/*
* Copyright 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.example.android.camera2raw;
import android.app.Activity;
import android.app.AlertDialog;
import android.app.Dialog;
import android.app.DialogFragment;
import android.app.Fragment;
import android.content.Context;
import android.content.DialogInterface;
import android.graphics.ImageFormat;
import android.graphics.Matrix;
import android.graphics.RectF;
import android.graphics.SurfaceTexture;
import android.hardware.SensorManager;
import android.hardware.camera2.CameraAccessException;
import android.hardware.camera2.CameraCaptureSession;
import android.hardware.camera2.CameraCharacteristics;
import android.hardware.camera2.CameraDevice;
import android.hardware.camera2.CameraManager;
import android.hardware.camera2.CameraMetadata;
import android.hardware.camera2.CaptureFailure;
import android.hardware.camera2.CaptureRequest;
import android.hardware.camera2.CaptureResult;
import android.hardware.camera2.DngCreator;
import android.hardware.camera2.TotalCaptureResult;
import android.hardware.camera2.params.StreamConfigurationMap;
import android.media.Image;
import android.media.ImageReader;
import android.media.MediaScannerConnection;
import android.net.Uri;
import android.os.AsyncTask;
import android.os.Bundle;
import android.os.Environment;
import android.os.Handler;
import android.os.HandlerThread;
import android.os.Looper;
import android.os.Message;
import android.os.SystemClock;
import android.util.Log;
import android.util.Size;
import android.util.SparseIntArray;
import android.view.LayoutInflater;
import android.view.OrientationEventListener;
import android.view.Surface;
import android.view.TextureView;
import android.view.View;
import android.view.ViewGroup;
import android.widget.Toast;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.nio.ByteBuffer;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.Date;
import java.util.List;
import java.util.Locale;
import java.util.Map;
import java.util.TreeMap;
import java.util.concurrent.Semaphore;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
/**
* A fragment that demonstrates use of the Camera2 API to capture RAW and JPEG photos.
*
* In this example, the lifecycle of a single request to take a photo is:
* <ul>
* <li>
* The user presses the "Picture" button, resulting in a call to {@link #takePicture()}.
* </li>
* <li>
* {@link #takePicture()} initiates a pre-capture sequence that triggers the camera's built-in
* auto-focus, auto-exposure, and auto-white-balance algorithms (aka. "3A") to run.
* </li>
* <li>
* When the pre-capture sequence has finished, a {@link CaptureRequest} with a monotonically
* increasing request ID set by calls to {@link CaptureRequest.Builder#setTag(Object)} is sent to
* the camera to begin the JPEG and RAW capture sequence, and an
* {@link ImageSaver.ImageSaverBuilder} is stored for this request in the
* {@link #mJpegResultQueue} and {@link #mRawResultQueue}.
* </li>
* <li>
* As {@link CaptureResult}s and {@link Image}s become available via callbacks in a background
* thread, a {@link ImageSaver.ImageSaverBuilder} is looked up by the request ID in
* {@link #mJpegResultQueue} and {@link #mRawResultQueue} and updated.
* </li>
* <li>
* When all of the necessary results to save an image are available, the an {@link ImageSaver} is
* constructed by the {@link ImageSaver.ImageSaverBuilder} and passed to a separate background
* thread to save to a file.
* </li>
* </ul>
*/
public class Camera2RawFragment extends Fragment implements View.OnClickListener {
/**
* Conversion from screen rotation to JPEG orientation.
*/
private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
ORIENTATIONS.append(Surface.ROTATION_0, 0);
ORIENTATIONS.append(Surface.ROTATION_90, 90);
ORIENTATIONS.append(Surface.ROTATION_180, 180);
ORIENTATIONS.append(Surface.ROTATION_270, 270);
}
/**
* Timeout for the pre-capture sequence.
*/
private static final long PRECAPTURE_TIMEOUT_MS = 1000;
/**
* Tolerance when comparing aspect ratios.
*/
private static final double ASPECT_RATIO_TOLERANCE = 0.005;
/**
* Tag for the {@link Log}.
*/
private static final String TAG = "Camera2RawFragment";
/**
* Camera state: Device is closed.
*/
private static final int STATE_CLOSED = 0;
/**
* Camera state: Device is opened, but is not capturing.
*/
private static final int STATE_OPENED = 1;
/**
* Camera state: Showing camera preview.
*/
private static final int STATE_PREVIEW = 2;
/**
* Camera state: Waiting for 3A convergence before capturing a photo.
*/
private static final int STATE_WAITING_FOR_3A_CONVERGENCE = 3;
/**
* An {@link OrientationEventListener} used to determine when device rotation has occurred.
* This is mainly necessary for when the device is rotated by 180 degrees, in which case
* onCreate or onConfigurationChanged is not called as the view dimensions remain the same,
* but the orientation of the has changed, and thus the preview rotation must be updated.
*/
private OrientationEventListener mOrientationListener;
/**
* {@link TextureView.SurfaceTextureListener} handles several lifecycle events of a
* {@link TextureView}.
*/
private final TextureView.SurfaceTextureListener mSurfaceTextureListener
= new TextureView.SurfaceTextureListener() {
@Override
public void onSurfaceTextureAvailable(SurfaceTexture texture, int width, int height) {
configureTransform(width, height);
}
@Override
public void onSurfaceTextureSizeChanged(SurfaceTexture texture, int width, int height) {
configureTransform(width, height);
}
@Override
public boolean onSurfaceTextureDestroyed(SurfaceTexture texture) {
synchronized (mCameraStateLock) {
mPreviewSize = null;
}
return true;
}
@Override
public void onSurfaceTextureUpdated(SurfaceTexture texture) {
}
};
/**
* An {@link AutoFitTextureView} for camera preview.
*/
private AutoFitTextureView mTextureView;
/**
* An additional thread for running tasks that shouldn't block the UI. This is used for all
* callbacks from the {@link CameraDevice} and {@link CameraCaptureSession}s.
*/
private HandlerThread mBackgroundThread;
/**
* A counter for tracking corresponding {@link CaptureRequest}s and {@link CaptureResult}s
* across the {@link CameraCaptureSession} capture callbacks.
*/
private final AtomicInteger mRequestCounter = new AtomicInteger();
/**
* A {@link Semaphore} to prevent the app from exiting before closing the camera.
*/
private final Semaphore mCameraOpenCloseLock = new Semaphore(1);
/**
* A lock protecting camera state.
*/
private final Object mCameraStateLock = new Object();
// *********************************************************************************************
// State protected by mCameraStateLock.
