/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "rsCpuIntrinsic.h"
#include "rsCpuIntrinsicInlines.h"
using namespace android;
using namespace android::renderscript;
namespace android {
namespace renderscript {
class RsdCpuScriptIntrinsicConvolve5x5 : public RsdCpuScriptIntrinsic {
public:
void populateScript(Script *) override;
void invokeFreeChildren() override;
void setGlobalVar(uint32_t slot, const void *data, size_t dataLength) override;
void setGlobalObj(uint32_t slot, ObjectBase *data) override;
~RsdCpuScriptIntrinsicConvolve5x5() override;
RsdCpuScriptIntrinsicConvolve5x5(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e);
protected:
float mFp[28];
short mIp[28];
ObjectBaseRef<Allocation> alloc;
static void kernelU1(const RsExpandKernelDriverInfo *info,
uint32_t xstart, uint32_t xend,
uint32_t outstep);
static void kernelU2(const RsExpandKernelDriverInfo *info,
uint32_t xstart, uint32_t xend,
uint32_t outstep);
static void kernelU4(const RsExpandKernelDriverInfo *info,
uint32_t xstart, uint32_t xend,
uint32_t outstep);
static void kernelF1(const RsExpandKernelDriverInfo *info,
uint32_t xstart, uint32_t xend,
uint32_t outstep);
static void kernelF2(const RsExpandKernelDriverInfo *info,
uint32_t xstart, uint32_t xend,
uint32_t outstep);
static void kernelF4(const RsExpandKernelDriverInfo *info,
uint32_t xstart, uint32_t xend,
uint32_t outstep);
};
}
}
void RsdCpuScriptIntrinsicConvolve5x5::setGlobalObj(uint32_t slot, ObjectBase *data) {
rsAssert(slot == 1);
alloc.set(static_cast<Allocation *>(data));
}
void RsdCpuScriptIntrinsicConvolve5x5::setGlobalVar(uint32_t slot,
const void *data, size_t dataLength) {
rsAssert(slot == 0);
memcpy (&mFp, data, dataLength);
for(int ct=0; ct < 25; ct++) {
if (mFp[ct] >= 0) {
mIp[ct] = (short)(mFp[ct] * 256.f + 0.5f);
} else {
mIp[ct] = (short)(mFp[ct] * 256.f - 0.5f);
}
}
}
static void OneU4(const RsExpandKernelDriverInfo *info, uint32_t x, uchar4 *out,
const uchar4 *py0, const uchar4 *py1, const uchar4 *py2, const uchar4 *py3, const uchar4 *py4,
const float* coeff) {
uint32_t x0 = rsMax((int32_t)x-2, 0);
uint32_t x1 = rsMax((int32_t)x-1, 0);
uint32_t x2 = x;
uint32_t x3 = rsMin((int32_t)x+1, (int32_t)(info->dim.x-1));
uint32_t x4 = rsMin((int32_t)x+2, (int32_t)(info->dim.x-1));
float4 px = convert_float4(py0[x0]) * coeff[0] +
convert_float4(py0[x1]) * coeff[1] +
convert_float4(py0[x2]) * coeff[2] +
convert_float4(py0[x3]) * coeff[3] +
convert_float4(py0[x4]) * coeff[4] +
convert_float4(py1[x0]) * coeff[5] +
convert_float4(py1[x1]) * coeff[6] +
convert_float4(py1[x2]) * coeff[7] +
convert_float4(py1[x3]) * coeff[8] +
convert_float4(py1[x4]) * coeff[9] +
convert_float4(py2[x0]) * coeff[10] +
convert_float4(py2[x1]) * coeff[11] +
convert_float4(py2[x2]) * coeff[12] +
convert_float4(py2[x3]) * coeff[13] +
