ** and on reconnection, to derive BR/EDR LK). ** The function inputs are W, N1, N2, A1, A2. ** F5 rules: ** - the value used as key in MacKey/LTK (T) is calculated ** (function smp_calculate_f5_key(...)); ** The formula is: ** T = AES-CMAC (W) ** salt ** where salt is internal parameter of smp_calculate_f5_key(...). ** - MacKey and LTK are calculated as AES-MAC values received with the ** key T calculated in the previous step and the plaintext message ** built from the external parameters N1, N2, A1, A2 and the internal ** parameters counter, keyID, length. ** The function smp_calculate_f5_mackey_or_long_term_key(...) is used in the ** calculations. ** The same formula is used in calculation of MacKey and LTK and the ** same parameter values except the value of the internal parameter ** counter: ** - in MacKey calculations the value is 0; ** - in LTK calculations the value is 1. ** MacKey = AES-CMAC (Counter=0||keyID||N1||N2||A1||A2||Length=256) ** T ** LTK = AES-CMAC (Counter=1||keyID||N1||N2||A1||A2||Length=256) ** T ** The parameters are ** input: ** W is 256 bits, ** N1 is 128 bits, ** N2 is 128 bits, ** A1 is 56 bit, ** A2 is 56 bit. ** internal: ** Counter is 8 bits, its value is 0 for MacKey, ** 1 for LTK; ** KeyId is 32 bits, its value is ** 0x62746c65 (MSB~LSB); ** Length is 16 bits, its value is 0x0100 ** (MSB~LSB). ** output: ** MacKey is 128 bits; ** LTK is 128 bits ** ** Returns FALSE if out of resources, TRUE in other cases. ** ** Note The LSB is the first octet, the MSB is the last octet of ** the AES-CMAC input/output stream. ** *******************************************************************************/ BOOLEAN smp_calculate_f5(UINT8 *w, UINT8 *n1, UINT8 *n2, UINT8 *a1, UINT8 *a2, UINT8 *mac_key, UINT8 *ltk) { BT_OCTET16 t; /* AES-CMAC output in smp_calculate_f5_key(...), key in */ /* smp_calculate_f5_mackey_or_long_term_key(...) */ #if SMP_DEBUG == TRUE UINT8 *p_prnt = NULL; #endif /* internal parameters: */ /* counter is 0 for MacKey, is 1 for LTK */ UINT8 counter_mac_key[1] = {0}; UINT8 counter_ltk[1] = {1}; /* keyID 62746c65 */ UINT8 key_id[4] = {0x65, 0x6c, 0x74, 0x62}; /* length 0100 */ UINT8 length[2] = {0x00, 0x01}; SMP_TRACE_DEBUG ("%s", __FUNCTION__); #if SMP_DEBUG == TRUE p_prnt = w; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"W", BT_OCTET32_LEN); p_prnt = n1; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"N1", BT_OCTET16_LEN); p_prnt = n2; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"N2", BT_OCTET16_LEN); p_prnt = a1; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"A1", 7); p_prnt = a2; smp_debug_print_nbyte_little_endian (p_prnt,(const UINT8 *) "A2", 7); #endif if (!smp_calculate_f5_key(w, t)) { SMP_TRACE_ERROR("%s failed to calc T",__FUNCTION__); return FALSE; } #if SMP_DEBUG == TRUE p_prnt = t; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"T", BT_OCTET16_LEN); #endif if (!smp_calculate_f5_mackey_or_long_term_key(t, counter_mac_key, key_id, n1, n2, a1, a2, length, mac_key)) { SMP_TRACE_ERROR("%s failed to calc MacKey", __FUNCTION__); return FALSE; } #if SMP_DEBUG == TRUE p_prnt = mac_key; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"MacKey", BT_OCTET16_LEN); #endif if (!smp_calculate_f5_mackey_or_long_term_key(t, counter_ltk, key_id, n1, n2, a1, a2, length, ltk)) { SMP_TRACE_ERROR("%s