# Common functions for all prebuilt-related scripts
# This is included/sourced by other scripts
#
# ensure stable sort order
export LC_ALL=C
# NDK_BUILDTOOLS_PATH should point to the directory containing
# this script. If it is not defined, assume that this is one of
# the scripts in the same directory that sourced this file.
#
if [ -z "$NDK_BUILDTOOLS_PATH" ]; then
NDK_BUILDTOOLS_PATH=$(dirname $0)
if [ ! -f "$NDK_BUILDTOOLS_PATH/prebuilt-common.sh" ]; then
echo "INTERNAL ERROR: Please define NDK_BUILDTOOLS_PATH to point to $$NDK/build/tools"
exit 1
fi
fi
# Warn about /bin/sh ins't bash.
if [ -z "$BASH_VERSION" ] ; then
echo "WARNING: The shell running this script isn't bash. Although we try to avoid bashism in scripts, things can happen."
fi
NDK_BUILDTOOLS_ABSPATH=$(cd $NDK_BUILDTOOLS_PATH && pwd)
. $NDK_BUILDTOOLS_PATH/ndk-common.sh
. $NDK_BUILDTOOLS_PATH/dev-defaults.sh
# Given an input string of the form <foo>-<bar>-<version>, where
# <version> can be <major>.<minor>, extract <major>
extract_version ()
{
echo $1 | tr '-' '\n' | tail -1
}
# $1: versioned name (e.g. arm-linux-androideabi-4.8)
# Out: major version (e.g. 4)
#
# Examples: arm-linux-androideabi-4.4.3 -> 4
# gmp-0.81 -> 0
#
extract_major_version ()
{
local RET=$(extract_version $1 | cut -d . -f 1)
RET=${RET:-0}
echo $RET
}
# Same as extract_major_version, but for the minor version number
# $1: versioned named
# Out: minor version
#
extract_minor_version ()
{
local RET=$(extract_version $1 | cut -d . -f 2)
RET=${RET:-0}
echo $RET
}
# Compare two version numbers and only succeeds if the first one is
# greather or equal than the second one.
#
# $1: first version (e.g. 4.9)
# $2: second version (e.g. 4.8)
#
# Example: version_is_at_least 4.9 4.8 --> success
#
version_is_at_least ()
{
local A_MAJOR A_MINOR B_MAJOR B_MINOR
A_MAJOR=$(extract_major_version $1)
B_MAJOR=$(extract_major_version $2)
if [ $A_MAJOR -lt $B_MAJOR ]; then
return 1
elif [ $A_MAJOR -gt $B_MAJOR ]; then
return 0
fi
# We have A_MAJOR == B_MAJOR here
A_MINOR=$(extract_minor_version $1)
B_MINOR=$(extract_minor_version $2)
if [ $A_MINOR -lt $B_MINOR ]; then
return 1
else
return 0
fi
}
#====================================================
#
# UTILITY FUNCTIONS
#
#====================================================
# Return the maximum length of a series of strings
#
# Usage: len=`max_length <string1> <string2> ...`
#
max_length ()
{
echo "$@" | tr ' ' '\n' | awk 'BEGIN {max=0} {len=length($1); if (len > max) max=len} END {print max}'
}
# Translate dashes to underscores
# Usage: str=`dashes_to_underscores <values>`
dashes_to_underscores ()
{
echo "$@" | tr '-' '_'
}
# Translate underscores to dashes
# Usage: str=`underscores_to_dashes <values>`
underscores_to_dashes ()
{
echo "$@" | tr '_' '-'
}
# Translate commas to spaces
# Usage: str=`commas_to_spaces <list>`
commas_to_spaces ()
{
echo "$@" | tr ',' ' '
}
# Translate spaces to commas
# Usage: list=`spaces_to_commas <string>`
spaces_to_commas ()
{
echo "$@" | tr ' ' ','
}
# Remove trailing path of a path
# $1: path
remove_trailing_slash () {
echo ${1%%/}
}
# Reverse a file path directory
# foo -> .
# foo/bar -> ..
# foo/bar/zoo -> ../..
reverse_path ()
{
local path cur item
path=${1%%/} # remove trailing slash
cur="."