//
// The following state is used across both the UI and background threads. Methods with "Locked"
// in the name expect mCameraStateLock to be held while calling.
/**
* ID of the current {@link CameraDevice}.
*/
private String mCameraId;
/**
* A {@link CameraCaptureSession } for camera preview.
*/
private CameraCaptureSession mCaptureSession;
/**
* A reference to the open {@link CameraDevice}.
*/
private CameraDevice mCameraDevice;
/**
* The {@link Size} of camera preview.
*/
private Size mPreviewSize;
/**
* The {@link CameraCharacteristics} for the currently configured camera device.
*/
private CameraCharacteristics mCharacteristics;
/**
* A {@link Handler} for running tasks in the background.
*/
private Handler mBackgroundHandler;
/**
* A reference counted holder wrapping the {@link ImageReader} that handles JPEG image captures.
* This is used to allow us to clean up the {@link ImageReader} when all background tasks using
* its {@link Image}s have completed.
*/
private RefCountedAutoCloseable<ImageReader> mJpegImageReader;
/**
* A reference counted holder wrapping the {@link ImageReader} that handles RAW image captures.
* This is used to allow us to clean up the {@link ImageReader} when all background tasks using
* its {@link Image}s have completed.
*/
private RefCountedAutoCloseable<ImageReader> mRawImageReader;
/**
* Whether or not the currently configured camera device is fixed-focus.
*/
private boolean mNoAFRun = false;
/**
* Number of pending user requests to capture a photo.
*/
private int mPendingUserCaptures = 0;
/**
* Request ID to {@link ImageSaver.ImageSaverBuilder} mapping for in-progress JPEG captures.
*/
private final TreeMap<Integer, ImageSaver.ImageSaverBuilder> mJpegResultQueue = new TreeMap<>();
/**
* Request ID to {@link ImageSaver.ImageSaverBuilder} mapping for in-progress RAW captures.
*/
private final TreeMap<Integer, ImageSaver.ImageSaverBuilder> mRawResultQueue = new TreeMap<>();
/**
* {@link CaptureRequest.Builder} for the camera preview
*/
private CaptureRequest.Builder mPreviewRequestBuilder;
/**
* The state of the camera device.
*
* @see #mPreCaptureCallback
*/
private int mState = STATE_CLOSED;
/**
* Timer to use with pre-capture sequence to ensure a timely capture if 3A convergence is taking
* too long.
*/
private long mCaptureTimer;
//**********************************************************************************************
/**
* {@link CameraDevice.StateCallback} is called when the currently active {@link CameraDevice}
* changes its state.
*/
private final CameraDevice.StateCallback mStateCallback = new CameraDevice.StateCallback() {
@Override
public void onOpened(CameraDevice cameraDevice) {
// This method is called when the camera is opened. We start camera preview here if
// the TextureView displaying this has been set up.
synchronized (mCameraStateLock) {
mState = STATE_OPENED;
mCameraOpenCloseLock.release();
mCameraDevice = cameraDevice;
// Start the preview session if the TextureView has been set up already.
if (mPreviewSize != null && mTextureView.isAvailable()) {
createCameraPreviewSessionLocked();
}
}
}
@Override
public void onDisconnected(CameraDevice cameraDevice) {
synchronized (mCameraStateLock) {
mState = STATE_CLOSED;
mCameraOpenCloseLock.release();
cameraDevice.close();
mCameraDevice = null;
}
}
@Override
public void onError(CameraDevice cameraDevice, int error) {
Log.e(TAG, "Received camera device error: " + error);
synchronized(mCameraStateLock) {
mState = STATE_CLOSED;
mCameraOpenCloseLock.release();
cameraDevice.close();
mCameraDevice = null;
}
Activity activity = getActivity();
if (null != activity) {
activity.finish();
}
}
};
/**
* This a callback object for the {@link ImageReader}. "onImageAvailable" will be called when a
* JPEG image is ready to be saved.
*/
private final ImageReader.OnImageAvailableListener mOnJpegImageAvailableListener
= new ImageReader.OnImageAvailableListener() {
@Override
public void onImageAvailable(ImageReader reader) {
dequeueAndSaveImage(mJpegResultQueue, mJpegImageReader);
}
};
/**
* This a callback object for the {@link ImageReader}. "onImageAvailable" will be called when a
* RAW image is ready to be saved.
*/
private final ImageReader.OnImageAvailableListener mOnRawImageAvailableListener
= new ImageReader.OnImageAvailableListener() {
@Override
public void onImageAvailable(ImageReader reader) {
dequeueAndSaveImage(mRawResultQueue, mRawImageReader);
}
};
/**
* A {@link CameraCaptureSession.CaptureCallback} that handles events for the preview and
* pre-capture sequence.
*/
private CameraCaptureSession.CaptureCallback mPreCaptureCallback
= new CameraCaptureSession.CaptureCallback() {
private void process(CaptureResult result) {
synchronized(mCameraStateLock) {
switch (mState) {
case STATE_PREVIEW: {
// We have nothing to do when the camera preview is running normally.
break;
}
case STATE_WAITING_FOR_3A_CONVERGENCE: {
boolean readyToCapture = true;
if (!mNoAFRun) {
int afState = result.get(CaptureResult.CONTROL_AF_STATE);
// If auto-focus has reached locked state, we are ready to capture
readyToCapture =
(afState == CaptureResult.CONTROL_AF_STATE_FOCUSED_LOCKED ||
afState == CaptureResult.CONTROL_AF_STATE_NOT_FOCUSED_LOCKED);
}
// If we are running on an non-legacy device, we should also wait until
// auto-exposure and auto-white-balance have converged as well before
// taking a picture.
if (!isLegacyLocked()) {
int aeState = result.get(CaptureResult.CONTROL_AE_STATE);
int awbState = result.get(CaptureResult.CONTROL_AWB_STATE);
readyToCapture = readyToCapture &&
aeState == CaptureResult.CONTROL_AE_STATE_CONVERGED &&
awbState == CaptureResult.CONTROL_AWB_STATE_CONVERGED;
}
// If we haven't finished the pre-capture sequence but have hit our maximum
// wait timeout, too bad! Begin capture anyway.
if (!readyToCapture && hitTimeoutLocked()) {
Log.w(TAG, "Timed out waiting for pre-capture sequence to complete.");
readyToCapture = true;
}
if (readyToCapture && mPendingUserCaptures > 0) {
// Capture once for each user tap of the "Picture" button.
while (mPendingUserCaptures > 0) {
captureStillPictureLocked();
mPendingUserCaptures--;
}
// After this, the camera will go back to the normal state of preview.
mState = STATE_PREVIEW;
}
}
}
}
}
@Override
public void onCaptureProgressed(CameraCaptureSession session, CaptureRequest request,
CaptureResult partialResult) {
process(partialResult);
}
@Override
public void onCaptureCompleted(CameraCaptureSession session, CaptureRequest request,
TotalCaptureResult result) {
process(result);
}
};
/**
* A {@link CameraCaptureSession.CaptureCallback} that handles the still JPEG and RAW capture
* request.