failed to calc LTK",__FUNCTION__); return FALSE; } #if SMP_DEBUG == TRUE p_prnt = ltk; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"LTK", BT_OCTET16_LEN); #endif return TRUE; } /******************************************************************************* ** ** Function smp_calculate_f5_mackey_or_long_term_key ** ** Description The function calculates the value of MacKey or LTK by the rules ** defined for f5 function. ** At the moment exactly the same formula is used to calculate ** LTK and MacKey. ** The difference is the value of input parameter Counter: ** - in MacKey calculations the value is 0; ** - in LTK calculations the value is 1. ** The formula: ** mac = AES-CMAC (Counter||keyID||N1||N2||A1||A2||Length) ** T ** where ** input: T is 256 bits; ** Counter is 8 bits, its value is 0 for MacKey, ** 1 for LTK; ** keyID is 32 bits, its value is 0x62746c65; ** N1 is 128 bits; ** N2 is 128 bits; ** A1 is 56 bits; ** A2 is 56 bits; ** Length is 16 bits, its value is 0x0100 ** output: LTK is 128 bit. ** ** Returns FALSE if out of resources, TRUE in other cases. ** ** Note The LSB is the first octet, the MSB is the last octet of ** the AES-CMAC input/output stream. ** *******************************************************************************/ BOOLEAN smp_calculate_f5_mackey_or_long_term_key(UINT8 *t, UINT8 *counter, UINT8 *key_id, UINT8 *n1, UINT8 *n2, UINT8 *a1, UINT8 *a2, UINT8 *length, UINT8 *mac) { UINT8 *p = NULL; UINT8 cmac[BT_OCTET16_LEN]; UINT8 key[BT_OCTET16_LEN]; UINT8 msg_len = 1 /* Counter size */ + 4 /* keyID size */ + BT_OCTET16_LEN /* N1 size */ + BT_OCTET16_LEN /* N2 size */ + 7 /* A1 size*/ + 7 /* A2 size*/ + 2 /* Length size */; UINT8 msg[1 + 4 + BT_OCTET16_LEN + BT_OCTET16_LEN + 7 + 7 + 2]; BOOLEAN ret = TRUE; #if SMP_DEBUG == TRUE UINT8 *p_prnt = NULL; #endif SMP_TRACE_DEBUG ("%s", __FUNCTION__); #if SMP_DEBUG == TRUE p_prnt = t; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"T", BT_OCTET16_LEN); p_prnt = counter; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"Counter", 1); p_prnt = key_id; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"KeyID", 4); p_prnt = n1; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"N1", BT_OCTET16_LEN); p_prnt = n2; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"N2", BT_OCTET16_LEN); p_prnt = a1; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"A1", 7); p_prnt = a2; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"A2", 7); p_prnt = length; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"Length", 2); #endif p = key; ARRAY_TO_STREAM(p, t, BT_OCTET16_LEN); #if SMP_DEBUG == TRUE p_prnt = key; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"K", BT_OCTET16_LEN); #endif p = msg; ARRAY_TO_STREAM(p, length, 2); ARRAY_TO_STREAM(p, a2, 7); ARRAY_TO_STREAM(p, a1, 7); ARRAY_TO_STREAM(p, n2, BT_OCTET16_LEN); ARRAY_TO_STREAM(p, n1, BT_OCTET16_LEN); ARRAY_TO_STREAM(p, key_id, 4); ARRAY_TO_STREAM(p, counter, 1); #if SMP_DEBUG == TRUE p_prnt = msg; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"M", msg_len); #endif if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac)) { SMP_TRACE_ERROR("%s failed", __FUNCTION__); ret = FALSE; } #if SMP_DEBUG == TRUE p_prnt = cmac; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN); #endif p = mac; ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN); return ret; } /******************************************************************************* ** ** Function smp_calculate_f5_key ** ** Description The function calculates key T used in calculation of ** MacKey and LTK (f5 output is defined as MacKey || LTK). ** T = AES-CMAC (W) ** salt ** where ** Internal: salt is 128 bit. ** input: W is 256 bit. ** Output: T is 128 bit. ** ** Returns FALSE if out of resources, TRUE in other cases. ** ** Note The LSB is the first octet, the MSB is the last octet of ** the AES-CMAC input/output stream. ** *******************************************************************************/ BOOLEAN smp_calculate_f5_key(UINT8 *w, UINT8 *t) { UINT8 *p = NULL; /* Please see 2.2.7 LE Secure Connections Key Generation Function f5 */ /* salt: 6C88 8391 AAF5 A538 6037 0BDB 5A60 83BE */ BT_OCTET16 salt = { 0xBE, 0x83, 0x60, 0x5A, 0xDB, 0x0B, 0x37, 0x60, 0x38, 0xA5, 0xF5, 0xAA, 0x91, 0x83, 0x88, 0x6C }; #if SMP_DEBUG == TRUE UINT8 *p_prnt = NULL; #endif SMP_TRACE_DEBUG ("%s", __FUNCTION__); #if SMP_DEBUG == TRUE p_prnt = salt; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"salt", BT_OCTET16_LEN); p_prnt = w; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"W", BT_OCTET32_LEN); #endif BT_OCTET16 key; BT_OCTET32 msg; p = key; ARRAY_TO_STREAM(p, salt, BT_OCTET16_LEN); p = msg; ARRAY_TO_STREAM(p, w, BT_OCTET32_LEN); #if SMP_DEBUG == TRUE p_prnt = key; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"K", BT_OCTET16_LEN); p_prnt = msg; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"M", BT_OCTET32_LEN); #endif BT_OCTET16 cmac; BOOLEAN ret = TRUE; if (!aes_cipher_msg_auth_code(key, msg, BT_OCTET32_LEN, BT_OCTET16_LEN, cmac)) { SMP_TRACE_ERROR("%s failed", __FUNCTION__); ret = FALSE; } #if SMP_DEBUG == TRUE p_prnt = cmac; smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN); #endif p = t; ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN); return ret; } /******************************************************************************* ** ** Function smp_calculate_local_dhkey_check ** ** Description The function calculates and saves local device DHKey check ** value in CB. ** Before doing this it calls smp_calculate_f5_mackey_and_long_term_key(...). ** to calculate MacKey and LTK. ** MacKey is used in dhkey calculation. ** ** Returns void ** *******************************************************************************/ void smp_calculate_local_dhkey_check(tSMP_CB *p_cb, tSMP_INT_DATA *p_data) { UINT8 iocap[3], a[7], b[7]; SMP_TRACE_DEBUG ("%s", __FUNCTION__); smp_calculate_f5_mackey_and_long_term_key(p_cb); smp_collect_local_io_capabilities(iocap, p_cb); smp_collect_local_ble_address(a, p_cb); smp_collect_peer_ble_address(b, p_cb); smp_calculate_f6(p_cb->mac_key, p_cb->rand, p_cb->rrand, p_cb->peer_random, iocap, a, b, p_cb->dhkey_check); SMP_TRACE_EVENT ("local DHKey check calculation is completed"); } /******************************************************************************* ** ** Function smp_calculate_peer_dhkey_check ** ** Description The function calculates peer device DHKey check value. ** ** Returns void ** *******************************************************************************/ void smp_calculate_peer_dhkey_check(tSMP_CB *p_cb, tSMP_INT_DATA *p_data) { UINT8 iocap[3], a[7], b[7]; BT_OCTET16 param_buf; BOOLEAN ret; tSMP_KEY key; tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN; SMP_TRACE_DEBUG ("%s", __FUNCTION__); smp_collect_peer_io_capabilities(iocap, p_cb); smp_collect_local_ble_address(a, p_cb); smp_collect_peer_ble_address(b, p_cb); ret = smp_calculate_f6(p_cb->mac_key, p_cb->rrand, p_cb->rand, p_cb->local_random, iocap, b, a, param_buf); if (ret) { SMP_TRACE_EVENT ("peer DHKey check calculation is completed"); #if (SMP_DEBUG == TRUE) smp_debug_print_nbyte_little_endian (param_buf, (const UINT8 *)"peer DHKey check", BT_OCTET16_LEN); #endif key.key_type = SMP_KEY_TYPE_PEER_DHK_CHCK; key.p_data = param_buf; smp_sm_event(p_cb, SMP_SC_KEY_READY_EVT, &key); } else { SMP_TRACE_EVENT ("peer DHKey check calculation failed"); smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status); } } /******************************************************************************* ** ** Function smp_calculate_f6 ** ** Description The function calculates ** C = f6(W, N1, N2, R, IOcap, A1, A2) = AES-CMAC (N1||N2||R||IOcap||A1||A2) ** W ** where ** input: W is 128 bit, ** N1 is 128 bit, ** N2 is 128 bit, ** R is 128 bit, ** IOcap is 24 bit, ** A1 is 56 bit, ** A2 is 56 bit, ** output: C is 128 bit. ** ** Returns FALSE if out of resources, TRUE in other cases. ** ** Note The LSB is the first octet, the MSB is the last octet of ** the AES-CMAC input/output stream. ** *******************************************************************************/ BOOLEAN smp_calculate_f6(UINT8 *w, UINT8 *n1, UINT8 *n2, UINT8 *r, UINT8 *iocap, UINT8 *a1, UINT8 *a2, UINT8 *c) { UINT8 *p = NULL; UINT8 msg_len = BT_OCTET16_LEN /* N1 size */ + BT_OCTET16_LEN /* N2 size */ + BT_OCTET16_LEN /* R size */ + 3 /* IOcap size */ + 7 /* A1 size*/ + 7 /* A2 size*/; UINT8 msg[BT_OCTET16_LEN + BT_OCTET16_LEN + BT_OCTET16_LEN + 3 + 7 + 7]; #if SMP_DEBUG == TRUE UINT8 *p_print = NULL; #endif SMP_TRACE_DEBUG ("%s", __FUNCTION__); #if SMP_DEBUG == TRUE p_print = w; smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"W", BT_OCTET16_LEN); p_print = n1; smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"N1", BT_OCTET16_LEN); p_print = n2; smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"N2", BT_OCTET16_LEN); p_print = r; smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"R", BT_OCTET16_LEN); p_print = iocap; smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"IOcap", 3); p_print = a1; smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"A1", 7); p_print = a2; smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"A2", 7); #endif UINT8 cmac[BT_OCTET16_LEN]; UINT8 key[BT_OCTET16_LEN]; p = key; ARRAY_TO_STREAM(p, w, BT_OCTET16_LEN); #if SMP_DEBUG == TRUE p_print = key; smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"K", BT_OCTET16_LEN); #endif p = msg; ARRAY_TO_STREAM(p, a2, 7); ARRAY_TO_STREAM(p, a1, 7); ARRAY_TO_STREAM(p, iocap, 3); ARRAY_TO_STREAM(p, r, BT_OCTET16_LEN); ARRAY_TO_STREAM(p, n2, BT_OCTET16_LEN); ARRAY_TO_STREAM(p, n1, BT_OCTET16_LEN); #if SMP_DEBUG == TRUE p_print = msg; smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"M", msg_len); #endif BOOLEAN ret = TRUE; if(!