convert_float4(py2[x4]) * coeff[14] +
convert_float4(py3[x0]) * coeff[15] +
convert_float4(py3[x1]) * coeff[16] +
convert_float4(py3[x2]) * coeff[17] +
convert_float4(py3[x3]) * coeff[18] +
convert_float4(py3[x4]) * coeff[19] +
convert_float4(py4[x0]) * coeff[20] +
convert_float4(py4[x1]) * coeff[21] +
convert_float4(py4[x2]) * coeff[22] +
convert_float4(py4[x3]) * coeff[23] +
convert_float4(py4[x4]) * coeff[24];
px = clamp(px + 0.5f, 0.f, 255.f);
*out = convert_uchar4(px);
}
static void OneU2(const RsExpandKernelDriverInfo *info, uint32_t x, uchar2 *out,
const uchar2 *py0, const uchar2 *py1, const uchar2 *py2, const uchar2 *py3, const uchar2 *py4,
const float* coeff) {
uint32_t x0 = rsMax((int32_t)x-2, 0);
uint32_t x1 = rsMax((int32_t)x-1, 0);
uint32_t x2 = x;
uint32_t x3 = rsMin((int32_t)x+1, (int32_t)(info->dim.x-1));
uint32_t x4 = rsMin((int32_t)x+2, (int32_t)(info->dim.x-1));
float2 px = convert_float2(py0[x0]) * coeff[0] +
convert_float2(py0[x1]) * coeff[1] +
convert_float2(py0[x2]) * coeff[2] +
convert_float2(py0[x3]) * coeff[3] +
convert_float2(py0[x4]) * coeff[4] +
convert_float2(py1[x0]) * coeff[5] +
convert_float2(py1[x1]) * coeff[6] +
convert_float2(py1[x2]) * coeff[7] +
convert_float2(py1[x3]) * coeff[8] +
convert_float2(py1[x4]) * coeff[9] +
convert_float2(py2[x0]) * coeff[10] +
convert_float2(py2[x1]) * coeff[11] +
convert_float2(py2[x2]) * coeff[12] +
convert_float2(py2[x3]) * coeff[13] +
convert_float2(py2[x4]) * coeff[14] +
convert_float2(py3[x0]) * coeff[15] +
convert_float2(py3[x1]) * coeff[16] +
convert_float2(py3[x2]) * coeff[17] +
convert_float2(py3[x3]) * coeff[18] +
convert_float2(py3[x4]) * coeff[19] +
convert_float2(py4[x0]) * coeff[20] +
convert_float2(py4[x1]) * coeff[21] +
convert_float2(py4[x2]) * coeff[22] +
convert_float2(py4[x3]) * coeff[23] +
convert_float2(py4[x4]) * coeff[24];
px = clamp(px + 0.5f, 0.f, 255.f);
*out = convert_uchar2(px);
}
static void OneU1(const RsExpandKernelDriverInfo *info, uint32_t x, uchar *out,
const uchar *py0, const uchar *py1, const uchar *py2, const uchar *py3, const uchar *py4,
const float* coeff) {
uint32_t x0 = rsMax((int32_t)x-2, 0);
uint32_t x1 = rsMax((int32_t)x-1, 0);
uint32_t x2 = x;
uint32_t x3 = rsMin((int32_t)x+1, (int32_t)(info->dim.x-1));
uint32_t x4 = rsMin((int32_t)x+2, (int32_t)(info->dim.x-1));
float px = (float)(py0[x0]) * coeff[0] +
(float)(py0[x1]) * coeff[1] +
(float)(py0[x2]) * coeff[2] +
(float)(py0[x3]) * coeff[3] +
(float)(py0[x4]) * coeff[4] +
(float)(py1[x0]) * coeff[5] +
(float)(py1[x1]) * coeff[6] +
(float)(py1[x2]) * coeff[7] +
(float)(py1[x3]) * coeff[8] +
(float)(py1[x4]) * coeff[9] +
(float)(py2[x0]) * coeff[10] +
(float)(py2[x1]) * coeff[11] +
(float)(py2[x2]) * coeff[12] +
(float)(py2[x3]) * coeff[13] +
(float)(py2[x4]) * coeff[14] +