if [ "$path" != "." ] ; then
for item in $(echo "$path" | tr '/' ' '); do
cur="../$cur"
done
fi
echo ${cur%%/.}
}
# test_reverse_path ()
# {
# rr=`reverse_path $1`
# if [ "$rr" != "$2" ] ; then
# echo "ERROR: reverse_path '$1' -> '$rr' (expected '$2')"
# fi
# }
#
# test_reverse_path . .
# test_reverse_path ./ .
# test_reverse_path foo ..
# test_reverse_path foo/ ..
# test_reverse_path foo/bar ../..
# test_reverse_path foo/bar/ ../..
# test_reverse_path foo/bar/zoo ../../..
# test_reverse_path foo/bar/zoo/ ../../..
# Sort a space-separated list and remove duplicates
# $1+: slist
# Output: new slist
sort_uniq ()
{
local RET
RET=$(echo "$@" | tr ' ' '\n' | sort -u)
echo $RET
}
# Return the list of all regular files under a given directory
# $1: Directory path
# Output: list of files, relative to $1
list_files_under ()
{
if [ -d "$1" ]; then
(cd $1 && find . -type f | sed -e "s!./!!" | sort -u)
else
echo ""
fi
}
# Returns all words in text that do not match any of the pattern
# $1: pattern
# $2: text
filter_out ()
{
local PATTERN="$1"
local TEXT="$2"
for pat in $PATTERN; do
pat=$"${pat//\//\\/}"
TEXT=$(echo $TEXT | sed -e 's/'$pat' //g' -e 's/'$pat'$//g')
done
echo $TEXT
}
# Assign a value to a variable
# $1: Variable name
# $2: Value
var_assign ()
{
eval $1=\"$2\"
}
#====================================================
#
# OPTION PROCESSING
#
#====================================================
# We recognize the following option formats:
#
# -f
# --flag
#
# -s<value>
# --setting=<value>
#
# NOTE: We translate '-' into '_' when storing the options in global variables
#
OPTIONS=""
OPTION_FLAGS=""
OPTION_SETTINGS=""
# Set a given option attribute
# $1: option name
# $2: option attribute
# $3: attribute value
#
option_set_attr ()
{
eval OPTIONS_$1_$2=\"$3\"
}
# Get a given option attribute
# $1: option name
# $2: option attribute
#
option_get_attr ()
{
echo `var_value OPTIONS_$1_$2`
}
# Register a new option
# $1: option
# $2: small abstract for the option
# $3: optional. default value
#
register_option_internal ()
{
optlabel=
optname=
optvalue=
opttype=
while [ -n "1" ] ; do
# Check for something like --setting=<value>
echo "$1" | grep -q -E -e '^--[^=]+=<.+>$'
if [ $? = 0 ] ; then
optlabel=`expr -- "$1" : '\(--[^=]*\)=.*'`
optvalue=`expr -- "$1" : '--[^=]*=\(<.*>\)'`
opttype="long_setting"
break
fi
# Check for something like --flag
echo "$1" | grep -q -E -e '^--[^=]+$'
if [ $? = 0 ] ; then
optlabel="$1"
opttype="long_flag"
break
fi
# Check for something like -f<value>
echo "$1" | grep -q -E -e '^-[A-Za-z0-9]<.+>$'
if [ $? = 0 ] ; then
optlabel=`expr -- "$1" : '\(-.\).*'`
optvalue=`expr -- "$1" : '-.\(<.+>\)'`
opttype="short_setting"
break
fi
# Check for something like -f
echo "$1" | grep -q -E -e '^-.$'
if [ $? = 0 ] ; then
optlabel="$1"
opttype="short_flag"
break
fi
echo "ERROR: Invalid option format: $1"
echo " Check register_option call"
exit 1
done
log "new option: type='$opttype' name='$optlabel' value='$optvalue'"
optname=`dashes_to_underscores $optlabel`
OPTIONS="$OPTIONS $optname"
OPTIONS_TEXT="$OPTIONS_TEXT $1"
option_set_attr $optname label "$optlabel"
option_set_attr $optname otype "$opttype"
option_set_attr $optname value "$optvalue"
option_set_attr $optname text "$1"
option_set_attr $optname abstract "$2"
option_set_attr $optname default "$3"