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac)) { SMP_TRACE_ERROR("%s failed", __FUNCTION__); ret = FALSE; } #if SMP_DEBUG == TRUE p_print = cmac; smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN); #endif p = c; ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN); return ret; } /******************************************************************************* ** ** Function smp_calculate_link_key_from_long_term_key ** ** Description The function calculates and saves BR/EDR link key derived from ** LE SC LTK. ** ** Returns FALSE if out of resources, TRUE in other cases. ** *******************************************************************************/ BOOLEAN smp_calculate_link_key_from_long_term_key(tSMP_CB *p_cb) { tBTM_SEC_DEV_REC *p_dev_rec; BD_ADDR bda_for_lk; tBLE_ADDR_TYPE conn_addr_type; SMP_TRACE_DEBUG ("%s", __func__); if (p_cb->id_addr_rcvd && p_cb->id_addr_type == BLE_ADDR_PUBLIC) { SMP_TRACE_DEBUG ("Use rcvd identity address as BD_ADDR of LK rcvd identity address"); memcpy(bda_for_lk, p_cb->id_addr, BD_ADDR_LEN); } else if ((BTM_ReadRemoteConnectionAddr(p_cb->pairing_bda, bda_for_lk, &conn_addr_type)) && conn_addr_type == BLE_ADDR_PUBLIC) { SMP_TRACE_DEBUG ("Use rcvd connection address as BD_ADDR of LK"); } else { SMP_TRACE_WARNING ("Don't have peer public address to associate with LK"); return FALSE; } if ((p_dev_rec = btm_find_dev (p_cb->pairing_bda)) == NULL) { SMP_TRACE_ERROR("%s failed to find Security Record", __func__); return FALSE; } BT_OCTET16 intermediate_link_key; BOOLEAN ret = TRUE; ret = smp_calculate_h6(p_cb->ltk, (UINT8 *)"1pmt" /* reversed "tmp1" */,intermediate_link_key); if (!ret) { SMP_TRACE_ERROR("%s failed to derive intermediate_link_key", __func__); return ret; } BT_OCTET16 link_key; ret = smp_calculate_h6(intermediate_link_key, (UINT8 *) "rbel" /* reversed "lebr" */, link_key); if (!ret) { SMP_TRACE_ERROR("%s failed", __func__); } else { UINT8 link_key_type; if (btm_cb.security_mode == BTM_SEC_MODE_SC) { /* Secure Connections Only Mode */ link_key_type = BTM_LKEY_TYPE_AUTH_COMB_P_256; } else if (controller_get_interface()->supports_secure_connections()) { /* both transports are SC capable */ if (p_cb->sec_level == SMP_SEC_AUTHENTICATED) link_key_type = BTM_LKEY_TYPE_AUTH_COMB_P_256; else link_key_type = BTM_LKEY_TYPE_UNAUTH_COMB_P_256; } else if (btm_cb.security_mode == BTM_SEC_MODE_SP) { /* BR/EDR transport is SSP capable */ if (p_cb->sec_level == SMP_SEC_AUTHENTICATED) link_key_type = BTM_LKEY_TYPE_AUTH_COMB; else link_key_type = BTM_LKEY_TYPE_UNAUTH_COMB; } else { SMP_TRACE_ERROR ("%s failed to update link_key. Sec Mode = %d, sm4 = 0x%02x", __func__, btm_cb.security_mode, p_dev_rec->sm4); return FALSE; } link_key_type += BTM_LTK_DERIVED_LKEY_OFFSET; UINT8 *p; BT_OCTET16 notif_link_key; p = notif_link_key; ARRAY16_TO_STREAM(p, link_key); btm_sec_link_key_notification (bda_for_lk, notif_link_key, link_key_type); SMP_TRACE_EVENT ("%s is completed", __func__); } return ret; } /******************************************************************************* ** ** Function smp_calculate_long_term_key_from_link_key ** ** Description The function calculates and saves SC LTK derived from BR/EDR ** link key. ** ** Returns FALSE if out of resources, TRUE in other