*/
private final CameraCaptureSession.CaptureCallback mCaptureCallback
= new CameraCaptureSession.CaptureCallback() {
@Override
public void onCaptureStarted(CameraCaptureSession session, CaptureRequest request,
long timestamp, long frameNumber) {
String currentDateTime = generateTimestamp();
File rawFile = new File(Environment.
getExternalStoragePublicDirectory(Environment.DIRECTORY_DCIM),
"RAW_" + currentDateTime + ".dng");
File jpegFile = new File(Environment.
getExternalStoragePublicDirectory(Environment.DIRECTORY_DCIM),
"JPEG_" + currentDateTime + ".jpg");
// Look up the ImageSaverBuilder for this request and update it with the file name
// based on the capture start time.
ImageSaver.ImageSaverBuilder jpegBuilder;
ImageSaver.ImageSaverBuilder rawBuilder;
int requestId = (int) request.getTag();
synchronized (mCameraStateLock) {
jpegBuilder = mJpegResultQueue.get(requestId);
rawBuilder = mRawResultQueue.get(requestId);
}
if (jpegBuilder != null) jpegBuilder.setFile(jpegFile);
if (rawBuilder != null) rawBuilder.setFile(rawFile);
}
@Override
public void onCaptureCompleted(CameraCaptureSession session, CaptureRequest request,
TotalCaptureResult result) {
int requestId = (int) request.getTag();
ImageSaver.ImageSaverBuilder jpegBuilder;
ImageSaver.ImageSaverBuilder rawBuilder;
StringBuilder sb = new StringBuilder();
// Look up the ImageSaverBuilder for this request and update it with the CaptureResult
synchronized (mCameraStateLock) {
jpegBuilder = mJpegResultQueue.get(requestId);
rawBuilder = mRawResultQueue.get(requestId);
// If we have all the results necessary, save the image to a file in the background.
handleCompletionLocked(requestId, jpegBuilder, mJpegResultQueue);
handleCompletionLocked(requestId, rawBuilder, mRawResultQueue);
if (jpegBuilder != null) {
jpegBuilder.setResult(result);
sb.append("Saving JPEG as: ");
sb.append(jpegBuilder.getSaveLocation());
}
if (rawBuilder != null) {
rawBuilder.setResult(result);
if (jpegBuilder != null) sb.append(", ");
sb.append("Saving RAW as: ");
sb.append(rawBuilder.getSaveLocation());
}
finishedCaptureLocked();
}
showToast(sb.toString());
}
@Override
public void onCaptureFailed(CameraCaptureSession session, CaptureRequest request,
CaptureFailure failure) {
int requestId = (int) request.getTag();
synchronized (mCameraStateLock) {
mJpegResultQueue.remove(requestId);
mRawResultQueue.remove(requestId);
finishedCaptureLocked();
}
showToast("Capture failed!");
}
};
/**
* A {@link Handler} for showing {@link Toast}s on the UI thread.
*/
private final Handler mMessageHandler = new Handler(Looper.getMainLooper()) {
@Override
public void handleMessage(Message msg) {
Activity activity = getActivity();
if (activity != null) {
Toast.makeText(activity, (String) msg.obj, Toast.LENGTH_SHORT).show();
}
}
};
public static Camera2RawFragment newInstance() {
Camera2RawFragment fragment = new Camera2RawFragment();
fragment.setRetainInstance(true);
return fragment;
}
@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container,
Bundle savedInstanceState) {
return inflater.inflate(R.layout.fragment_camera2_basic, container, false);
}
@Override
public void onViewCreated(final View view, Bundle savedInstanceState) {
view.findViewById(R.id.picture).setOnClickListener(this);
view.findViewById(R.id.info).setOnClickListener(this);
mTextureView = (AutoFitTextureView) view.findViewById(R.id.texture);
// Setup a new OrientationEventListener. This is used to handle rotation events like a
// 180 degree rotation that do not normally trigger a call to onCreate to do view re-layout
// or otherwise cause the preview TextureView's size to change.
mOrientationListener = new OrientationEventListener(getActivity(),
SensorManager.SENSOR_DELAY_NORMAL) {
@Override
public void onOrientationChanged(int orientation) {
if (mTextureView != null && mTextureView.isAvailable()) {
configureTransform(mTextureView.getWidth(), mTextureView.getHeight());
}
}
};
}
@Override
public void onResume() {
super.onResume();
startBackgroundThread();
openCamera();
// When the screen is turned off and turned back on, the SurfaceTexture is already
// available, and "onSurfaceTextureAvailable" will not be called. In that case, we should
// configure the preview bounds here (otherwise, we wait until the surface is ready in
// the SurfaceTextureListener).
if (mTextureView.isAvailable()) {
configureTransform(mTextureView.getWidth(), mTextureView.getHeight());
} else {
mTextureView.setSurfaceTextureListener(mSurfaceTextureListener);
}
if (mOrientationListener != null && mOrientationListener.canDetectOrientation()) {
mOrientationListener.enable();
}
}
@Override
public void onPause() {
if (mOrientationListener != null) {
mOrientationListener.disable();
}
closeCamera();
stopBackgroundThread();
super.onPause();
}
@Override
public void onClick(View view) {
switch (view.getId()) {
case R.id.picture: {
takePicture();
break;
}
case R.id.info: {
Activity activity = getActivity();
if (null != activity) {
new AlertDialog.Builder(activity)
.setMessage(R.string.intro_message)
.setPositiveButton(android.R.string.ok, null)
.show();
}
break;
}
}
}
/**
* Sets up state related to camera that is needed before opening a {@link CameraDevice}.