}
# Register a new option with a function callback.
#
# $1: option
# $2: name of function that will be called when the option is parsed
# $3: small abstract for the option
# $4: optional. default value
#
register_option ()
{
local optname optvalue opttype optlabel
register_option_internal "$1" "$3" "$4"
option_set_attr $optname funcname "$2"
}
# Register a new option with a variable store
#
# $1: option
# $2: name of variable that will be set by this option
# $3: small abstract for the option
#
# NOTE: The current value of $2 is used as the default
#
register_var_option ()
{
local optname optvalue opttype optlabel
register_option_internal "$1" "$3" "`var_value $2`"
option_set_attr $optname varname "$2"
}
MINGW=no
DARWIN=no
do_mingw_option ()
{
if [ "$DARWIN" = "yes" ]; then
echo "Can not have both --mingw and --darwin"
exit 1
fi
MINGW=yes;
}
do_darwin_option ()
{
if [ "$MINGW" = "yes" ]; then
echo "Can not have both --mingw and --darwin"
exit 1
fi
DARWIN=yes;
}
register_canadian_option ()
{
if [ "$HOST_OS" = "linux" ] ; then
register_option "--mingw" do_mingw_option "Generate windows binaries on Linux."
register_option "--darwin" do_darwin_option "Generate darwin binaries on Linux."
fi
}
TRY64=no
do_try64_option () { TRY64=yes; }
register_try64_option ()
{
register_option "--try-64" do_try64_option "Generate 64-bit binaries."
}
register_jobs_option ()
{
NUM_JOBS=$BUILD_NUM_CPUS
register_var_option "-j<number>" NUM_JOBS "Use <number> parallel build jobs"
}
# Print the help, including a list of registered options for this program
# Note: Assumes PROGRAM_PARAMETERS and PROGRAM_DESCRIPTION exist and
# correspond to the parameters list and the program description
#
print_help ()
{
local opt text abstract default
echo "Usage: $PROGNAME [options] $PROGRAM_PARAMETERS"
echo ""
if [ -n "$PROGRAM_DESCRIPTION" ] ; then
echo "$PROGRAM_DESCRIPTION"
echo ""
fi
echo "Valid options (defaults are in brackets):"
echo ""
maxw=`max_length "$OPTIONS_TEXT"`
AWK_SCRIPT=`echo "{ printf \"%-${maxw}s\", \\$1 }"`
for opt in $OPTIONS; do
text=`option_get_attr $opt text | awk "$AWK_SCRIPT"`
abstract=`option_get_attr $opt abstract`
default=`option_get_attr $opt default`
if [ -n "$default" ] ; then
echo " $text $abstract [$default]"
else
echo " $text $abstract"
fi
done
echo ""
}
option_panic_no_args ()
{
echo "ERROR: Option '$1' does not take arguments. See --help for usage."
exit 1
}
option_panic_missing_arg ()
{
echo "ERROR: Option '$1' requires an argument. See --help for usage."
exit 1
}
extract_parameters ()
{
local opt optname otype value name fin funcname
PARAMETERS=""
while [ -n "$1" ] ; do
# If the parameter does not begin with a dash
# it is not an option.
param=`expr -- "$1" : '^\([^\-].*\)$'`
if [ -n "$param" ] ; then
if [ -z "$PARAMETERS" ] ; then
PARAMETERS="$1"
else
PARAMETERS="$PARAMETERS $1"
fi
shift
continue
fi
while [ -n "1" ] ; do
# Try to match a long setting, i.e. --option=value
opt=`expr -- "$1" : '^\(--[^=]*\)=.*$'`
if [ -n "$opt" ] ; then
otype="long_setting"
value=`expr -- "$1" : '^--[^=]*=\(.*\)$'`
break
fi
# Try to match a long flag, i.e. --option
opt=`expr -- "$1" : '^\(--.*\)$'`
if [ -n "$opt" ] ; then
otype="long_flag"
value="yes"
break
fi
# Try to match a short setting, i.e. -o<value>
opt=`expr -- "$1" : '^\(-[A-Za-z0-9]\)..*$'`
if [ -n "$opt" ] ; then
otype="short_setting"
value=`expr -- "$1" : '^-.\(.*\)$'`
break
fi
# Try to match a short flag, i.e. -o
opt=`expr -- "$1" : '^\(-.\)$'`
if [ -n "$opt" ] ; then
otype="short_flag"
value="yes"
break
fi
echo "ERROR: Unknown option '$1'. Use --help for list of valid values."