(float)(py3[x0]) * coeff[15] +
(float)(py3[x1]) * coeff[16] +
(float)(py3[x2]) * coeff[17] +
(float)(py3[x3]) * coeff[18] +
(float)(py3[x4]) * coeff[19] +
(float)(py4[x0]) * coeff[20] +
(float)(py4[x1]) * coeff[21] +
(float)(py4[x2]) * coeff[22] +
(float)(py4[x3]) * coeff[23] +
(float)(py4[x4]) * coeff[24];
px = clamp(px + 0.5f, 0.f, 255.f);
*out = px;
}
static void OneF4(const RsExpandKernelDriverInfo *info, uint32_t x, float4 *out,
const float4 *py0, const float4 *py1, const float4 *py2, const float4 *py3, const float4 *py4,
const float* coeff) {
uint32_t x0 = rsMax((int32_t)x-2, 0);
uint32_t x1 = rsMax((int32_t)x-1, 0);
uint32_t x2 = x;
uint32_t x3 = rsMin((int32_t)x+1, (int32_t)(info->dim.x-1));
uint32_t x4 = rsMin((int32_t)x+2, (int32_t)(info->dim.x-1));
float4 px = py0[x0] * coeff[0] +
py0[x1] * coeff[1] +
py0[x2] * coeff[2] +
py0[x3] * coeff[3] +
py0[x4] * coeff[4] +
py1[x0] * coeff[5] +
py1[x1] * coeff[6] +
py1[x2] * coeff[7] +
py1[x3] * coeff[8] +
py1[x4] * coeff[9] +
py2[x0] * coeff[10] +
py2[x1] * coeff[11] +
py2[x2] * coeff[12] +
py2[x3] * coeff[13] +
py2[x4] * coeff[14] +
py3[x0] * coeff[15] +
py3[x1] * coeff[16] +
py3[x2] * coeff[17] +
py3[x3] * coeff[18] +
py3[x4] * coeff[19] +
py4[x0] * coeff[20] +
py4[x1] * coeff[21] +
py4[x2] * coeff[22] +
py4[x3] * coeff[23] +
py4[x4] * coeff[24];
*out = px;
}
static void OneF2(const RsExpandKernelDriverInfo *info, uint32_t x, float2 *out,
const float2 *py0, const float2 *py1, const float2 *py2, const float2 *py3, const float2 *py4,
const float* coeff) {
uint32_t x0 = rsMax((int32_t)x-2, 0);
uint32_t x1 = rsMax((int32_t)x-1, 0);
uint32_t x2 = x;
uint32_t x3 = rsMin((int32_t)x+1, (int32_t)(info->dim.x-1));
uint32_t x4 = rsMin((int32_t)x+2, (int32_t)(info->dim.x-1));
float2 px = py0[x0] * coeff[0] +
py0[x1] * coeff[1] +
py0[x2] * coeff[2] +
py0[x3] * coeff[3] +
py0[x4] * coeff[4] +
py1[x0] * coeff[5] +
py1[x1] * coeff[6] +
py1[x2] * coeff[7] +
py1[x3] * coeff[8] +
py1[x4] * coeff[9] +
py2[x0] * coeff[10] +
py2[x1] * coeff[11] +
py2[x2] * coeff[12] +
py2[x3] * coeff[13] +
py2[x4] * coeff[14] +
py3[x0] * coeff[15] +
py3[x1] * coeff[16] +
py3[x2] * coeff[17] +
py3[x3] * coeff[18] +
py3[x4] * coeff[19] +
py4[x0] * coeff[20] +
py4[x1] * coeff[21] +
py4[x2] * coeff[22] +
py4[x3] * coeff[23] +
py4[x4] * coeff[24];
*out = px;
}
static void OneF1(const RsExpandKernelDriverInfo *info, uint32_t x, float *out,
const float *py0, const float *py1, const float *py2, const float *py3, const float *py4,
const float* coeff) {
uint32_t x0 = rsMax((int32_t)x-2, 0);
uint32_t x1 = rsMax((int32_t)x-1, 0);
uint32_t x2 = x;
uint32_t x3 = rsMin((int32_t)x+1, (int32_t)(info->dim.x-1));
uint32_t x4 = rsMin((int32_t)x+2, (int32_t)(info->dim.x-1));
float px = py0[x0] * coeff[0] +
py0[x1] * coeff[1] +
py0[x2] * coeff[2] +
