C++程序  |  462行  |  21.14 KB


#include "wifi_hal.h"

#ifndef __WIFI_HAL_GSCAN_H__
#define __WIFI_HAL_GSCAN_H__

/* AP Scans */

typedef enum {
    WIFI_BAND_UNSPECIFIED,
    WIFI_BAND_BG = 1,                       // 2.4 GHz
    WIFI_BAND_A = 2,                        // 5 GHz without DFS
    WIFI_BAND_A_DFS = 4,                    // 5 GHz DFS only
    WIFI_BAND_A_WITH_DFS = 6,               // 5 GHz with DFS
    WIFI_BAND_ABG = 3,                      // 2.4 GHz + 5 GHz; no DFS
    WIFI_BAND_ABG_WITH_DFS = 7,             // 2.4 GHz + 5 GHz with DFS
} wifi_band;

const unsigned MAX_CHANNELS                = 16;
const unsigned MAX_BUCKETS                 = 16;
const unsigned MAX_HOTLIST_APS             = 128;
const unsigned MAX_SIGNIFICANT_CHANGE_APS  = 64;
const unsigned MAX_PNO_SSID                = 64;
const unsigned MAX_HOTLIST_SSID            = 8;
const unsigned MAX_BLACKLIST_BSSID         = 16;
const unsigned MAX_AP_CACHE_PER_SCAN       = 32;

wifi_error wifi_get_valid_channels(wifi_interface_handle handle,
        int band, int max_channels, wifi_channel *channels, int *num_channels);

typedef struct {
    int max_scan_cache_size;                 // total space allocated for scan (in bytes)
    int max_scan_buckets;                    // maximum number of channel buckets
    int max_ap_cache_per_scan;               // maximum number of APs that can be stored per scan
    int max_rssi_sample_size;                // number of RSSI samples used for averaging RSSI
    int max_scan_reporting_threshold;        // max possible report_threshold as described
                                             // in wifi_scan_cmd_params
    int max_hotlist_bssids;                  // maximum number of entries for hotlist BSSIDs
    int max_hotlist_ssids;                   // maximum number of entries for hotlist SSIDs
    int max_significant_wifi_change_aps;     // maximum number of entries for
                                             // significant wifi change APs
    int max_bssid_history_entries;           // number of BSSID/RSSI entries that device can hold
    int max_number_epno_networks;            // max number of epno entries
    int max_number_epno_networks_by_ssid;    // max number of epno entries if ssid is specified,
                                             // that is, epno entries for which an exact match is
                                             // required, or entries corresponding to hidden ssids
    int max_number_of_white_listed_ssid;     // max number of white listed SSIDs, M target is 2 to 4
} wifi_gscan_capabilities;

wifi_error wifi_get_gscan_capabilities(wifi_interface_handle handle,
        wifi_gscan_capabilities *capabilities);

typedef enum {
   WIFI_SCAN_BUFFER_FULL,
   WIFI_SCAN_COMPLETE,
} wifi_scan_event;


/* Format of information elements found in the beacon */
typedef struct {
    byte id;                            // element identifier
    byte len;                           // number of bytes to follow
    byte data[];
} wifi_information_element;

typedef struct {
    wifi_timestamp ts;                  // time since boot (in microsecond) when the result was
                                        // retrieved
    char ssid[32+1];                    // null terminated
    mac_addr bssid;
    wifi_channel channel;               // channel frequency in MHz
    wifi_rssi rssi;                     // in db
    wifi_timespan rtt;                  // in nanoseconds
    wifi_timespan rtt_sd;               // standard deviation in rtt
    unsigned short beacon_period;       // period advertised in the beacon
    unsigned short capability;          // capabilities advertised in the beacon
    unsigned int ie_length;             // size of the ie_data blob
    char         ie_data[1];            // blob of all the information elements found in the
                                        // beacon; this data should be a packed list of
                                        // wifi_information_element objects, one after the other.
    // other fields
} wifi_scan_result;

typedef struct {
    /* reported when report_threshold is reached in scan cache */
    void (*on_scan_results_available) (wifi_request_id id, unsigned num_results_available);

    /* reported when each probe response is received, if report_events
     * enabled in wifi_scan_cmd_params */
    void (*on_full_scan_result) (wifi_request_id id, wifi_scan_result *result);