exit 1
done
#echo "Found opt='$opt' otype='$otype' value='$value'"
name=`dashes_to_underscores $opt`
found=0
for xopt in $OPTIONS; do
if [ "$name" != "$xopt" ] ; then
continue
fi
# Check that the type is correct here
#
# This also allows us to handle -o <value> as -o<value>
#
xotype=`option_get_attr $name otype`
if [ "$otype" != "$xotype" ] ; then
case "$xotype" in
"short_flag")
option_panic_no_args $opt
;;
"short_setting")
if [ -z "$2" ] ; then
option_panic_missing_arg $opt
fi
value="$2"
shift
;;
"long_flag")
option_panic_no_args $opt
;;
"long_setting")
option_panic_missing_arg $opt
;;
esac
fi
found=1
break
break
done
if [ "$found" = "0" ] ; then
echo "ERROR: Unknown option '$opt'. See --help for usage."
exit 1
fi
# Set variable or launch option-specific function.
varname=`option_get_attr $name varname`
if [ -n "$varname" ] ; then
eval ${varname}=\"$value\"
else
eval `option_get_attr $name funcname` \"$value\"
fi
shift
done
}
do_option_help ()
{
print_help
exit 0
}
VERBOSE=no
VERBOSE2=no
do_option_verbose ()
{
if [ $VERBOSE = "yes" ] ; then
VERBOSE2=yes
else
VERBOSE=yes
fi
}
DRYRUN=no
do_option_dryrun ()
{
DRYRUN=yes
}
register_option "--help" do_option_help "Print this help."
register_option "--verbose" do_option_verbose "Enable verbose mode."
register_option "--dryrun" do_option_dryrun "Set to dryrun mode."
#====================================================
#
# TOOLCHAIN AND ABI PROCESSING
#
#====================================================
# Determine optional variable value
# $1: final variable name
# $2: option variable name
# $3: small description for the option
fix_option ()
{
if [ -n "$2" ] ; then
eval $1="$2"
log "Using specific $3: $2"
else
log "Using default $3: `var_value $1`"
fi
}
# If SYSROOT is empty, check that $1/$2 contains a sysroot
# and set the variable to it.
#
# $1: sysroot path
# $2: platform/arch suffix
check_sysroot ()
{
if [ -z "$SYSROOT" ] ; then
log "Probing directory for sysroot: $1/$2"
if [ -d $1/$2 ] ; then
SYSROOT=$1/$2
fi
fi
}
# Determine sysroot
# $1: Option value (or empty)
#
fix_sysroot ()
{
if [ -n "$1" ] ; then
eval SYSROOT="$1"
log "Using specified sysroot: $1"
else
SYSROOT_SUFFIX=$PLATFORM/arch-$ARCH
SYSROOT=
check_sysroot $NDK_DIR/platforms $SYSROOT_SUFFIX
check_sysroot $ANDROID_NDK_ROOT/platforms $SYSROOT_SUFFIX
check_sysroot `dirname $ANDROID_NDK_ROOT`/development/ndk/platforms $SYSROOT_SUFFIX
if [ -z "$SYSROOT" ] ; then
echo "ERROR: Could not find NDK sysroot path for $SYSROOT_SUFFIX."
echo " Use --sysroot=<path> to specify one."
exit 1
fi
fi
if [ ! -f $SYSROOT/usr/include/stdlib.h ] ; then
echo "ERROR: Invalid sysroot path: $SYSROOT"
echo " Use --sysroot=<path> to indicate a valid one."