*/
private boolean setUpCameraOutputs() {
Activity activity = getActivity();
CameraManager manager = (CameraManager) activity.getSystemService(Context.CAMERA_SERVICE);
if (manager == null) {
ErrorDialog.buildErrorDialog("This device doesn't support Camera2 API.").
show(getFragmentManager(), "dialog");
return false;
}
try {
// Find a CameraDevice that supports RAW captures, and configure state.
for (String cameraId : manager.getCameraIdList()) {
CameraCharacteristics characteristics
= manager.getCameraCharacteristics(cameraId);
// We only use a camera that supports RAW in this sample.
if (!contains(characteristics.get(
CameraCharacteristics.REQUEST_AVAILABLE_CAPABILITIES),
CameraCharacteristics.REQUEST_AVAILABLE_CAPABILITIES_RAW)) {
continue;
}
StreamConfigurationMap map = characteristics.get(
CameraCharacteristics.SCALER_STREAM_CONFIGURATION_MAP);
// For still image captures, we use the largest available size.
Size largestJpeg = Collections.max(
Arrays.asList(map.getOutputSizes(ImageFormat.JPEG)),
new CompareSizesByArea());
Size largestRaw = Collections.max(
Arrays.asList(map.getOutputSizes(ImageFormat.RAW_SENSOR)),
new CompareSizesByArea());
synchronized(mCameraStateLock) {
// Set up ImageReaders for JPEG and RAW outputs. Place these in a reference
// counted wrapper to ensure they are only closed when all background tasks
// using them are finished.
if (mJpegImageReader == null || mJpegImageReader.getAndRetain() == null) {
mJpegImageReader = new RefCountedAutoCloseable<>(
ImageReader.newInstance(largestJpeg.getWidth(),
largestJpeg.getHeight(), ImageFormat.JPEG, /*maxImages*/5));
}
mJpegImageReader.get().setOnImageAvailableListener(
mOnJpegImageAvailableListener, mBackgroundHandler);
if (mRawImageReader == null || mRawImageReader.getAndRetain() == null) {
mRawImageReader = new RefCountedAutoCloseable<>(
ImageReader.newInstance(largestRaw.getWidth(),
largestRaw.getHeight(), ImageFormat.RAW_SENSOR, /*maxImages*/ 5));
}
mRawImageReader.get().setOnImageAvailableListener(
mOnRawImageAvailableListener, mBackgroundHandler);
mCharacteristics = characteristics;
mCameraId = cameraId;
}
return true;
}
} catch (CameraAccessException e) {
e.printStackTrace();
}
// If we found no suitable cameras for capturing RAW, warn the user.
ErrorDialog.buildErrorDialog("This device doesn't support capturing RAW photos").
show(getFragmentManager(), "dialog");
return false;
}
/**
* Opens the camera specified by {@link #mCameraId}.
*/
private void openCamera() {
if (!setUpCameraOutputs()) {
return;
}
Activity activity = getActivity();
CameraManager manager = (CameraManager) activity.getSystemService(Context.CAMERA_SERVICE);
try {
// Wait for any previously running session to finish.
if (!mCameraOpenCloseLock.tryAcquire(2500, TimeUnit.MILLISECONDS)) {
throw new RuntimeException("Time out waiting to lock camera opening.");
}
String cameraId;
Handler backgroundHandler;
synchronized (mCameraStateLock) {
cameraId = mCameraId;
backgroundHandler = mBackgroundHandler;
}
// Attempt to open the camera. mStateCallback will be called on the background handler's
// thread when this succeeds or fails.
manager.openCamera(cameraId, mStateCallback, backgroundHandler);
} catch (CameraAccessException e) {
e.printStackTrace();
} catch (InterruptedException e) {
throw new RuntimeException("Interrupted while trying to lock camera opening.", e);
}
}
/**
* Closes the current {@link CameraDevice}.
*/
private void closeCamera() {
try {
mCameraOpenCloseLock.acquire();
synchronized(mCameraStateLock) {
// Reset state and clean up resources used by the camera.
// Note: After calling this, the ImageReaders will be closed after any background
// tasks saving Images from these readers have been completed.
mPendingUserCaptures = 0;
mState = STATE_CLOSED;
if (null != mCaptureSession) {
mCaptureSession.close();
mCaptureSession = null;
}
if (null != mCameraDevice) {
mCameraDevice.close();
mCameraDevice = null;
}
if (null != mJpegImageReader) {
mJpegImageReader.close();
mJpegImageReader = null;
}
if (null != mRawImageReader) {
mRawImageReader.close();
mRawImageReader = null;
}
}
} catch (InterruptedException e) {
throw new RuntimeException("Interrupted while trying to lock camera closing.", e);
} finally {
mCameraOpenCloseLock.release();
}
}
/**
* Starts a background thread and its {@link Handler}.
*/
private void startBackgroundThread() {
mBackgroundThread = new HandlerThread("CameraBackground");
mBackgroundThread.start();
synchronized(mCameraStateLock) {
mBackgroundHandler = new Handler(mBackgroundThread.getLooper());
}
}
/**
* Stops the background thread and its {@link Handler}.
*/
private void stopBackgroundThread() {
mBackgroundThread.quitSafely();
try {
mBackgroundThread.join();
mBackgroundThread = null;
synchronized (mCameraStateLock) {
mBackgroundHandler = null;
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
/**
* Creates a new {@link CameraCaptureSession} for camera preview.
*
* Call this only with {@link #mCameraStateLock} held.
*/
private void createCameraPreviewSessionLocked() {
try {
SurfaceTexture texture = mTextureView.getSurfaceTexture();
// We configure the size of default buffer to be the size of camera preview we want.
texture.setDefaultBufferSize(mPreviewSize.getWidth(), mPreviewSize.getHeight());
// This is the output Surface we need to start preview.
Surface surface = new Surface(texture);
// We set up a CaptureRequest.Builder with the output Surface.
mPreviewRequestBuilder
= mCameraDevice.createCaptureRequest(CameraDevice.TEMPLATE_PREVIEW);
mPreviewRequestBuilder.addTarget(surface);
// Here, we create a CameraCaptureSession for camera preview.
mCameraDevice.createCaptureSession(Arrays.asList(surface,
mJpegImageReader.get().getSurface(),
mRawImageReader.get().getSurface()), new CameraCaptureSession.StateCallback() {
@Override
public void onConfigured(CameraCaptureSession cameraCaptureSession) {
synchronized (mCameraStateLock) {
// The camera is already closed
if (null == mCameraDevice) {
return;
}
try {
setup3AControlsLocked(mPreviewRequestBuilder);
// Finally, we start displaying the camera preview.
cameraCaptureSession.setRepeatingRequest(
mPreviewRequestBuilder.build(),
mPreCaptureCallback, mBackgroundHandler);
mState = STATE_PREVIEW;
} catch (CameraAccessException|IllegalStateException e) {
e.printStackTrace();
return;
}
// When the session is ready, we start displaying the preview.
mCaptureSession = cameraCaptureSession;
}
}
@Override
public void onConfigureFailed(CameraCaptureSession cameraCaptureSession) {
showToast("Failed to configure camera.");
}
}, mBackgroundHandler
);
} catch (CameraAccessException e) {
e.printStackTrace();
}
}
/**
* Configure the given {@link CaptureRequest.Builder} to use auto-focus, auto-exposure, and
* auto-white-balance controls if available.
