/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef RENDERNODEPROPERTIES_H
#define RENDERNODEPROPERTIES_H
#include <algorithm>
#include <stddef.h>
#include <vector>
#include <cutils/compiler.h>
#include <androidfw/ResourceTypes.h>
#include <utils/Log.h>
#include <SkCamera.h>
#include <SkMatrix.h>
#include <SkRegion.h>
#include <SkXfermode.h>
#include "Caches.h"
#include "Rect.h"
#include "RevealClip.h"
#include "Outline.h"
#include "utils/MathUtils.h"
class SkBitmap;
class SkColorFilter;
class SkPaint;
namespace android {
namespace uirenderer {
class Matrix4;
class RenderNode;
class RenderProperties;
// The __VA_ARGS__ will be executed if a & b are not equal
#define RP_SET(a, b, ...) (a != b ? (a = b, ##__VA_ARGS__, true) : false)
#define RP_SET_AND_DIRTY(a, b) RP_SET(a, b, mPrimitiveFields.mMatrixOrPivotDirty = true)
// Keep in sync with View.java:LAYER_TYPE_*
enum class LayerType {
None = 0,
// Although we cannot build the software layer directly (must be done at
// record time), this information is used when applying alpha.
Software = 1,
RenderLayer = 2,
// TODO: LayerTypeSurfaceTexture? Maybe?
};
enum ClippingFlags {
CLIP_TO_BOUNDS = 0x1 << 0,
CLIP_TO_CLIP_BOUNDS = 0x1 << 1,
};
class ANDROID_API LayerProperties {
public:
bool setType(LayerType type) {
if (RP_SET(mType, type)) {
reset();
return true;
}
return false;
}
bool setOpaque(bool opaque) {
return RP_SET(mOpaque, opaque);
}
bool opaque() const {
return mOpaque;
}
bool setAlpha(uint8_t alpha) {
return RP_SET(mAlpha, alpha);
}
uint8_t alpha() const {
return mAlpha;
}
bool setXferMode(SkXfermode::Mode mode) {
return RP_SET(mMode, mode);
}
SkXfermode::Mode xferMode() const {
return mMode;
}
bool setColorFilter(SkColorFilter* filter);
SkColorFilter* colorFilter() const {
return mColorFilter;
}
// Sets alpha, xfermode, and colorfilter from an SkPaint
// paint may be NULL, in which case defaults will be set
bool setFromPaint(const SkPaint* paint);
bool needsBlending() const {
return !opaque() || alpha() < 255;
}
LayerProperties& operator=(const LayerProperties& other);
private:
LayerProperties();
~LayerProperties();
void reset();
// Private since external users should go through properties().effectiveLayerType()
LayerType type() const {
return mType;
}
friend class RenderProperties;
LayerType mType = LayerType::None;
// Whether or not that Layer's content is opaque, doesn't include alpha
bool mOpaque;
uint8_t mAlpha;
SkXfermode::Mode mMode;
SkColorFilter* mColorFilter = nullptr;
};
/*
* Data structure that holds the properties for a RenderNode
*/
class ANDROID_API RenderProperties {
public:
RenderProperties();
virtual ~RenderProperties();
static bool setFlag(int flag, bool newValue, int* outFlags) {
if (newValue) {
if (!(flag & *outFlags)) {
*outFlags |= flag;
return true;
}
return false;
} else {
if (flag & *outFlags) {
*outFlags &= ~flag;
return true;
}
return false;
}
}
/**
* Set internal layer state based on whether this layer
*
* Additionally, returns true if child RenderNodes with functors will need to use a layer
* to support clipping.
*/
bool prepareForFunctorPresence(bool willHaveFunctor, bool ancestorDictatesFunctorsNeedLayer) {
// parent may have already dictated that a descendant layer is needed
bool functorsNeedLayer = ancestorDictatesFunctorsNeedLayer
// Round rect clipping forces layer for functors
|| CC_UNLIKELY(getOutline().willRoundRectClip())
|| CC_UNLIKELY(getRevealClip().willClip())
// Complex matrices forces layer, due to stencil clipping
|| CC_UNLIKELY(getTransformMatrix() && !getTransformMatrix()->isScaleTranslate())
|| CC_UNLIKELY(getAnimationMatrix() && !getAnimationMatrix()->isScaleTranslate())
|| CC_UNLIKELY(getStaticMatrix() && !getStaticMatrix()->isScaleTranslate());
mComputedFields.mNeedLayerForFunctors = (willHaveFunctor && functorsNeedLayer);
// If on a layer, will have consumed the need for isolating functors from stencil.