exit 1
fi
}
# Check for the availability of a compatibility SDK in Darwin
# this can be used to generate binaries compatible with either Tiger or
# Leopard.
#
# $1: SDK root path
# $2: Optional MacOS X minimum version (e.g. 10.5)
DARWIN_MINVER=10.6
check_darwin_sdk ()
{
local MACSDK="$1"
local MINVER=$2
if [ -z "$MINVER" ] ; then
# expect SDK root path ended up with either MacOSX##.#.sdk or MacOSX##.#u.sdk
MINVER=${MACSDK##*MacOSX}
MINVER=${MINVER%%.sdk*}
if [ "$MINVER" = "10.4u" ]; then
MINVER=10.4
fi
fi
if [ -d "$MACSDK" ] ; then
HOST_CFLAGS=$HOST_CFLAGS" -isysroot $MACSDK -mmacosx-version-min=$MINVER -DMAXOSX_DEPLOYEMENT_TARGET=$MINVER"
HOST_LDFLAGS=$HOST_LDFLAGS" -Wl,-syslibroot,$MACSDK -mmacosx-version-min=$MINVER"
DARWIN_MINVER=$MINVER
return 0 # success
fi
return 1
}
# Probe Darwin SDK in specified diectory $DARWIN_SYSROOT, or
# /Developer/SDKs/MacOSX10.6.sdk
#
probe_darwin_sdk ()
{
if [ -n "$DARWIN_SYSROOT" ]; then
if check_darwin_sdk "$DARWIN_SYSROOT"; then
log "Use darwin sysroot $DARWIN_SYSROOT"
else
echo "darwin sysroot $DARWIN_SYSROOT is not valid"
exit 1
fi
elif check_darwin_sdk /Developer/SDKs/MacOSX10.6.sdk 10.6; then
log "Generating Snow Leopard-compatible binaries!"
else
local version=`sw_vers -productVersion`
log "Generating $version-compatible binaries!"
fi
}
handle_canadian_build ()
{
HOST_EXE=
if [ "$MINGW" = "yes" -o "$DARWIN" = "yes" ] ; then
case $HOST_TAG in
linux-*)
;;
*)
echo "ERROR: Can only enable --mingw or --darwin on Linux platforms !"
exit 1
;;
esac
if [ "$MINGW" = "yes" ] ; then
# NOTE: Use x86_64-pc-mingw32msvc or i586-pc-mingw32msvc because wrappers are generated
# using these names
if [ "$TRY64" = "yes" ]; then
ABI_CONFIGURE_HOST=x86_64-pc-mingw32msvc
HOST_TAG=windows-x86_64
else
ABI_CONFIGURE_HOST=i586-pc-mingw32msvc
HOST_TAG=windows
fi
HOST_OS=windows
HOST_EXE=.exe
else
if [ "$TRY64" = "yes" ]; then
ABI_CONFIGURE_HOST=x86_64-apple-darwin
HOST_TAG=darwin-x86_64
else
ABI_CONFIGURE_HOST=i686-apple-darwin
HOST_TAG=darwin-x86
fi
HOST_OS=darwin
fi
fi
}
# Find mingw toolchain
#
# Set MINGW_GCC to the found mingw toolchain
#
find_mingw_toolchain ()
{
if [ "$DEBIAN_NAME" -a "$BINPREFIX" -a "$MINGW_GCC" ]; then
return
fi
# IMPORTANT NOTE: binutils 2.21 requires a cross toolchain named
# i585-pc-mingw32msvc-gcc, or it will fail its configure step late
# in the toolchain build. Note that binutils 2.19 can build properly
# with i585-mingw32mvsc-gcc, which is the name used by the 'mingw32'
# toolchain install on Debian/Ubuntu.
#
# To solve this dilemma, we create a wrapper toolchain named
# i586-pc-mingw32msvc-gcc that really calls i586-mingw32msvc-gcc,
# this works with all versions of binutils.
#
# We apply the same logic to the 64-bit Windows cross-toolchain
#
# Fedora note: On Fedora it's x86_64-w64-mingw32- or i686-w64-mingw32-
# On older Fedora it's 32-bit only and called i686-pc-mingw32-
# so we just add more prefixes to the list to check.
if [ "$HOST_ARCH" = "x86_64" -a "$TRY64" = "yes" ]; then
BINPREFIX=x86_64-pc-mingw32msvc-
BINPREFIXLST="x86_64-pc-mingw32msvc- x86_64-w64-mingw32- amd64-mingw32msvc-"
DEBIAN_NAME=mingw64
else
# we are trying 32 bit anyway, so forcing it to avoid build issues
force_32bit_binaries
BINPREFIX=i586-pc-mingw32msvc-
BINPREFIXLST="i586-pc-mingw32msvc- i686-pc-mingw32- i586-mingw32msvc- i686-w64-mingw32-"
DEBIAN_NAME=mingw32
fi
# Scan $BINPREFIXLST list to find installed mingw toolchain. It will be
# wrapped later with $BINPREFIX.
for i in $BINPREFIXLST; do
find_program MINGW_GCC ${i}gcc
if [ -n "$MINGW_GCC" ]; then
dump "Found mingw toolchain: $MINGW_GCC"