*
* Call this only with {@link #mCameraStateLock} held.
*
* @param builder the builder to configure.
*/
private void setup3AControlsLocked(CaptureRequest.Builder builder) {
// Enable auto-magical 3A run by camera device
builder.set(CaptureRequest.CONTROL_MODE,
CaptureRequest.CONTROL_MODE_AUTO);
Float minFocusDist =
mCharacteristics.get(CameraCharacteristics.LENS_INFO_MINIMUM_FOCUS_DISTANCE);
// If MINIMUM_FOCUS_DISTANCE is 0, lens is fixed-focus and we need to skip the AF run.
mNoAFRun = (minFocusDist == null || minFocusDist == 0);
if (!mNoAFRun) {
// If there is a "continuous picture" mode available, use it, otherwise default to AUTO.
if (contains(mCharacteristics.get(
CameraCharacteristics.CONTROL_AF_AVAILABLE_MODES),
CaptureRequest.CONTROL_AF_MODE_CONTINUOUS_PICTURE)) {
builder.set(CaptureRequest.CONTROL_AF_MODE,
CaptureRequest.CONTROL_AF_MODE_CONTINUOUS_PICTURE);
} else {
builder.set(CaptureRequest.CONTROL_AF_MODE,
CaptureRequest.CONTROL_AF_MODE_AUTO);
}
}
// If there is an auto-magical flash control mode available, use it, otherwise default to
// the "on" mode, which is guaranteed to always be available.
if (contains(mCharacteristics.get(
CameraCharacteristics.CONTROL_AE_AVAILABLE_MODES),
CaptureRequest.CONTROL_AE_MODE_ON_AUTO_FLASH)) {
builder.set(CaptureRequest.CONTROL_AE_MODE,
CaptureRequest.CONTROL_AE_MODE_ON_AUTO_FLASH);
} else {
builder.set(CaptureRequest.CONTROL_AE_MODE,
CaptureRequest.CONTROL_AE_MODE_ON);
}
// If there is an auto-magical white balance control mode available, use it.
if (contains(mCharacteristics.get(
CameraCharacteristics.CONTROL_AWB_AVAILABLE_MODES),
CaptureRequest.CONTROL_AWB_MODE_AUTO)) {
// Allow AWB to run auto-magically if this device supports this
builder.set(CaptureRequest.CONTROL_AWB_MODE,
CaptureRequest.CONTROL_AWB_MODE_AUTO);
}
}
/**
* Configure the necessary {@link android.graphics.Matrix} transformation to `mTextureView`,
* and start/restart the preview capture session if necessary.
*
* This method should be called after the camera state has been initialized in
* setUpCameraOutputs.
*
* @param viewWidth The width of `mTextureView`
* @param viewHeight The height of `mTextureView`
*/
private void configureTransform(int viewWidth, int viewHeight) {
Activity activity = getActivity();
synchronized(mCameraStateLock) {
if (null == mTextureView || null == activity) {
return;
}
StreamConfigurationMap map = mCharacteristics.get(
CameraCharacteristics.SCALER_STREAM_CONFIGURATION_MAP);
// For still image captures, we always use the largest available size.
Size largestJpeg = Collections.max(Arrays.asList(map.getOutputSizes(ImageFormat.JPEG)),
new CompareSizesByArea());
// Find the rotation of the device relative to the native device orientation.
int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
// Find the rotation of the device relative to the camera sensor's orientation.
int totalRotation = sensorToDeviceRotation(mCharacteristics, deviceRotation);
// Swap the view dimensions for calculation as needed if they are rotated relative to
// the sensor.
boolean swappedDimensions = totalRotation == 90 || totalRotation == 270;
int rotatedViewWidth = viewWidth;
int rotatedViewHeight = viewHeight;
if (swappedDimensions) {
rotatedViewWidth = viewHeight;
rotatedViewHeight = viewWidth;
}
// Find the best preview size for these view dimensions and configured JPEG size.
Size previewSize = chooseOptimalSize(map.getOutputSizes(SurfaceTexture.class),
rotatedViewWidth, rotatedViewHeight, largestJpeg);
if (swappedDimensions) {
mTextureView.setAspectRatio(
previewSize.getHeight(), previewSize.getWidth());
} else {
mTextureView.setAspectRatio(
previewSize.getWidth(), previewSize.getHeight());
}
// Find rotation of device in degrees (reverse device orientation for front-facing
// cameras).
int rotation = (mCharacteristics.get(CameraCharacteristics.LENS_FACING) ==
CameraCharacteristics.LENS_FACING_FRONT) ?
(360 + ORIENTATIONS.get(deviceRotation)) % 360 :
(360 - ORIENTATIONS.get(deviceRotation)) % 360;
Matrix matrix = new Matrix();
RectF viewRect = new RectF(0, 0, viewWidth, viewHeight);
RectF bufferRect = new RectF(0, 0, previewSize.getHeight(), previewSize.getWidth());
float centerX = viewRect.centerX();
float centerY = viewRect.centerY();
// Initially, output stream images from the Camera2 API will be rotated to the native
// device orientation from the sensor's orientation, and the TextureView will default to
// scaling these buffers to fill it's view bounds. If the aspect ratios and relative
// orientations are correct, this is fine.
//
// However, if the device orientation has been rotated relative to its native
// orientation so that the TextureView's dimensions are swapped relative to the
// native device orientation, we must do the following to ensure the output stream
// images are not incorrectly scaled by the TextureView:
// - Undo the scale-to-fill from the output buffer's dimensions (i.e. its dimensions
// in the native device orientation) to the TextureView's dimension.
// - Apply a scale-to-fill from the output buffer's rotated dimensions
// (i.e. its dimensions in the current device orientation) to the TextureView's
// dimensions.