// Thus, it's safe to reset the flag until some descendent sets it.
return CC_LIKELY(effectiveLayerType() == LayerType::None) && functorsNeedLayer;
}
RenderProperties& operator=(const RenderProperties& other);
bool setClipToBounds(bool clipToBounds) {
return setFlag(CLIP_TO_BOUNDS, clipToBounds, &mPrimitiveFields.mClippingFlags);
}
bool setClipBounds(const Rect& clipBounds) {
bool ret = setFlag(CLIP_TO_CLIP_BOUNDS, true, &mPrimitiveFields.mClippingFlags);
return RP_SET(mPrimitiveFields.mClipBounds, clipBounds) || ret;
}
bool setClipBoundsEmpty() {
return setFlag(CLIP_TO_CLIP_BOUNDS, false, &mPrimitiveFields.mClippingFlags);
}
bool setProjectBackwards(bool shouldProject) {
return RP_SET(mPrimitiveFields.mProjectBackwards, shouldProject);
}
bool setProjectionReceiver(bool shouldRecieve) {
return RP_SET(mPrimitiveFields.mProjectionReceiver, shouldRecieve);
}
bool isProjectionReceiver() const {
return mPrimitiveFields.mProjectionReceiver;
}
bool setStaticMatrix(const SkMatrix* matrix) {
delete mStaticMatrix;
if (matrix) {
mStaticMatrix = new SkMatrix(*matrix);
} else {
mStaticMatrix = nullptr;
}
return true;
}
// Can return NULL
const SkMatrix* getStaticMatrix() const {
return mStaticMatrix;
}
bool setAnimationMatrix(const SkMatrix* matrix) {
delete mAnimationMatrix;
if (matrix) {
mAnimationMatrix = new SkMatrix(*matrix);
} else {
mAnimationMatrix = nullptr;
}
return true;
}
bool setAlpha(float alpha) {
alpha = MathUtils::clampAlpha(alpha);
return RP_SET(mPrimitiveFields.mAlpha, alpha);
}
float getAlpha() const {
return mPrimitiveFields.mAlpha;
}
bool setHasOverlappingRendering(bool hasOverlappingRendering) {
return RP_SET(mPrimitiveFields.mHasOverlappingRendering, hasOverlappingRendering);
}
bool hasOverlappingRendering() const {
return mPrimitiveFields.mHasOverlappingRendering;
}
bool setElevation(float elevation) {
return RP_SET(mPrimitiveFields.mElevation, elevation);
// Don't dirty matrix/pivot, since they don't respect Z
}
float getElevation() const {
return mPrimitiveFields.mElevation;
}
bool setTranslationX(float translationX) {
return RP_SET_AND_DIRTY(mPrimitiveFields.mTranslationX, translationX);
}
float getTranslationX() const {
return mPrimitiveFields.mTranslationX;
}
bool setTranslationY(float translationY) {
return RP_SET_AND_DIRTY(mPrimitiveFields.mTranslationY, translationY);
}
float getTranslationY() const {
return mPrimitiveFields.mTranslationY;
}
bool setTranslationZ(float translationZ) {
return RP_SET(mPrimitiveFields.mTranslationZ, translationZ);
// mMatrixOrPivotDirty not set, since matrix doesn't respect Z
}
float getTranslationZ() const {
return mPrimitiveFields.mTranslationZ;
}
// Animation helper
bool setX(float value) {
return setTranslationX(value - getLeft());
}
// Animation helper
float getX() const {
return getLeft() + getTranslationX();
}
// Animation helper
bool setY(float value) {
return setTranslationY(value - getTop());
}
// Animation helper
float getY() const {
return getTop() + getTranslationY();
}
// Animation helper
bool setZ(float value) {
return setTranslationZ(value - getElevation());
}
float getZ() const {
return getElevation() + getTranslationZ();
}
bool setRotation(float rotation) {
return RP_SET_AND_DIRTY(mPrimitiveFields.mRotation, rotation);
}
float getRotation() const {
return mPrimitiveFields.mRotation;
}
bool setRotationX(float rotationX) {
return RP_SET_AND_DIRTY(mPrimitiveFields.mRotationX, rotationX);
}
float getRotationX() const {
return mPrimitiveFields.mRotationX;
}
bool setRotationY(float rotationY) {
return RP_SET_AND_DIRTY(mPrimitiveFields.mRotationY, rotationY);
}
float getRotationY() const {
return mPrimitiveFields.mRotationY;
}
bool setScaleX(float scaleX) {
return RP_SET_AND_DIRTY(mPrimitiveFields.mScaleX, scaleX);
}
float getScaleX() const {
return mPrimitiveFields.mScaleX;
}
bool setScaleY(float scaleY) {
return RP_SET_AND_DIRTY(mPrimitiveFields.mScaleY, scaleY);
}
float getScaleY() const {