break
fi
done
}
# Check there is a working cross-toolchain installed.
#
# $1: install directory for mingw/darwin wrapper toolchain
#
prepare_canadian_toolchain ()
{
if [ "$MINGW" != "yes" -a "$DARWIN" != "yes" ]; then
return
fi
CROSS_GCC=
if [ "$MINGW" = "yes" ]; then
find_mingw_toolchain
if [ -z "$MINGW_GCC" ]; then
echo "ERROR: Could not find in your PATH any of:"
for i in $BINPREFIXLST; do echo " ${i}gcc"; done
echo "Please install the corresponding cross-toolchain and re-run this script"
echo "TIP: On Debian or Ubuntu, try: sudo apt-get install $DEBIAN_NAME"
exit 1
fi
CROSS_GCC=$MINGW_GCC
else
if [ -z "$DARWIN_TOOLCHAIN" ]; then
echo "Please set DARWIN_TOOLCHAIN to darwin cross-toolchain"
exit 1
fi
if [ ! -f "${DARWIN_TOOLCHAIN}-gcc" ]; then
echo "darwin cross-toolchain $DARWIN_TOOLCHAIN-gcc doesn't exist"
exit 1
fi
if [ "$HOST_ARCH" = "x86_64" -a "$TRY64" = "yes" ]; then
BINPREFIX=x86_64-apple-darwin-
DEBIAN_NAME=darwin64
HOST_CFLAGS=$HOST_CFLAGS" -m64"
else
force_32bit_binaries
BINPREFIX=i686-apple-darwin-
DEBIAN_NAME=darwin32
HOST_CFLAGS=$HOST_CFLAGS" -m32"
fi
CROSS_GCC=${DARWIN_TOOLCHAIN}-gcc
probe_darwin_sdk
fi
# Create a wrapper toolchain, and prepend its dir to our PATH
CROSS_WRAP_DIR="$1"/$DEBIAN_NAME-wrapper
rm -rf "$CROSS_WRAP_DIR"
mkdir -p "$CROSS_WRAP_DIR"
if [ "$DARWIN" = "yes" ] ; then
cat > "$CROSS_WRAP_DIR/sw_vers" <<EOF
#!/bin/sh
# Tiny utility for the real sw_vers some Makefiles need
case \$1 in
-productVersion)
echo $DARWIN_MINVER
;;
*)
echo "ERROR: Unknown switch \$1"
exit 1
esac
EOF
chmod 0755 "$CROSS_WRAP_DIR/sw_vers"
fi
DST_PREFIX=${CROSS_GCC%gcc}
if [ "$NDK_CCACHE" ]; then
DST_PREFIX="$NDK_CCACHE $DST_PREFIX"
fi
$NDK_BUILDTOOLS_PATH/gen-toolchain-wrapper.sh --src-prefix=$BINPREFIX --dst-prefix="$DST_PREFIX" "$CROSS_WRAP_DIR" \
--cflags="$HOST_CFLAGS" --cxxflags="$HOST_CFLAGS" --ldflags="$HOST_LDFLAGS"
# generate wrappers for BUILD toolchain
# this is required for mingw/darwin build to avoid tools canadian cross configuration issues
# 32-bit BUILD toolchain
LEGACY_TOOLCHAIN_DIR="$ANDROID_NDK_ROOT/../prebuilts/gcc/linux-x86/host/x86_64-linux-glibc2.11-4.8"
$NDK_BUILDTOOLS_PATH/gen-toolchain-wrapper.sh --src-prefix=i386-linux-gnu- \
--cflags="-m32" --cxxflags="-m32" --ldflags="-m elf_i386" --asflags="--32" \
--dst-prefix="$LEGACY_TOOLCHAIN_DIR/bin/x86_64-linux-" "$CROSS_WRAP_DIR"
$NDK_BUILDTOOLS_PATH/gen-toolchain-wrapper.sh --src-prefix=i386-pc-linux-gnu- \
--cflags="-m32" --cxxflags="-m32" --ldflags="-m elf_i386" --asflags="--32" \
--dst-prefix="$LEGACY_TOOLCHAIN_DIR/bin/x86_64-linux-" "$CROSS_WRAP_DIR"