cases. ** *******************************************************************************/ BOOLEAN smp_calculate_long_term_key_from_link_key(tSMP_CB *p_cb) { BOOLEAN ret = TRUE; tBTM_SEC_DEV_REC *p_dev_rec; UINT8 rev_link_key[16]; SMP_TRACE_DEBUG ("%s", __FUNCTION__); if ((p_dev_rec = btm_find_dev (p_cb->pairing_bda)) == NULL) { SMP_TRACE_ERROR("%s failed to find Security Record",__FUNCTION__); return FALSE; } UINT8 br_link_key_type; if ((br_link_key_type = BTM_SecGetDeviceLinkKeyType (p_cb->pairing_bda)) == BTM_LKEY_TYPE_IGNORE) { SMP_TRACE_ERROR("%s failed to retrieve BR link type",__FUNCTION__); return FALSE; } if ((br_link_key_type != BTM_LKEY_TYPE_AUTH_COMB_P_256) && (br_link_key_type != BTM_LKEY_TYPE_UNAUTH_COMB_P_256)) { SMP_TRACE_ERROR("%s LE SC LTK can't be derived from LK %d", __FUNCTION__, br_link_key_type); return FALSE; } UINT8 *p1; UINT8 *p2; p1 = rev_link_key; p2 = p_dev_rec->link_key; REVERSE_ARRAY_TO_STREAM(p1, p2, 16); BT_OCTET16 intermediate_long_term_key; /* "tmp2" obtained from the spec */ ret = smp_calculate_h6(rev_link_key, (UINT8 *) "2pmt" /* reversed "tmp2" */, intermediate_long_term_key); if (!ret) { SMP_TRACE_ERROR("%s failed to derive intermediate_long_term_key",__FUNCTION__); return ret; } /* "brle" obtained from the spec */ ret = smp_calculate_h6(intermediate_long_term_key, (UINT8 *) "elrb" /* reversed "brle" */, p_cb->ltk); if (!ret) { SMP_TRACE_ERROR("%s failed",__FUNCTION__); } else { p_cb->sec_level = (br_link_key_type == BTM_LKEY_TYPE_AUTH_COMB_P_256) ? SMP_SEC_AUTHENTICATED : SMP_SEC_UNAUTHENTICATE; SMP_TRACE_EVENT ("%s is completed",__FUNCTION__); } return ret; } /******************************************************************************* ** ** Function smp_calculate_h6 ** ** Description The function calculates ** C = h6(W, KeyID) = AES-CMAC (KeyID) ** W ** where ** input: W is 128 bit, ** KeyId is 32 bit, ** output: C is 128 bit. ** ** Returns FALSE if out of resources, TRUE in other cases. ** ** Note The LSB is the first octet, the MSB is the last octet of ** the AES-CMAC input/output stream. ** *******************************************************************************/ BOOLEAN smp_calculate_h6(UINT8 *w, UINT8 *keyid, UINT8 *c) { #if SMP_DEBUG == TRUE UINT8 *p_print = NULL; #endif SMP_TRACE_DEBUG ("%s",__FUNCTION__); #if SMP_DEBUG == TRUE p_print = w; smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"W", BT_OCTET16_LEN); p_print = keyid; smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"keyID", 4); #endif UINT8 *p = NULL; UINT8 key[BT_OCTET16_LEN]; p = key; ARRAY_TO_STREAM(p, w, BT_OCTET16_LEN); #if SMP_DEBUG == TRUE p_print = key; smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"K", BT_OCTET16_LEN); #endif UINT8 msg_len = 4 /* KeyID size */; UINT8 msg[4]; p = msg; ARRAY_TO_STREAM(p, keyid, 4); #if SMP_DEBUG == TRUE p_print = msg; smp_debug_print_nbyte_little_endian (p_print,(const UINT8 *) "M", msg_len); #endif BOOLEAN ret = TRUE; UINT8 cmac[BT_OCTET16_LEN]; if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac)) { SMP_TRACE_ERROR("%s failed",__FUNCTION__); ret = FALSE; } #if SMP_DEBUG == TRUE p_print = cmac; smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN); #endif p = c; ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN); return