/*
* Copyright 2014 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmap.h"
#include "SkBlurImage_opts_SSE4.h"
#include "SkColorPriv.h"
#include "SkRect.h"
/* With the exception of the compilers that don't support it, we always build the
* SSE4 functions and enable the caller to determine SSE4 support. However for
* compilers that do not support SSE4x we provide a stub implementation.
*/
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41
#include <smmintrin.h>
namespace {
enum BlurDirection {
kX, kY
};
/* Helper function to spread the components of a 32-bit integer into the
* lower 8 bits of each 32-bit element of an SSE register.
*/
inline __m128i expand(int a) {
// ARGB -> 0000 0000 0000 ARGB
__m128i widened = _mm_cvtsi32_si128(a);
// SSE4.1 has xxxx xxxx xxxx ARGB -> 000A 000R 000G 000B as a one-stop-shop instruction.
// It can even work from memory, so a smart compiler probably merges in the _mm_cvtsi32_si128().
return _mm_cvtepu8_epi32(widened);
}
template<BlurDirection srcDirection, BlurDirection dstDirection>
void SkBoxBlur_SSE4(const SkPMColor* src, int srcStride, SkPMColor* dst, int kernelSize,
int leftOffset, int rightOffset, int width, int height)
{
const int rightBorder = SkMin32(rightOffset + 1, width);
const int srcStrideX = srcDirection == kX ? 1 : srcStride;
const int dstStrideX = dstDirection == kX ? 1 : height;
const int srcStrideY = srcDirection == kX ? srcStride : 1;
const int dstStrideY = dstDirection == kX ? width : 1;
const __m128i scale = _mm_set1_epi32((1 << 24) / kernelSize);
const __m128i half = _mm_set1_epi32(1 << 23);
for (int y = 0; y < height; ++y) {
__m128i sum = _mm_setzero_si128();
const SkPMColor* p = src;
for (int i = 0; i < rightBorder; ++i) {
sum = _mm_add_epi32(sum, expand(*p));
p += srcStrideX;
}
const SkPMColor* sptr = src;
SkColor* dptr = dst;
for (int x = 0; x < width; ++x) {
// TODO(mtklein): We are working in 8.24 here. Drop to 8.8 when the kernel is narrow?
// Multiply each component by scale (i.e. divide by kernel size) and add half to round.
__m128i result = _mm_mullo_epi32(sum, scale);
result = _mm_add_epi32(result, half);
// Now pack the top byte of each 32-bit lane back down into one 32-bit color.
// Axxx Rxxx Gxxx Bxxx -> xxxx xxxx xxxx ARGB
const char _ = 0; // Don't care what ends up in these bytes. Happens to be byte 0.
result = _mm_shuffle_epi8(result, _mm_set_epi8(_,_,_,_, _,_,_,_, _,_,_,_, 15,11,7,3));
*dptr = _mm_cvtsi128_si32(result);
// TODO(mtklein): experiment with breaking this loop into 3 parts
if (x >= leftOffset) {
SkColor l = *(sptr - leftOffset * srcStrideX);
sum = _mm_sub_epi32(sum, expand(l));
}
if (x + rightOffset + 1 < width) {
SkColor r = *(sptr + (rightOffset + 1) * srcStrideX);
sum = _mm_add_epi32(sum, expand(r));
}
sptr += srcStrideX;
if (srcDirection == kY) {
// TODO(mtklein): experiment with moving this prefetch forward
_mm_prefetch(reinterpret_cast<const char*>(sptr + (rightOffset + 1) * srcStrideX),
_MM_HINT_T0);
}
dptr += dstStrideX;
}
src += srcStrideY;
dst += dstStrideY;
}
}
} // namespace
bool SkBoxBlurGetPlatformProcs_SSE4(SkBoxBlurProc* boxBlurX,
SkBoxBlurProc* boxBlurXY,
SkBoxBlurProc* boxBlurYX) {
*boxBlurX = SkBoxBlur_SSE4<kX, kX>;
*boxBlurXY = SkBoxBlur_SSE4<kX, kY>;
*boxBlurYX = SkBoxBlur_SSE4<kY, kX>;
return true;
}
#else // SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41
bool SkBoxBlurGetPlatformProcs_SSE4(SkBoxBlurProc* boxBlurX,
SkBoxBlurProc* boxBlurXY,
SkBoxBlurProc* boxBlurYX) {
sk_throw();
return false;
}
#endif