    /* optional event - indicates progress of scanning statemachine */
    void (*on_scan_event) (wifi_scan_event event, unsigned status);

} wifi_scan_result_handler;

typedef struct {
    wifi_channel channel;               // frequency
    int dwellTimeMs;                    // dwell time hint
    int passive;                        // 0 => active, 1 => passive scan; ignored for DFS
    /* Add channel class */
} wifi_scan_channel_spec;

#define REPORT_EVENTS_BUFFER_FULL      0
#define REPORT_EVENTS_EACH_SCAN        1
#define REPORT_EVENTS_FULL_RESULTS     2
#define REPORT_EVENTS_NO_BATCH         4

typedef struct {
    int bucket;                         // bucket index, 0 based
    wifi_band band;                     // when UNSPECIFIED, use channel list
    int period;                         // desired period, in millisecond; if this is too
                                        // low, the firmware should choose to generate results as
                                        // fast as it can instead of failing the command.
                                        // for exponential backoff bucket this is the min_period
    /* report_events semantics -
     *  This is a bit field; which defines following bits -
     *  REPORT_EVENTS_BUFFER_FULL  => report only when scan history is % full
     *  REPORT_EVENTS_EACH_SCAN    => report a scan completion event after scan
     *  REPORT_EVENTS_FULL_RESULTS => forward scan results (beacons/probe responses + IEs)
     *                                 in real time to HAL, in addition to completion events
     *                                 Note: To keep backward compatibility, fire completion
     *                                 events regardless of REPORT_EVENTS_EACH_SCAN.
     *  REPORT_EVENTS_NO_BATCH     => controls batching, 0 => batching, 1 => no batching
     */
    byte report_events;
    int max_period; // if max_period is non zero or different than period, then this bucket is
                    // an exponential backoff bucket and the scan period will grow exponentially
                    // as per formula: actual_period(N) = period ^ (N/(step_count+1))
                    // to a maximum period of max_period
    int exponent;   // for exponential back off bucket: multiplier: new_period=old_period*exponent
    int step_count; // for exponential back off bucket, number of scans performed at a given
                    // period and until the exponent is applied

    int num_channels;
    // channels to scan; these may include DFS channels
    // Note that a given channel may appear in multiple buckets
    wifi_scan_channel_spec channels[MAX_CHANNELS];
} wifi_scan_bucket_spec;

typedef struct {
    int base_period;                    // base timer period in ms
    int max_ap_per_scan;                // number of APs to store in each scan ientryn the
                                        // BSSID/RSSI history buffer (keep the highest RSSI APs)
    int report_threshold_percent;       // in %, when scan buffer is this much full, wake up AP
    int report_threshold_num_scans;     // in number of scans, wake up AP after these many scans
    int num_buckets;
    wifi_scan_bucket_spec buckets[MAX_BUCKETS];
} wifi_scan_cmd_params;

/* Start periodic GSCAN */
wifi_error wifi_start_gscan(wifi_request_id id, wifi_interface_handle iface,
        wifi_scan_cmd_params params, wifi_scan_result_handler handler);

/* Stop periodic GSCAN */
wifi_error wifi_stop_gscan(wifi_request_id id, wifi_interface_handle iface);

typedef enum {
    WIFI_SCAN_FLAG_INTERRUPTED = 1      // Indicates that scan results are not complete because
                                        // probes were not sent on some channels
} wifi_scan_flags;

/* Get the GSCAN cached scan results */
typedef struct {
    int scan_id;                                     // a unique identifier for the scan unit
    int flags;                                       // a bitmask with additional 
                                                     // information about scan
    int num_results;                                 // number of bssids retrieved by the scan
    wifi_scan_result results[MAX_AP_CACHE_PER_SCAN]; // scan results - one for each bssid
} wifi_cached_scan_results;

wifi_error wifi_get_cached_gscan_results(wifi_interface_handle iface, byte flush,
        int max, wifi_cached_scan_results *results, int *num);

