/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_GC_ACCOUNTING_SPACE_BITMAP_H_
#define ART_RUNTIME_GC_ACCOUNTING_SPACE_BITMAP_H_
#include <limits.h>
#include <stdint.h>
#include <memory>
#include <set>
#include <vector>
#include "base/mutex.h"
#include "globals.h"
#include "object_callbacks.h"
namespace art {
namespace mirror {
class Object;
} // namespace mirror
class MemMap;
namespace gc {
namespace accounting {
template<size_t kAlignment>
class SpaceBitmap {
public:
typedef void ScanCallback(mirror::Object* obj, void* finger, void* arg);
typedef void SweepCallback(size_t ptr_count, mirror::Object** ptrs, void* arg);
// Initialize a space bitmap so that it points to a bitmap large enough to cover a heap at
// heap_begin of heap_capacity bytes, where objects are guaranteed to be kAlignment-aligned.
static SpaceBitmap* Create(const std::string& name, uint8_t* heap_begin, size_t heap_capacity);
// Initialize a space bitmap using the provided mem_map as the live bits. Takes ownership of the
// mem map. The address range covered starts at heap_begin and is of size equal to heap_capacity.
// Objects are kAlignement-aligned.
static SpaceBitmap* CreateFromMemMap(const std::string& name, MemMap* mem_map,
uint8_t* heap_begin, size_t heap_capacity);
~SpaceBitmap();
// <offset> is the difference from .base to a pointer address.
// <index> is the index of .bits that contains the bit representing
// <offset>.
static constexpr size_t OffsetToIndex(size_t offset) {
return offset / kAlignment / kBitsPerIntPtrT;
}
template<typename T>
static constexpr T IndexToOffset(T index) {
return static_cast<T>(index * kAlignment * kBitsPerIntPtrT);
}
// Bits are packed in the obvious way.
static constexpr uintptr_t OffsetToMask(uintptr_t offset) {
return (static_cast<size_t>(1)) << ((offset / kAlignment) % kBitsPerIntPtrT);
}
bool Set(const mirror::Object* obj) ALWAYS_INLINE {
return Modify<true>(obj);
}
bool Clear(const mirror::Object* obj) ALWAYS_INLINE {
return Modify<false>(obj);
}
// Returns true if the object was previously marked.
bool AtomicTestAndSet(const mirror::Object* obj);
// Fill the bitmap with zeroes. Returns the bitmap's memory to the system as a side-effect.
void Clear();
bool Test(const mirror::Object* obj) const;
// Return true iff <obj> is within the range of pointers that this bitmap could potentially cover,
// even if a bit has not been set for it.
bool HasAddress(const void* obj) const {
// If obj < heap_begin_ then offset underflows to some very large value past the end of the
// bitmap.
const uintptr_t offset = reinterpret_cast<uintptr_t>(obj) - heap_begin_;
const size_t index = OffsetToIndex(offset);
return index < bitmap_size_ / sizeof(intptr_t);
}
void VisitRange(uintptr_t base, uintptr_t max, ObjectCallback* callback, void* arg) const;
class ClearVisitor {
public:
explicit ClearVisitor(SpaceBitmap* const bitmap)
: bitmap_(bitmap) {
}
void operator()(mirror::Object* obj) const {
bitmap_->Clear(obj);
}
private:
SpaceBitmap* const bitmap_;
};
template <typename Visitor>
void VisitRange(uintptr_t visit_begin, uintptr_t visit_end, const Visitor& visitor) const {
for (; visit_begin < visit_end; visit_begin += kAlignment) {
visitor(reinterpret_cast<mirror::Object*>(visit_begin));
}
}
// Visit the live objects in the range [visit_begin, visit_end).
// TODO: Use lock annotations when clang is fixed.
// EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
template <typename Visitor>
void VisitMarkedRange(uintptr_t visit_begin, uintptr_t visit_end, const Visitor& visitor) const
NO_THREAD_SAFETY_ANALYSIS;
// Visits set bits in address order. The callback is not permitted to change the bitmap bits or
// max during the traversal.
void Walk(ObjectCallback* callback, void* arg)
SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
// Visits set bits with an in order traversal. The callback is not permitted to change the bitmap
// bits or max during the traversal.
void InOrderWalk(ObjectCallback* callback, void* arg)
SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
// Walk through the bitmaps in increasing address order, and find the object pointers that
// correspond to garbage objects. Call <callback> zero or more times with lists of these object
// pointers. The callback is not permitted to increase the max of either bitmap.
static void SweepWalk(const SpaceBitmap& live, const SpaceBitmap& mark, uintptr_t base,
uintptr_t max, SweepCallback* thunk, void* arg);
void CopyFrom(SpaceBitmap* source_bitmap);
// Starting address of our internal storage.
uintptr_t* Begin() {
return bitmap_begin_;
}
// Size of our internal storage
size_t Size() const {
return bitmap_size_;
}
// Size in bytes of the memory that the bitmaps spans.
uint64_t HeapSize() const {
return IndexToOffset<uint64_t>(Size() / sizeof(intptr_t));
}
void SetHeapSize(size_t bytes) {
// TODO: Un-map the end of the mem map.
bitmap_size_ = OffsetToIndex(bytes) * sizeof(intptr_t);
CHECK_EQ(HeapSize(), bytes);
}
uintptr_t HeapBegin() const {
return heap_begin_;
}
// The maximum address which the bitmap can span. (HeapBegin() <= object < HeapLimit()).
uint64_t HeapLimit() const {
return static_cast<uint64_t>(HeapBegin()) + HeapSize();
}
// Set the max address which can covered by the bitmap.
void SetHeapLimit(uintptr_t new_end);
std::string GetName() const {
return name_;
}
void SetName(const std::string& name) {
name_ = name;
}
std::string Dump() const;
// Helper function for computing bitmap size based on a 64 bit capacity.
static size_t ComputeBitmapSize(uint64_t capacity);
static size_t ComputeHeapSize(uint64_t bitmap_bytes);
private:
// TODO: heap_end_ is initialized so that the heap bitmap is empty, this doesn't require the -1,
// however, we document that this is expected on heap_end_
SpaceBitmap(const std::string& name, MemMap* mem_map, uintptr_t* bitmap_begin, size_t bitmap_size,
const void* heap_begin);
template<bool kSetBit>
bool Modify(const mirror::Object* obj);
// For an unvisited object, visit it then all its children found via fields.
static void WalkFieldsInOrder(SpaceBitmap* visited, ObjectCallback* callback, mirror::Object* obj,
void* arg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Walk instance fields of the given Class. Separate function to allow recursion on the super
// class.
static void WalkInstanceFields(SpaceBitmap<kAlignment>* visited, ObjectCallback* callback,
mirror::Object* obj, mirror::Class* klass, void* arg)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Backing storage for bitmap.
std::unique_ptr<MemMap> mem_map_;
// This bitmap itself, word sized for efficiency in scanning.
uintptr_t* const bitmap_begin_;
// Size of this bitmap.
size_t bitmap_size_;
// The base address of the heap, which corresponds to the word containing the first bit in the
// bitmap.
const uintptr_t heap_begin_;
// Name of this bitmap.
std::string name_;
};
typedef SpaceBitmap<kObjectAlignment> ContinuousSpaceBitmap;
typedef SpaceBitmap<kLargeObjectAlignment> LargeObjectBitmap;
template<size_t kAlignment>
std::ostream& operator << (std::ostream& stream, const SpaceBitmap<kAlignment>& bitmap);
} // namespace accounting
} // namespace gc
} // namespace art
#endif // ART_RUNTIME_GC_ACCOUNTING_SPACE_BITMAP_H_