// - Apply the rotation from the native device orientation to the current device
// rotation.
if (Surface.ROTATION_90 == deviceRotation || Surface.ROTATION_270 == deviceRotation) {
bufferRect.offset(centerX - bufferRect.centerX(), centerY - bufferRect.centerY());
matrix.setRectToRect(viewRect, bufferRect, Matrix.ScaleToFit.FILL);
float scale = Math.max(
(float) viewHeight / previewSize.getHeight(),
(float) viewWidth / previewSize.getWidth());
matrix.postScale(scale, scale, centerX, centerY);
}
matrix.postRotate(rotation, centerX, centerY);
mTextureView.setTransform(matrix);
// Start or restart the active capture session if the preview was initialized or
// if its aspect ratio changed significantly.
if (mPreviewSize == null || !checkAspectsEqual(previewSize, mPreviewSize)) {
mPreviewSize = previewSize;
if (mState != STATE_CLOSED) {
createCameraPreviewSessionLocked();
}
}
}
}
/**
* Initiate a still image capture.
*
* This function sends a capture request that initiates a pre-capture sequence in our state
* machine that waits for auto-focus to finish, ending in a "locked" state where the lens is no
* longer moving, waits for auto-exposure to choose a good exposure value, and waits for
* auto-white-balance to converge.
*/
private void takePicture() {
synchronized(mCameraStateLock) {
mPendingUserCaptures++;
// If we already triggered a pre-capture sequence, or are in a state where we cannot
// do this, return immediately.
if (mState != STATE_PREVIEW) {
return;
}
try {
// Trigger an auto-focus run if camera is capable. If the camera is already focused,
// this should do nothing.
if (!mNoAFRun) {
mPreviewRequestBuilder.set(CaptureRequest.CONTROL_AF_TRIGGER,
CameraMetadata.CONTROL_AF_TRIGGER_START);
}
// If this is not a legacy device, we can also trigger an auto-exposure metering
// run.
if (!isLegacyLocked()) {
// Tell the camera to lock focus.
mPreviewRequestBuilder.set(CaptureRequest.CONTROL_AE_PRECAPTURE_TRIGGER,
CameraMetadata.CONTROL_AE_PRECAPTURE_TRIGGER_START);
}
// Update state machine to wait for auto-focus, auto-exposure, and
// auto-white-balance (aka. "3A") to converge.
mState = STATE_WAITING_FOR_3A_CONVERGENCE;
// Start a timer for the pre-capture sequence.
startTimerLocked();
// Replace the existing repeating request with one with updated 3A triggers.
mCaptureSession.capture(mPreviewRequestBuilder.build(), mPreCaptureCallback,
mBackgroundHandler);
} catch (CameraAccessException e) {
e.printStackTrace();
}
}
}
/**
* Send a capture request to the camera device that initiates a capture targeting the JPEG and
* RAW outputs.
*
* Call this only with {@link #mCameraStateLock} held.
*/
private void captureStillPictureLocked() {
try {
final Activity activity = getActivity();
if (null == activity || null == mCameraDevice) {
return;
}
// This is the CaptureRequest.Builder that we use to take a picture.
final CaptureRequest.Builder captureBuilder =
mCameraDevice.createCaptureRequest(CameraDevice.TEMPLATE_STILL_CAPTURE);
captureBuilder.addTarget(mJpegImageReader.get().getSurface());
captureBuilder.addTarget(mRawImageReader.get().getSurface());
// Use the same AE and AF modes as the preview.
setup3AControlsLocked(captureBuilder);
// Set orientation.
int rotation = activity.getWindowManager().getDefaultDisplay().getRotation();
captureBuilder.set(CaptureRequest.JPEG_ORIENTATION,
sensorToDeviceRotation(mCharacteristics, rotation));
// Set request tag to easily track results in callbacks.
captureBuilder.setTag(mRequestCounter.getAndIncrement());
CaptureRequest request = captureBuilder.build();
// Create an ImageSaverBuilder in which to collect results, and add it to the queue
// of active requests.
ImageSaver.ImageSaverBuilder jpegBuilder = new ImageSaver.ImageSaverBuilder(activity)
.setCharacteristics(mCharacteristics);
ImageSaver.ImageSaverBuilder rawBuilder = new ImageSaver.ImageSaverBuilder(activity)
.setCharacteristics(mCharacteristics);
mJpegResultQueue.put((int) request.getTag(), jpegBuilder);
mRawResultQueue.put((int) request.getTag(), rawBuilder);
mCaptureSession.capture(request, mCaptureCallback, mBackgroundHandler);
} catch (CameraAccessException e) {
e.printStackTrace();
}
}
/**
* Called after a RAW/JPEG capture has completed; resets the AF trigger state for the
* pre-capture sequence.
*
* Call this only with {@link #mCameraStateLock} held.
*/
private void finishedCaptureLocked() {
try {
// Reset the auto-focus trigger in case AF didn't run quickly enough.
if (!mNoAFRun) {
mPreviewRequestBuilder.set(CaptureRequest.CONTROL_AF_TRIGGER,
CameraMetadata.CONTROL_AF_TRIGGER_CANCEL);
mCaptureSession.capture(mPreviewRequestBuilder.build(), mPreCaptureCallback,
mBackgroundHandler);
mPreviewRequestBuilder.set(CaptureRequest.CONTROL_AF_TRIGGER,
CameraMetadata.CONTROL_AF_TRIGGER_IDLE);
}
} catch (CameraAccessException e) {
e.printStackTrace();
}
}
/**
* Retrieve the next {@link Image} from a reference counted {@link ImageReader}, retaining
* that {@link ImageReader} until that {@link Image} is no longer in use, and set this
* {@link Image} as the result for the next request in the queue of pending requests. If
* all necessary information is available, begin saving the image to a file in a background
* thread.
*
* @param pendingQueue the currently active requests.
* @param reader a reference counted wrapper containing an {@link ImageReader} from which to
* acquire an image.
*/
private void dequeueAndSaveImage(TreeMap<Integer, ImageSaver.ImageSaverBuilder> pendingQueue,
RefCountedAutoCloseable<ImageReader> reader) {
synchronized (mCameraStateLock) {
Map.Entry<Integer, ImageSaver.ImageSaverBuilder> entry =
pendingQueue.firstEntry();
ImageSaver.ImageSaverBuilder builder = entry.getValue();
// Increment reference count to prevent ImageReader from being closed while we
// are saving its Images in a background thread (otherwise their resources may
// be freed while we are writing to a file).
if (reader == null || reader.getAndRetain() == null) {
Log.e(TAG, "Paused the activity before we could save the image," +
" ImageReader already closed.");
pendingQueue.remove(entry.getKey());
return;
}
Image image;
try {
image = reader.get().acquireNextImage();
} catch (IllegalStateException e) {
Log.e(TAG, "Too many images queued for saving, dropping image for request: " +
entry.getKey());
pendingQueue.remove(entry.getKey());
return;
}
builder.setRefCountedReader(reader).setImage(image);
handleCompletionLocked(entry.getKey(), builder, pendingQueue);
}
}
/**
* Runnable that saves an {@link Image} into the specified {@link File}, and updates
* {@link android.provider.MediaStore} to include the resulting file.