/* BSSID Hotlist */
typedef struct {
    void (*on_hotlist_ap_found)(wifi_request_id id,
            unsigned num_results, wifi_scan_result *results);
    void (*on_hotlist_ap_lost)(wifi_request_id id,
            unsigned num_results, wifi_scan_result *results);
} wifi_hotlist_ap_found_handler;

typedef struct {
    mac_addr  bssid;                    // AP BSSID
    wifi_rssi low;                      // low threshold
    wifi_rssi high;                     // high threshold
} ap_threshold_param;

typedef struct {
    int lost_ap_sample_size;
    int num_bssid;                                 // number of hotlist APs
    ap_threshold_param ap[MAX_HOTLIST_APS];     // hotlist APs
} wifi_bssid_hotlist_params;

/* Set the BSSID Hotlist */
wifi_error wifi_set_bssid_hotlist(wifi_request_id id, wifi_interface_handle iface,
        wifi_bssid_hotlist_params params, wifi_hotlist_ap_found_handler handler);

/* Clear the BSSID Hotlist */
wifi_error wifi_reset_bssid_hotlist(wifi_request_id id, wifi_interface_handle iface);

/* SSID Hotlist */
typedef struct {
    void (*on_hotlist_ssid_found)(wifi_request_id id,
            unsigned num_results, wifi_scan_result *results);
    void (*on_hotlist_ssid_lost)(wifi_request_id id,
            unsigned num_results, wifi_scan_result *results);
} wifi_hotlist_ssid_handler;

typedef struct {
    char  ssid[32+1];                   // SSID
    wifi_band band;                     // band for this set of threshold params
    wifi_rssi low;                      // low threshold
    wifi_rssi high;                     // high threshold
} ssid_threshold_param;

typedef struct {
    int lost_ssid_sample_size;
    int num_ssid;                                   // number of hotlist SSIDs
    ssid_threshold_param ssid[MAX_HOTLIST_SSID];    // hotlist SSIDs
} wifi_ssid_hotlist_params;


/* Set the SSID Hotlist */
wifi_error wifi_set_ssid_hotlist(wifi_request_id id, wifi_interface_handle iface,
        wifi_ssid_hotlist_params params, wifi_hotlist_ssid_handler handler);

/* Clear the SSID Hotlist */
wifi_error wifi_reset_ssid_hotlist(wifi_request_id id, wifi_interface_handle iface);


/* BSSID blacklist */
typedef struct {
    int num_bssid;                           // number of blacklisted BSSIDs
    mac_addr bssids[MAX_BLACKLIST_BSSID];    // blacklisted BSSIDs
} wifi_bssid_params;

/* Set the BSSID blacklist */
wifi_error wifi_set_bssid_blacklist(wifi_request_id id, wifi_interface_handle iface,
        wifi_bssid_params params);


/* Significant wifi change */
typedef struct {
    mac_addr bssid;                     // BSSID
    wifi_channel channel;               // channel frequency in MHz
    int num_rssi;                       // number of rssi samples
    wifi_rssi rssi[];                   // RSSI history in db
} wifi_significant_change_result;

typedef struct {
    void (*on_significant_change)(wifi_request_id id,
            unsigned num_results, wifi_significant_change_result **results);
} wifi_significant_change_handler;

// The sample size parameters in the wifi_significant_change_params structure
// represent the number of occurence of a g-scan where the BSSID was seen and RSSI was
// collected for that BSSID, or, the BSSID was expected to be seen and didn't.
// for instance: lost_ap_sample_size : number of time a g-scan was performed on the
// channel the BSSID was seen last, and the BSSID was not seen during those g-scans
typedef struct {
    int rssi_sample_size;               // number of samples for averaging RSSI
    int lost_ap_sample_size;            // number of samples to confirm AP loss
    int min_breaching;                  // number of APs breaching threshold
    int num_bssid;                         // max 64
    ap_threshold_param ap[MAX_SIGNIFICANT_CHANGE_APS];
} wifi_significant_change_params;

/* Set the Signifcant AP change list */
wifi_error wifi_set_significant_change_handler(wifi_request_id id, wifi_interface_handle iface,
        wifi_significant_change_params params, wifi_significant_change_handler handler);

/* Clear the Signifcant AP change list */
wifi_error wifi_reset_significant_change_handler(wifi_request_id id, wifi_interface_handle iface);

/* Random MAC OUI for PNO */
wifi_error wifi_set_scanning_mac_oui(wifi_interface_handle handle, oui scan_oui);