py0[x3] * coeff[3] +
py0[x4] * coeff[4] +
py1[x0] * coeff[5] +
py1[x1] * coeff[6] +
py1[x2] * coeff[7] +
py1[x3] * coeff[8] +
py1[x4] * coeff[9] +
py2[x0] * coeff[10] +
py2[x1] * coeff[11] +
py2[x2] * coeff[12] +
py2[x3] * coeff[13] +
py2[x4] * coeff[14] +
py3[x0] * coeff[15] +
py3[x1] * coeff[16] +
py3[x2] * coeff[17] +
py3[x3] * coeff[18] +
py3[x4] * coeff[19] +
py4[x0] * coeff[20] +
py4[x1] * coeff[21] +
py4[x2] * coeff[22] +
py4[x3] * coeff[23] +
py4[x4] * coeff[24];
*out = px;
}
extern "C" void rsdIntrinsicConvolve5x5_K(void *dst, const void *y0, const void *y1,
const void *y2, const void *y3, const void *y4,
const short *coef, uint32_t count);
void RsdCpuScriptIntrinsicConvolve5x5::kernelU4(const RsExpandKernelDriverInfo *info,
uint32_t xstart, uint32_t xend,
uint32_t outstep) {
RsdCpuScriptIntrinsicConvolve5x5 *cp = (RsdCpuScriptIntrinsicConvolve5x5 *)info->usr;
if (!cp->alloc.get()) {
ALOGE("Convolve5x5 executed without input, skipping");
return;
}
const uchar *pin = (const uchar *)cp->alloc->mHal.drvState.lod[0].mallocPtr;
const size_t stride = cp->alloc->mHal.drvState.lod[0].stride;
uint32_t y0 = rsMax((int32_t)info->current.y-2, 0);
uint32_t y1 = rsMax((int32_t)info->current.y-1, 0);
uint32_t y2 = info->current.y;
uint32_t y3 = rsMin((int32_t)info->current.y+1, (int32_t)(info->dim.y-1));
uint32_t y4 = rsMin((int32_t)info->current.y+2, (int32_t)(info->dim.y-1));
const uchar4 *py0 = (const uchar4 *)(pin + stride * y0);
const uchar4 *py1 = (const uchar4 *)(pin + stride * y1);
const uchar4 *py2 = (const uchar4 *)(pin + stride * y2);
const uchar4 *py3 = (const uchar4 *)(pin + stride * y3);
const uchar4 *py4 = (const uchar4 *)(pin + stride * y4);
uchar4 *out = (uchar4 *)info->outPtr[0];
uint32_t x1 = xstart;
uint32_t x2 = xend;
while((x1 < x2) && (x1 < 2)) {
OneU4(info, x1, out, py0, py1, py2, py3, py4, cp->mFp);
out++;
x1++;
}
#if defined(ARCH_X86_HAVE_SSSE3)
// for x86 SIMD, require minimum of 7 elements (4 for SIMD,
// 3 for end boundary where x may hit the end boundary)
if (gArchUseSIMD &&((x1 + 6) < x2)) {
// subtract 3 for end boundary
uint32_t len = (x2 - x1 - 3) >> 2;
rsdIntrinsicConvolve5x5_K(out, py0 + x1 - 2, py1 + x1 - 2, py2 + x1 - 2, py3 + x1 - 2, py4 + x1 - 2, cp->mIp, len);
out += len << 2;
x1 += len << 2;
}
#endif
#if defined(ARCH_ARM_USE_INTRINSICS)
if(gArchUseSIMD && ((x1 + 3) < x2)) {
uint32_t len = (x2 - x1 - 3) >> 1;
rsdIntrinsicConvolve5x5_K(out, py0 + x1 - 2, py1 + x1 - 2, py2 + x1 - 2, py3 + x1 - 2, py4 + x1 - 2, cp->mIp, len);
out += len << 1;
x1 += len << 1;
}
#endif
while(x1 < x2) {
OneU4(info, x1, out, py0, py1, py2, py3, py4, cp->mFp);
out++;
x1++;
}
}
void RsdCpuScriptIntrinsicConvolve5x5::kernelU2(const RsExpandKernelDriverInfo *info,
uint32_t xstart, uint32_t xend,
uint32_t outstep) {