return mPrimitiveFields.mScaleY;
}
bool setPivotX(float pivotX) {
if (RP_SET(mPrimitiveFields.mPivotX, pivotX)
|| !mPrimitiveFields.mPivotExplicitlySet) {
mPrimitiveFields.mMatrixOrPivotDirty = true;
mPrimitiveFields.mPivotExplicitlySet = true;
return true;
}
return false;
}
/* Note that getPivotX and getPivotY are adjusted by updateMatrix(),
* so the value returned may be stale if the RenderProperties has been
* modified since the last call to updateMatrix()
*/
float getPivotX() const {
return mPrimitiveFields.mPivotX;
}
bool setPivotY(float pivotY) {
if (RP_SET(mPrimitiveFields.mPivotY, pivotY)
|| !mPrimitiveFields.mPivotExplicitlySet) {
mPrimitiveFields.mMatrixOrPivotDirty = true;
mPrimitiveFields.mPivotExplicitlySet = true;
return true;
}
return false;
}
float getPivotY() const {
return mPrimitiveFields.mPivotY;
}
bool isPivotExplicitlySet() const {
return mPrimitiveFields.mPivotExplicitlySet;
}
bool setCameraDistance(float distance) {
if (distance != getCameraDistance()) {
mPrimitiveFields.mMatrixOrPivotDirty = true;
mComputedFields.mTransformCamera.setCameraLocation(0, 0, distance);
return true;
}
return false;
}
float getCameraDistance() const {
// TODO: update getCameraLocationZ() to be const
return const_cast<Sk3DView*>(&mComputedFields.mTransformCamera)->getCameraLocationZ();
}
bool setLeft(int left) {
if (RP_SET(mPrimitiveFields.mLeft, left)) {
mPrimitiveFields.mWidth = mPrimitiveFields.mRight - mPrimitiveFields.mLeft;
if (!mPrimitiveFields.mPivotExplicitlySet) {
mPrimitiveFields.mMatrixOrPivotDirty = true;
}
return true;
}
return false;
}
float getLeft() const {
return mPrimitiveFields.mLeft;
}
bool setTop(int top) {
if (RP_SET(mPrimitiveFields.mTop, top)) {
mPrimitiveFields.mHeight = mPrimitiveFields.mBottom - mPrimitiveFields.mTop;
if (!mPrimitiveFields.mPivotExplicitlySet) {
mPrimitiveFields.mMatrixOrPivotDirty = true;
}
return true;
}
return false;
}
float getTop() const {
return mPrimitiveFields.mTop;
}
bool setRight(int right) {
if (RP_SET(mPrimitiveFields.mRight, right)) {
mPrimitiveFields.mWidth = mPrimitiveFields.mRight - mPrimitiveFields.mLeft;
if (!mPrimitiveFields.mPivotExplicitlySet) {
mPrimitiveFields.mMatrixOrPivotDirty = true;
}
return true;
}
return false;
}
float getRight() const {
return mPrimitiveFields.mRight;
}
bool setBottom(int bottom) {
if (RP_SET(mPrimitiveFields.mBottom, bottom)) {
mPrimitiveFields.mHeight = mPrimitiveFields.mBottom - mPrimitiveFields.mTop;
if (!mPrimitiveFields.mPivotExplicitlySet) {
mPrimitiveFields.mMatrixOrPivotDirty = true;
}
return true;
}
return false;
}
float getBottom() const {
return mPrimitiveFields.mBottom;
}
bool setLeftTop(int left, int top) {
bool leftResult = setLeft(left);
bool topResult = setTop(top);
return leftResult || topResult;
}
bool setLeftTopRightBottom(int left, int top, int right, int bottom) {
if (left != mPrimitiveFields.mLeft || top != mPrimitiveFields.mTop
|| right != mPrimitiveFields.mRight || bottom != mPrimitiveFields.mBottom) {
mPrimitiveFields.mLeft = left;
mPrimitiveFields.mTop = top;
mPrimitiveFields.mRight = right;
mPrimitiveFields.mBottom = bottom;
mPrimitiveFields.mWidth = mPrimitiveFields.mRight - mPrimitiveFields.mLeft;
mPrimitiveFields.mHeight = mPrimitiveFields.mBottom - mPrimitiveFields.mTop;
if (!mPrimitiveFields.mPivotExplicitlySet) {
mPrimitiveFields.mMatrixOrPivotDirty = true;
}
return true;
}
return false;
}
bool offsetLeftRight(int offset) {
if (offset != 0) {
mPrimitiveFields.mLeft += offset;
mPrimitiveFields.mRight += offset;
return true;
}
return false;
}
bool offsetTopBottom(int offset) {
if (offset != 0) {
mPrimitiveFields.mTop += offset;
mPrimitiveFields.mBottom += offset;
return true;
}
return false;
}
int getWidth() const {
return mPrimitiveFields.mWidth;
}
int getHeight() const {
return mPrimitiveFields.mHeight;
}
const SkMatrix* getAnimationMatrix() const {
return mAnimationMatrix;
}
bool hasTransformMatrix() const {