// Whether directed scan needs to be performed (for hidden SSIDs)
#define WIFI_PNO_FLAG_DIRECTED_SCAN = 1
// Whether PNO event shall be triggered if the network is found on A band
#define WIFI_PNO_FLAG_A_BAND = 2
// Whether PNO event shall be triggered if the network is found on G band
#define WIFI_PNO_FLAG_G_BAND = 4
// Whether strict matching is required (i.e. firmware shall not match on the entire SSID)
#define WIFI_PNO_FLAG_STRICT_MATCH = 8

// Code for matching the beacon AUTH IE - additional codes TBD
#define WIFI_PNO_AUTH_CODE_OPEN  1 // open
#define WIFI_PNO_AUTH_CODE_PSK   2 // WPA_PSK or WPA2PSK
#define WIFI_PNO_AUTH_CODE_EAPOL 4 // any EAPOL

// Enhanced PNO:
// Enhanced PNO feature is expected to be enabled all of the time (e.g. screen lit) and may thus
// requires firmware to store a large number of networks, covering the whole list of known network.
// Therefore, it is acceptable for firmware to store a crc24, crc32 or other short hash of the SSID,
// such that a low but non-zero probability of collision exist. With that scheme it should be
// possible for firmware to keep an entry as small as 4 bytes for each pno network.
// For instance, a firmware pn0 entry can be implemented in the form of:
//          PNO ENTRY = crc24(3 bytes) | RSSI_THRESHOLD>>3 (5 bits) | auth flags(3 bits)
//
// A PNO network shall be reported once, that is, once a network is reported by firmware
// its entry shall be marked as "done" until framework calls wifi_set_epno_list again.
// Calling wifi_set_epno_list shall reset the "done" status of pno networks in firmware.
typedef struct {
    char ssid[32+1];
    byte rssi_threshold; // threshold for considering this SSID as found, required granularity for
                         // this threshold is 4dBm to 8dBm
    byte flags;          //  WIFI_PNO_FLAG_XXX
    byte auth_bit_field; // auth bit field for matching WPA IE
} wifi_epno_network;

/* PNO list */
typedef struct {
    int num_networks;                 // number of SSIDs
    wifi_epno_network networks[];     // PNO networks
} wifi_epno_params;

typedef struct {
    // on results
    void (*on_network_found)(wifi_request_id id,
            unsigned num_results, wifi_scan_result *results);
} wifi_epno_handler;


/* Set the PNO list */
wifi_error wifi_set_epno_list(wifi_request_id id, wifi_interface_handle iface,
        int num_networks, wifi_epno_network *networks, wifi_epno_handler handler);


/* SSID white list */
/* Note that this feature requires firmware to be able to indicate to kernel sme and wpa_supplicant
 * that the SSID of the network has changed
 * and thus requires further changed in cfg80211 stack, for instance,
 * the below function would change:

 void __cfg80211_roamed(struct wireless_dev *wdev,
 		       struct cfg80211_bss *bss,
 		       const u8 *req_ie, size_t req_ie_len,
 		       const u8 *resp_ie, size_t resp_ie_len)
 * when firmware roam to a new SSID the corresponding link layer stats info need to be updated:
     struct wifi_interface_link_layer_info;
 */
typedef struct {
    char ssid[32+1]; // null terminated
} wifi_ssid;

wifi_error wifi_set_ssid_white_list(wifi_request_id id, wifi_interface_handle iface,
        int num_networks, wifi_ssid *ssids);

/* Set G-SCAN roam parameters */
/**
 * Firmware roaming is implemented with two modes:
 *   1- "Alert" mode roaming, (Note: alert roaming is the pre-L roaming, whereas firmware is
 *      "urgently" hunting for another BSSID because the RSSI is low, or because many successive
 *      beacons have been lost or other bad link conditions).
 *   2- "Lazy" mode, where firmware is hunting for a better BSSID or white listed SSID even though
 *      the RSSI of the link is good.
 *      Lazy mode is configured thru G-scan, that is, the results of G-scans are compared to the
 *      current RSSI and fed thru the roaming engine.
 *      Lazy scan will be enabled (and or throttled down by reducing the number of G-scans) by
 *      framework only in certain conditions, such as:
 *          - no real time (VO/VI) traffic at the interface
 *          - low packet rate for BE/BK packets a the interface
 *          - system conditions (screen lit/dark) etc...
 *
 * For consistency, the roam parameters will always be configured by framework such that:
 *
 * condition 1- A_band_boost_threshold >= (alert_roam_rssi_trigger + 10)
 * This condition ensures that Lazy roam doesn't cause the device to roam to a 5GHz BSSID whose RSSI
 * is lower than the alert threshold, which would consequently trigger a roam to a low RSSI BSSID,
 * hence triggering alert mode roaming.
 * In other words, in alert mode, the A_band parameters may safely be ignored by WiFi chipset.
 *
 * condition 2- A_band_boost_threshold > A_band_penalty_factor
 *
 */