RsdCpuScriptIntrinsicConvolve5x5 *cp = (RsdCpuScriptIntrinsicConvolve5x5 *)info->usr;
if (!cp->alloc.get()) {
ALOGE("Convolve5x5 executed without input, skipping");
return;
}
const uchar *pin = (const uchar *)cp->alloc->mHal.drvState.lod[0].mallocPtr;
const size_t stride = cp->alloc->mHal.drvState.lod[0].stride;
uint32_t y0 = rsMax((int32_t)info->current.y-2, 0);
uint32_t y1 = rsMax((int32_t)info->current.y-1, 0);
uint32_t y2 = info->current.y;
uint32_t y3 = rsMin((int32_t)info->current.y+1, (int32_t)(info->dim.y-1));
uint32_t y4 = rsMin((int32_t)info->current.y+2, (int32_t)(info->dim.y-1));
const uchar2 *py0 = (const uchar2 *)(pin + stride * y0);
const uchar2 *py1 = (const uchar2 *)(pin + stride * y1);
const uchar2 *py2 = (const uchar2 *)(pin + stride * y2);
const uchar2 *py3 = (const uchar2 *)(pin + stride * y3);
const uchar2 *py4 = (const uchar2 *)(pin + stride * y4);
uchar2 *out = (uchar2 *)info->outPtr[0];
uint32_t x1 = xstart;
uint32_t x2 = xend;
while((x1 < x2) && (x1 < 2)) {
OneU2(info, x1, out, py0, py1, py2, py3, py4, cp->mFp);
out++;
x1++;
}
#if 0//defined(ARCH_ARM_HAVE_NEON)
if((x1 + 3) < x2) {
uint32_t len = (x2 - x1 - 3) >> 1;
rsdIntrinsicConvolve5x5_K(out, py0, py1, py2, py3, py4, cp->ip, len);
out += len << 1;
x1 += len << 1;
}
#endif
while(x1 < x2) {
OneU2(info, x1, out, py0, py1, py2, py3, py4, cp->mFp);
out++;
x1++;
}
}
void RsdCpuScriptIntrinsicConvolve5x5::kernelU1(const RsExpandKernelDriverInfo *info,
uint32_t xstart, uint32_t xend,
uint32_t outstep) {
RsdCpuScriptIntrinsicConvolve5x5 *cp = (RsdCpuScriptIntrinsicConvolve5x5 *)info->usr;
if (!cp->alloc.get()) {
ALOGE("Convolve5x5 executed without input, skipping");
return;
}
const uchar *pin = (const uchar *)cp->alloc->mHal.drvState.lod[0].mallocPtr;
const size_t stride = cp->alloc->mHal.drvState.lod[0].stride;
uint32_t y0 = rsMax((int32_t)info->current.y-2, 0);
uint32_t y1 = rsMax((int32_t)info->current.y-1, 0);
uint32_t y2 = info->current.y;
uint32_t y3 = rsMin((int32_t)info->current.y+1, (int32_t)(info->dim.y-1));
uint32_t y4 = rsMin((int32_t)info->current.y+2, (int32_t)(info->dim.y-1));
const uchar *py0 = (const uchar *)(pin + stride * y0);
const uchar *py1 = (const uchar *)(pin + stride * y1);
const uchar *py2 = (const uchar *)(pin + stride * y2);
const uchar *py3 = (const uchar *)(pin + stride * y3);
const uchar *py4 = (const uchar *)(pin + stride * y4);
uchar *out = (uchar *)info->outPtr[0];
uint32_t x1 = xstart;
uint32_t x2 = xend;
while((x1 < x2) && (x1 < 2)) {
OneU1(info, x1, out, py0, py1, py2, py3, py4, cp->mFp);
out++;
x1++;
}
#if 0//defined(ARCH_ARM_HAVE_NEON)
if((x1 + 3) < x2) {
uint32_t len = (x2 - x1 - 3) >> 1;
rsdIntrinsicConvolve5x5_K(out, py0, py1, py2, py3, py4, cp->ip, len);
out += len << 1;
x1 += len << 1;
}
#endif
while(x1 < x2) {
OneU1(info, x1, out, py0, py1, py2, py3, py4, cp->mFp);