*
* This can be constructed through an {@link ImageSaverBuilder} as the necessary image and
* result information becomes available.
*/
private static class ImageSaver implements Runnable {
/**
* The image to save.
*/
private final Image mImage;
/**
* The file we save the image into.
*/
private final File mFile;
/**
* The CaptureResult for this image capture.
*/
private final CaptureResult mCaptureResult;
/**
* The CameraCharacteristics for this camera device.
*/
private final CameraCharacteristics mCharacteristics;
/**
* The Context to use when updating MediaStore with the saved images.
*/
private final Context mContext;
/**
* A reference counted wrapper for the ImageReader that owns the given image.
*/
private final RefCountedAutoCloseable<ImageReader> mReader;
private ImageSaver(Image image, File file, CaptureResult result,
CameraCharacteristics characteristics, Context context,
RefCountedAutoCloseable<ImageReader> reader) {
mImage = image;
mFile = file;
mCaptureResult = result;
mCharacteristics = characteristics;
mContext = context;
mReader = reader;
}
@Override
public void run() {
boolean success = false;
int format = mImage.getFormat();
switch(format) {
case ImageFormat.JPEG: {
ByteBuffer buffer = mImage.getPlanes()[0].getBuffer();
byte[] bytes = new byte[buffer.remaining()];
buffer.get(bytes);
FileOutputStream output = null;
try {
output = new FileOutputStream(mFile);
output.write(bytes);
success = true;
} catch (IOException e) {
e.printStackTrace();
} finally {
mImage.close();
closeOutput(output);
}
break;
}
case ImageFormat.RAW_SENSOR: {
DngCreator dngCreator = new DngCreator(mCharacteristics, mCaptureResult);
FileOutputStream output = null;
try {
output = new FileOutputStream(mFile);
dngCreator.writeImage(output, mImage);
success = true;
} catch (IOException e) {
e.printStackTrace();
} finally {
mImage.close();
closeOutput(output);
}
break;
}
default: {
Log.e(TAG, "Cannot save image, unexpected image format:" + format);
break;
}
}
// Decrement reference count to allow ImageReader to be closed to free up resources.
mReader.close();
// If saving the file succeeded, update MediaStore.
if (success) {
MediaScannerConnection.scanFile(mContext, new String[] { mFile.getPath()},
/*mimeTypes*/null, new MediaScannerConnection.MediaScannerConnectionClient() {
@Override
public void onMediaScannerConnected() {
// Do nothing
}
@Override
public void onScanCompleted(String path, Uri uri) {
Log.i(TAG, "Scanned " + path + ":");
Log.i(TAG, "-> uri=" + uri);
}
});
}
}
/**
* Builder class for constructing {@link ImageSaver}s.
*
* This class is thread safe.
*/
public static class ImageSaverBuilder {
private Image mImage;
private File mFile;
private CaptureResult mCaptureResult;
private CameraCharacteristics mCharacteristics;
private Context mContext;
private RefCountedAutoCloseable<ImageReader> mReader;
/**
* Construct a new ImageSaverBuilder using the given {@link Context}.
* @param context a {@link Context} to for accessing the
* {@link android.provider.MediaStore}.
*/
public ImageSaverBuilder(final Context context) {
mContext = context;
}
public synchronized ImageSaverBuilder setRefCountedReader(
RefCountedAutoCloseable<ImageReader> reader) {
if (reader == null ) throw new NullPointerException();
mReader = reader;
return this;
}
public synchronized ImageSaverBuilder setImage(final Image image) {
if (image == null) throw new NullPointerException();
mImage = image;
return this;
}
public synchronized ImageSaverBuilder setFile(final File file) {
if (file == null) throw new NullPointerException();
mFile = file;
return this;
}
public synchronized ImageSaverBuilder setResult(final CaptureResult result) {
if (result == null) throw new NullPointerException();
mCaptureResult = result;
return this;
}
public synchronized ImageSaverBuilder setCharacteristics(
final CameraCharacteristics characteristics) {
if (characteristics == null) throw new NullPointerException();
mCharacteristics = characteristics;
return this;
}
public synchronized ImageSaver buildIfComplete() {
if (!isComplete()) {
return null;
}
return new ImageSaver(mImage, mFile, mCaptureResult, mCharacteristics, mContext,
mReader);
}
public synchronized String getSaveLocation() {
return (mFile == null) ? "Unknown" : mFile.toString();
}
private boolean isComplete() {
return mImage != null && mFile != null && mCaptureResult != null
&& mCharacteristics != null;
}
}
}
// Utility classes and methods:
// *********************************************************************************************
/**
* Comparator based on area of the given {@link Size} objects.
*/
static class CompareSizesByArea implements Comparator<Size> {
@Override
public int compare(Size lhs, Size rhs) {
// We cast here to ensure the multiplications won't overflow
return Long.signum((long) lhs.getWidth() * lhs.getHeight() -
(long) rhs.getWidth() * rhs.getHeight());
}
}
/**
* A dialog fragment for displaying non-recoverable errors; this {@ling Activity} will be
* finished once the dialog has been acknowledged by the user.
*/
public static class ErrorDialog extends DialogFragment {
private String mErrorMessage;
public ErrorDialog() {
mErrorMessage = "Unknown error occurred!";
}
// Build a dialog with a custom message (Fragments require default constructor).
public static ErrorDialog buildErrorDialog(String errorMessage) {
ErrorDialog dialog = new ErrorDialog();
dialog.mErrorMessage = errorMessage;
return dialog;
}
@Override
public Dialog onCreateDialog(Bundle savedInstanceState) {
final Activity activity = getActivity();
return new AlertDialog.Builder(activity)
.setMessage(mErrorMessage)
.setPositiveButton(android.R.string.ok, new DialogInterface.OnClickListener() {
@Override
public void onClick(DialogInterface dialogInterface, int i) {
activity.finish();
}
})
.create();
}
}
/**
* A wrapper for an {@link AutoCloseable} object that implements reference counting to allow
* for resource management.
*/
public static class RefCountedAutoCloseable<T extends AutoCloseable> implements AutoCloseable {
private T mObject;
private long mRefCount = 0;
/**
* Wrap the given object.
* @param object an object to wrap.