return getTransformMatrix() && !getTransformMatrix()->isIdentity();
}
// May only call this if hasTransformMatrix() is true
bool isTransformTranslateOnly() const {
return getTransformMatrix()->getType() == SkMatrix::kTranslate_Mask;
}
const SkMatrix* getTransformMatrix() const {
LOG_ALWAYS_FATAL_IF(mPrimitiveFields.mMatrixOrPivotDirty, "Cannot get a dirty matrix!");
return mComputedFields.mTransformMatrix;
}
int getClippingFlags() const {
return mPrimitiveFields.mClippingFlags;
}
bool getClipToBounds() const {
return mPrimitiveFields.mClippingFlags & CLIP_TO_BOUNDS;
}
void getClippingRectForFlags(uint32_t flags, Rect* outRect) const {
if (flags & CLIP_TO_BOUNDS) {
outRect->set(0, 0, getWidth(), getHeight());
if (flags & CLIP_TO_CLIP_BOUNDS) {
outRect->intersect(mPrimitiveFields.mClipBounds);
}
} else {
outRect->set(mPrimitiveFields.mClipBounds);
}
}
bool getHasOverlappingRendering() const {
return mPrimitiveFields.mHasOverlappingRendering;
}
const Outline& getOutline() const {
return mPrimitiveFields.mOutline;
}
const RevealClip& getRevealClip() const {
return mPrimitiveFields.mRevealClip;
}
bool getProjectBackwards() const {
return mPrimitiveFields.mProjectBackwards;
}
void debugOutputProperties(const int level) const;
void updateMatrix();
Outline& mutableOutline() {
return mPrimitiveFields.mOutline;
}
RevealClip& mutableRevealClip() {
return mPrimitiveFields.mRevealClip;
}
const LayerProperties& layerProperties() const {
return mLayerProperties;
}
LayerProperties& mutateLayerProperties() {
return mLayerProperties;
}
// Returns true if damage calculations should be clipped to bounds
// TODO: Figure out something better for getZ(), as children should still be
// clipped to this RP's bounds. But as we will damage -INT_MAX to INT_MAX
// for this RP's getZ() anyway, this can be optimized when we have a
// Z damage estimate instead of INT_MAX
bool getClipDamageToBounds() const {
return getClipToBounds() && (getZ() <= 0 || getOutline().isEmpty());
}
bool hasShadow() const {
return getZ() > 0.0f
&& getOutline().getPath() != nullptr
&& getOutline().getAlpha() != 0.0f;
}
bool promotedToLayer() const {
const int maxTextureSize = Caches::getInstance().maxTextureSize;
return mLayerProperties.mType == LayerType::None
&& mPrimitiveFields.mWidth <= maxTextureSize
&& mPrimitiveFields.mHeight <= maxTextureSize
&& (mComputedFields.mNeedLayerForFunctors
|| (!MathUtils::isZero(mPrimitiveFields.mAlpha)
&& mPrimitiveFields.mAlpha < 1
&& mPrimitiveFields.mHasOverlappingRendering));
}
LayerType effectiveLayerType() const {
return CC_UNLIKELY(promotedToLayer()) ? LayerType::RenderLayer : mLayerProperties.mType;
}
private:
// Rendering properties
struct PrimitiveFields {
PrimitiveFields();
Outline mOutline;
RevealClip mRevealClip;
int mClippingFlags;
bool mProjectBackwards;
bool mProjectionReceiver;
float mAlpha;
bool mHasOverlappingRendering;
float mElevation;
float mTranslationX, mTranslationY, mTranslationZ;
float mRotation, mRotationX, mRotationY;
float mScaleX, mScaleY;
float mPivotX, mPivotY;
int mLeft, mTop, mRight, mBottom;
int mWidth, mHeight;
bool mPivotExplicitlySet;
bool mMatrixOrPivotDirty;
Rect mClipBounds;
} mPrimitiveFields;
SkMatrix* mStaticMatrix;
SkMatrix* mAnimationMatrix;
LayerProperties mLayerProperties;
/**
* These fields are all generated from other properties and are not set directly.
*/
struct ComputedFields {
ComputedFields();
~ComputedFields();
/**
* Stores the total transformation of the DisplayList based upon its scalar
* translate/rotate/scale properties.
*
* In the common translation-only case, the matrix isn't necessarily allocated,
* and the mTranslation properties are used directly.
*/
SkMatrix* mTransformMatrix;
Sk3DView mTransformCamera;
// Force layer on for functors to enable render features they don't yet support (clipping)
bool mNeedLayerForFunctors = false;
} mComputedFields;
};
} /* namespace uirenderer */
} /* namespace android */
#endif /* RENDERNODEPROPERTIES_H */