out++;
x1++;
}
}
void RsdCpuScriptIntrinsicConvolve5x5::kernelF4(const RsExpandKernelDriverInfo *info,
uint32_t xstart, uint32_t xend,
uint32_t outstep) {
RsdCpuScriptIntrinsicConvolve5x5 *cp = (RsdCpuScriptIntrinsicConvolve5x5 *)info->usr;
if (!cp->alloc.get()) {
ALOGE("Convolve5x5 executed without input, skipping");
return;
}
const uchar *pin = (const uchar *)cp->alloc->mHal.drvState.lod[0].mallocPtr;
const size_t stride = cp->alloc->mHal.drvState.lod[0].stride;
uint32_t y0 = rsMax((int32_t)info->current.y-2, 0);
uint32_t y1 = rsMax((int32_t)info->current.y-1, 0);
uint32_t y2 = info->current.y;
uint32_t y3 = rsMin((int32_t)info->current.y+1, (int32_t)(info->dim.y-1));
uint32_t y4 = rsMin((int32_t)info->current.y+2, (int32_t)(info->dim.y-1));
const float4 *py0 = (const float4 *)(pin + stride * y0);
const float4 *py1 = (const float4 *)(pin + stride * y1);
const float4 *py2 = (const float4 *)(pin + stride * y2);
const float4 *py3 = (const float4 *)(pin + stride * y3);
const float4 *py4 = (const float4 *)(pin + stride * y4);
float4 *out = (float4 *)info->outPtr[0];
uint32_t x1 = xstart;
uint32_t x2 = xend;
while((x1 < x2) && (x1 < 2)) {
OneF4(info, x1, out, py0, py1, py2, py3, py4, cp->mFp);
out++;
x1++;
}
#if 0//defined(ARCH_ARM_HAVE_NEON)
if((x1 + 3) < x2) {
uint32_t len = (x2 - x1 - 3) >> 1;
rsdIntrinsicConvolve5x5_K(out, py0, py1, py2, py3, py4, cp->ip, len);
out += len << 1;
x1 += len << 1;
}
#endif
while(x1 < x2) {
OneF4(info, x1, out, py0, py1, py2, py3, py4, cp->mFp);
out++;
x1++;
}
}
void RsdCpuScriptIntrinsicConvolve5x5::kernelF2(const RsExpandKernelDriverInfo *info,
uint32_t xstart, uint32_t xend,
uint32_t outstep) {
RsdCpuScriptIntrinsicConvolve5x5 *cp = (RsdCpuScriptIntrinsicConvolve5x5 *)info->usr;
if (!cp->alloc.get()) {
ALOGE("Convolve5x5 executed without input, skipping");
return;
}
const uchar *pin = (const uchar *)cp->alloc->mHal.drvState.lod[0].mallocPtr;
const size_t stride = cp->alloc->mHal.drvState.lod[0].stride;
uint32_t y0 = rsMax((int32_t)info->current.y-2, 0);
uint32_t y1 = rsMax((int32_t)info->current.y-1, 0);
uint32_t y2 = info->current.y;
uint32_t y3 = rsMin((int32_t)info->current.y+1, (int32_t)(info->dim.y-1));
uint32_t y4 = rsMin((int32_t)info->current.y+2, (int32_t)(info->dim.y-1));
const float2 *py0 = (const float2 *)(pin + stride * y0);
const float2 *py1 = (const float2 *)(pin + stride * y1);
const float2 *py2 = (const float2 *)(pin + stride * y2);
const float2 *py3 = (const float2 *)(pin + stride * y3);
const float2 *py4 = (const float2 *)(pin + stride * y4);
float2 *out = (float2 *)info->outPtr[0];
uint32_t x1 = xstart;
uint32_t x2 = xend;
while((x1 < x2) && (x1 < 2)) {
OneF2(info, x1, out, py0, py1, py2, py3, py4, cp->mFp);
out++;
x1++;
}
#if 0//defined(ARCH_ARM_HAVE_NEON)
if((x1 + 3) < x2) {