ret; } /******************************************************************************* ** ** Function smp_start_nonce_generation ** ** Description This function starts nonce generation. ** ** Returns void ** *******************************************************************************/ void smp_start_nonce_generation(tSMP_CB *p_cb) { SMP_TRACE_DEBUG("%s", __FUNCTION__); p_cb->rand_enc_proc_state = SMP_GEN_NONCE_0_7; if (!btsnd_hcic_ble_rand((void *)smp_rand_back)) smp_rand_back(NULL); } /******************************************************************************* ** ** Function smp_finish_nonce_generation ** ** Description This function finishes nonce generation. ** ** Returns void ** *******************************************************************************/ void smp_finish_nonce_generation(tSMP_CB *p_cb) { SMP_TRACE_DEBUG("%s", __FUNCTION__); p_cb->rand_enc_proc_state = SMP_GEN_NONCE_8_15; if (!btsnd_hcic_ble_rand((void *)smp_rand_back)) smp_rand_back(NULL); } /******************************************************************************* ** ** Function smp_process_new_nonce ** ** Description This function notifies SM that it has new nonce. ** ** Returns void ** *******************************************************************************/ void smp_process_new_nonce(tSMP_CB *p_cb) { SMP_TRACE_DEBUG ("%s round %d", __FUNCTION__, p_cb->round); smp_sm_event(p_cb, SMP_HAVE_LOC_NONCE_EVT, NULL); } /******************************************************************************* ** ** Function smp_rand_back ** ** Description This function is to process the rand command finished, ** process the random/encrypted number for further action. ** ** Returns void ** *******************************************************************************/ static void smp_rand_back(tBTM_RAND_ENC *p) { tSMP_CB *p_cb = &smp_cb; UINT8 *pp = p->param_buf; UINT8 failure = SMP_PAIR_FAIL_UNKNOWN; UINT8 state = p_cb->rand_enc_proc_state & ~0x80; SMP_TRACE_DEBUG ("%s state=0x%x", __FUNCTION__, state); if (p && p->status == HCI_SUCCESS) { switch (state) { case SMP_GEN_SRAND_MRAND: memcpy((void *)p_cb->rand, p->param_buf, p->param_len); smp_generate_rand_cont(p_cb, NULL); break; case SMP_GEN_SRAND_MRAND_CONT: memcpy((void *)&p_cb->rand[8], p->param_buf, p->param_len); smp_generate_confirm(p_cb, NULL); break; case SMP_GEN_DIV_LTK: STREAM_TO_UINT16(p_cb->div, pp); smp_generate_ltk_cont(p_cb, NULL); break; case SMP_GEN_DIV_CSRK: STREAM_TO_UINT16(p_cb->div, pp); smp_compute_csrk(p_cb, NULL); break; case SMP_GEN_TK: smp_proc_passkey(p_cb, p); break; case SMP_GEN_RAND_V: memcpy(p_cb->enc_rand, p->param_buf, BT_OCTET8_LEN); smp_generate_y(p_cb, NULL); break; case SMP_GENERATE_PRIVATE_KEY_0_7: case SMP_GENERATE_PRIVATE_KEY_8_15: case SMP_GENERATE_PRIVATE_KEY_16_23: case SMP_GENERATE_PRIVATE_KEY_24_31: smp_continue_private_key_creation(p_cb, p); break; case SMP_GEN_NONCE_0_7: memcpy((void *)p_cb->rand, p->param_buf, p->param_len); smp_finish_nonce_generation(p_cb); break; case SMP_GEN_NONCE_8_15: memcpy((void *)&p_cb->rand[8], p->param_buf, p->param_len); smp_process_new_nonce(p_cb); break; } return; } SMP_TRACE_ERROR("%s key generation failed: (%d)", __FUNCTION__, p_cb->rand_enc_proc_state); smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &failure); } #endif