/**
 * Example:
 * A_band_boost_threshold = -65
 * A_band_penalty_threshold = -75
 * A_band_boost_factor = 4
 * A_band_penalty_factor = 2
 * A_band_max_boost = 50
 *
 * a 5GHz RSSI value is transformed as below:
 * -20 -> -20+ 50 = 30
 * -60 -> -60 + 4 * (-60 - A_band_boost_threshold) = -60 + 16 = -44
 * -70 -> -70
 * -80 -> -80 - 2 * (A_band_penalty_threshold - (-80)) = -80 - 10 = -90
 */

typedef struct {
    // Lazy roam parameters
    // A_band_XX parameters are applied to 5GHz BSSIDs when comparing with a 2.4GHz BSSID
    // they may not be applied when comparing two 5GHz BSSIDs
    int A_band_boost_threshold;     // RSSI threshold above which 5GHz RSSI is favored
    int A_band_penalty_threshold;   // RSSI threshold below which 5GHz RSSI is penalized
    int A_band_boost_factor;        // factor by which 5GHz RSSI is boosted
                               // boost=RSSI_measured-5GHz_boost_threshold)*5GHz_boost_factor
    int A_band_penalty_factor;      // factor by which 5GHz RSSI is penalized
                               // penalty=(5GHz_penalty_factor-RSSI_measured)*5GHz_penalty_factor
    int A_band_max_boost;           // maximum boost that can be applied to a 5GHz RSSI

    // Hysteresis: ensuring the currently associated BSSID is favored
    // so as to prevent ping-pong situations
    int lazy_roam_hysteresis;       // boost applied to current BSSID

    // Alert mode enable, i.e. configuring when firmware enters alert mode
    int alert_roam_rssi_trigger;    // RSSI below which "Alert" roam is enabled
} wifi_roam_params;

wifi_error wifi_set_gscan_roam_params(wifi_request_id id, wifi_interface_handle iface,
                                        wifi_roam_params * params);

/**
 * Enable/Disable "Lazy" roam
 */
wifi_error wifi_enable_lazy_roam(wifi_request_id id, wifi_interface_handle iface, int enable);

/**
 * Per BSSID preference
 */
typedef struct {
    mac_addr bssid;
    int rssi_modifier;  // modifier applied to the RSSI of the BSSID for the purpose of comparing
                        // it with other roam candidate
} wifi_bssid_preference;

wifi_error wifi_set_bssid_preference(wifi_request_id id, wifi_interface_handle iface,
                                    int num_bssid, wifi_bssid_preference *prefs);

typedef struct {
    int  id;                            // identifier of this network block, report this in event
    char realm[256];                    // null terminated UTF8 encoded realm, 0 if unspecified
    int64_t roamingConsortiumIds[16];   // roaming consortium ids to match, 0s if unspecified
    byte plmn[3];                       // mcc/mnc combination as per rules, 0s if unspecified
} wifi_passpoint_network;

typedef struct {
    void (*on_passpoint_network_found)(
            wifi_request_id id,
            int net_id,                        // network block identifier for the matched network
            wifi_scan_result *result,          // scan result, with channel and beacon information
            int anqp_len,                      // length of ANQP blob
            byte *anqp                         // ANQP data, in the information_element format
            );
} wifi_passpoint_event_handler;

/* Sets a list for passpoint networks for PNO purposes; it should be matched
 * against any passpoint networks (designated by Interworking element) found
 * during regular PNO scan. */
wifi_error wifi_set_passpoint_list(wifi_request_id id, wifi_interface_handle iface, int num,
        wifi_passpoint_network *networks, wifi_passpoint_event_handler handler);

/* Reset passpoint network list - no Passpoint networks should be matched after this */
wifi_error wifi_reset_passpoint_list(wifi_request_id id, wifi_interface_handle iface);

#endif