*/
public RefCountedAutoCloseable(T object) {
if (object == null) throw new NullPointerException();
mObject = object;
}
/**
* Increment the reference count and return the wrapped object.
*
* @return the wrapped object, or null if the object has been released.
*/
public synchronized T getAndRetain() {
if (mRefCount < 0) {
return null;
}
mRefCount++;
return mObject;
}
/**
* Return the wrapped object.
*
* @return the wrapped object, or null if the object has been released.
*/
public synchronized T get() {
return mObject;
}
/**
* Decrement the reference count and release the wrapped object if there are no other
* users retaining this object.
*/
@Override
public synchronized void close() {
if (mRefCount >= 0) {
mRefCount--;
if (mRefCount < 0) {
try {
mObject.close();
} catch (Exception e) {
throw new RuntimeException(e);
} finally {
mObject = null;
}
}
}
}
}
/**
* Given {@code choices} of {@code Size}s supported by a camera, chooses the smallest one whose
* width and height are at least as large as the respective requested values, and whose aspect
* ratio matches with the specified value.
*
* @param choices The list of sizes that the camera supports for the intended output class
* @param width The minimum desired width
* @param height The minimum desired height
* @param aspectRatio The aspect ratio
* @return The optimal {@code Size}, or an arbitrary one if none were big enough
*/
private static Size chooseOptimalSize(Size[] choices, int width, int height, Size aspectRatio) {
// Collect the supported resolutions that are at least as big as the preview Surface
List<Size> bigEnough = new ArrayList<>();
int w = aspectRatio.getWidth();
int h = aspectRatio.getHeight();
for (Size option : choices) {
if (option.getHeight() == option.getWidth() * h / w &&
option.getWidth() >= width && option.getHeight() >= height) {
bigEnough.add(option);
}
}
// Pick the smallest of those, assuming we found any
if (bigEnough.size() > 0) {
return Collections.min(bigEnough, new CompareSizesByArea());
} else {
Log.e(TAG, "Couldn't find any suitable preview size");
return choices[0];
}
}
/**
* Generate a string containing a formatted timestamp with the current date and time.
*
* @return a {@link String} representing a time.
*/
private static String generateTimestamp() {
SimpleDateFormat sdf = new SimpleDateFormat("yyyy_MM_dd_HH_mm_ss_SSS", Locale.US);
return sdf.format(new Date());
}
/**
* Cleanup the given {@link OutputStream}.
*
* @param outputStream the stream to close.
*/
private static void closeOutput(OutputStream outputStream) {
if (null != outputStream) {
try {
outputStream.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
/**
* Return true if the given array contains the given integer.
*
* @param modes array to check.
* @param mode integer to get for.
* @return true if the array contains the given integer, otherwise false.
*/
private static boolean contains(int[] modes, int mode) {
if (modes == null) {
return false;
}
for (int i : modes) {
if (i == mode) {
return true;
}
}
return false;
}
/**
* Return true if the two given {@link Size}s have the same aspect ratio.
*
* @param a first {@link Size} to compare.
* @param b second {@link Size} to compare.
* @return true if the sizes have the same aspect ratio, otherwise false.
*/
private static boolean checkAspectsEqual(Size a, Size b) {
double aAspect = a.getWidth() / (double) a.getHeight();
double bAspect = b.getWidth() / (double) b.getHeight();
return Math.abs(aAspect - bAspect) <= ASPECT_RATIO_TOLERANCE;
}
/**
* Rotation need to transform from the camera sensor orientation to the device's current
* orientation.
* @param c the {@link CameraCharacteristics} to query for the camera sensor orientation.
* @param deviceOrientation the current device orientation relative to the native device
* orientation.
* @return the total rotation from the sensor orientation to the current device orientation.
*/
private static int sensorToDeviceRotation(CameraCharacteristics c, int deviceOrientation) {
int sensorOrientation = c.get(CameraCharacteristics.SENSOR_ORIENTATION);
// Get device orientation in degrees
deviceOrientation = ORIENTATIONS.get(deviceOrientation);
// Reverse device orientation for front-facing cameras
if (c.get(CameraCharacteristics.LENS_FACING) == CameraCharacteristics.LENS_FACING_FRONT) {
deviceOrientation = -deviceOrientation;
}
// Calculate desired JPEG orientation relative to camera orientation to make
// the image upright relative to the device orientation
return (sensorOrientation + deviceOrientation + 360) % 360;
}
/**
* Shows a {@link Toast} on the UI thread.
*
* @param text The message to show.
*/
private void showToast(String text) {
// We show a Toast by sending request message to mMessageHandler. This makes sure that the
// Toast is shown on the UI thread.
Message message = Message.obtain();
message.obj = text;
mMessageHandler.sendMessage(message);
}
/**
* If the given request has been completed, remove it from the queue of active requests and
* send an {@link ImageSaver} with the results from this request to a background thread to
* save a file.
*
* Call this only with {@link #mCameraStateLock} held.
*
* @param requestId the ID of the {@link CaptureRequest} to handle.
* @param builder the {@link ImageSaver.ImageSaverBuilder} for this request.
* @param queue the queue to remove this request from, if completed.
*/
private void handleCompletionLocked(int requestId, ImageSaver.ImageSaverBuilder builder,
TreeMap<Integer, ImageSaver.ImageSaverBuilder> queue) {
if (builder == null) return;
ImageSaver saver = builder.buildIfComplete();
if (saver != null) {
queue.remove(requestId);
AsyncTask.THREAD_POOL_EXECUTOR.execute(saver);
}
}
/**
* Check if we are using a device that only supports the LEGACY hardware level.
*
* Call this only with {@link #mCameraStateLock} held.
*
* @return true if this is a legacy device.
*/
private boolean isLegacyLocked() {
return mCharacteristics.get(CameraCharacteristics.INFO_SUPPORTED_HARDWARE_LEVEL) ==
CameraCharacteristics.INFO_SUPPORTED_HARDWARE_LEVEL_LEGACY;
}
/**
* Start the timer for the pre-capture sequence.
*
* Call this only with {@link #mCameraStateLock} held.
*/
private void startTimerLocked() {
mCaptureTimer = SystemClock.elapsedRealtime();
}
/**
* Check if the timer for the pre-capture sequence has been hit.
*
* Call this only with {@link #mCameraStateLock} held.
*
* @return true if the timeout occurred.
*/
private boolean hitTimeoutLocked() {
return (SystemClock.elapsedRealtime() - mCaptureTimer) > PRECAPTURE_TIMEOUT_MS;
}
// *********************************************************************************************
}