uint32_t len = (x2 - x1 - 3) >> 1;
rsdIntrinsicConvolve5x5_K(out, py0, py1, py2, py3, py4, cp->ip, len);
out += len << 1;
x1 += len << 1;
}
#endif
while(x1 < x2) {
OneF2(info, x1, out, py0, py1, py2, py3, py4, cp->mFp);
out++;
x1++;
}
}
void RsdCpuScriptIntrinsicConvolve5x5::kernelF1(const RsExpandKernelDriverInfo *info,
uint32_t xstart, uint32_t xend,
uint32_t outstep) {
RsdCpuScriptIntrinsicConvolve5x5 *cp = (RsdCpuScriptIntrinsicConvolve5x5 *)info->usr;
if (!cp->alloc.get()) {
ALOGE("Convolve5x5 executed without input, skipping");
return;
}
const uchar *pin = (const uchar *)cp->alloc->mHal.drvState.lod[0].mallocPtr;
const size_t stride = cp->alloc->mHal.drvState.lod[0].stride;
uint32_t y0 = rsMax((int32_t)info->current.y-2, 0);
uint32_t y1 = rsMax((int32_t)info->current.y-1, 0);
uint32_t y2 = info->current.y;
uint32_t y3 = rsMin((int32_t)info->current.y+1, (int32_t)(info->dim.y-1));
uint32_t y4 = rsMin((int32_t)info->current.y+2, (int32_t)(info->dim.y-1));
const float *py0 = (const float *)(pin + stride * y0);
const float *py1 = (const float *)(pin + stride * y1);
const float *py2 = (const float *)(pin + stride * y2);
const float *py3 = (const float *)(pin + stride * y3);
const float *py4 = (const float *)(pin + stride * y4);
float *out = (float *)info->outPtr[0];
uint32_t x1 = xstart;
uint32_t x2 = xend;
while((x1 < x2) && (x1 < 2)) {
OneF1(info, x1, out, py0, py1, py2, py3, py4, cp->mFp);
out++;
x1++;
}
#if 0//defined(ARCH_ARM_HAVE_NEON)
if((x1 + 3) < x2) {
uint32_t len = (x2 - x1 - 3) >> 1;
rsdIntrinsicConvolve5x5_K(out, py0, py1, py2, py3, py4, cp->ip, len);
out += len << 1;
x1 += len << 1;
}
#endif
while(x1 < x2) {
OneF1(info, x1, out, py0, py1, py2, py3, py4, cp->mFp);
out++;
x1++;
}
}
RsdCpuScriptIntrinsicConvolve5x5::RsdCpuScriptIntrinsicConvolve5x5(
RsdCpuReferenceImpl *ctx, const Script *s, const Element *e)
: RsdCpuScriptIntrinsic(ctx, s, e, RS_SCRIPT_INTRINSIC_ID_CONVOLVE_5x5) {
if (e->getType() == RS_TYPE_FLOAT_32) {
switch(e->getVectorSize()) {
case 1:
mRootPtr = &kernelF1;
break;
case 2:
mRootPtr = &kernelF2;
break;
case 3:
case 4:
mRootPtr = &kernelF4;
break;
}
} else {
switch(e->getVectorSize()) {
case 1:
mRootPtr = &kernelU1;
break;
case 2:
mRootPtr = &kernelU2;
break;
case 3:
case 4:
mRootPtr = &kernelU4;
break;
}
}
for(int ct=0; ct < 25; ct++) {
mFp[ct] = 1.f / 25.f;
mIp[ct] = (short)(mFp[ct] * 256.f);
}
}
RsdCpuScriptIntrinsicConvolve5x5::~RsdCpuScriptIntrinsicConvolve5x5() {
}
void RsdCpuScriptIntrinsicConvolve5x5::populateScript(Script *s) {
s->mHal.info.exportedVariableCount = 2;
}
void RsdCpuScriptIntrinsicConvolve5x5::invokeFreeChildren() {
alloc.clear();
}
RsdCpuScriptImpl * rsdIntrinsic_Convolve5x5(RsdCpuReferenceImpl *ctx,
const Script *s, const Element *e) {
return new RsdCpuScriptIntrinsicConvolve5x5(ctx, s, e);
}