# 64-bit BUILD toolchain. libbfd is still built in 32-bit.
$NDK_BUILDTOOLS_PATH/gen-toolchain-wrapper.sh --src-prefix=x86_64-linux-gnu- \
--dst-prefix="$LEGACY_TOOLCHAIN_DIR/bin/x86_64-linux-" "$CROSS_WRAP_DIR"
$NDK_BUILDTOOLS_PATH/gen-toolchain-wrapper.sh --src-prefix=x86_64-pc-linux-gnu- \
--dst-prefix="$LEGACY_TOOLCHAIN_DIR/bin/x86_64-linux-" "$CROSS_WRAP_DIR"
fail_panic "Could not create $DEBIAN_NAME wrapper toolchain in $CROSS_WRAP_DIR"
export PATH=$CROSS_WRAP_DIR:$PATH
dump "Using $DEBIAN_NAME wrapper: $CROSS_WRAP_DIR/${BINPREFIX}gcc"
}
handle_host ()
{
if [ "$TRY64" != "yes" ]; then
force_32bit_binaries # to modify HOST_TAG and others
HOST_BITS=32
fi
handle_canadian_build
}
setup_ccache ()
{
# Support for ccache compilation
# We can't use this here when building Windows/darwin binaries on Linux with
# binutils 2.21, because defining CC/CXX in the environment makes the
# configure script fail later
#
if [ "$NDK_CCACHE" -a "$MINGW" != "yes" -a "$DARWIN" != "yes" ]; then
NDK_CCACHE_CC=$CC
NDK_CCACHE_CXX=$CXX
# Unfortunately, we can just do CC="$NDK_CCACHE $CC" because some
# configure scripts are not capable of dealing with this properly
# E.g. the ones used to rebuild the GCC toolchain from scratch.
# So instead, use a wrapper script
CC=$NDK_BUILDTOOLS_ABSPATH/ndk-ccache-gcc.sh
CXX=$NDK_BUILDTOOLS_ABSPATH/ndk-ccache-g++.sh
export NDK_CCACHE_CC NDK_CCACHE_CXX
log "Using ccache compilation"
log "NDK_CCACHE_CC=$NDK_CCACHE_CC"
log "NDK_CCACHE_CXX=$NDK_CCACHE_CXX"
fi
}
prepare_common_build ()
{
if [ "$MINGW" = "yes" -o "$DARWIN" = "yes" ]; then
if [ "$TRY64" = "yes" ]; then
HOST_BITS=64
else
HOST_BITS=32
fi
if [ "$MINGW" = "yes" ]; then
log "Generating $HOST_BITS-bit Windows binaries"
else
log "Generating $HOST_BITS-bit Darwin binaries"
fi
# Do *not* set CC and CXX when building the Windows/Darwin binaries in canadian build.
# Otherwise, the GCC configure/build script will mess that Canadian cross
# build in weird ways. Instead we rely on the toolchain detected or generated
# previously in prepare_canadian_toolchain.
unset CC CXX
return
fi
# On Linux, detect our legacy-compatible toolchain when in the Android
# source tree, and use it to force the generation of glibc-2.7 compatible
# binaries.
#
# We only do this if the CC variable is not defined to a given value
if [ -z "$CC" ]; then
LEGACY_TOOLCHAIN_DIR=
if [ "$HOST_OS" = "linux" ]; then
LEGACY_TOOLCHAIN_DIR="$ANDROID_NDK_ROOT/../prebuilts/gcc/linux-x86/host/x86_64-linux-glibc2.11-4.8/bin"
LEGACY_TOOLCHAIN_PREFIX="$LEGACY_TOOLCHAIN_DIR/x86_64-linux-"
elif [ "$HOST_OS" = "darwin" ]; then
LEGACY_TOOLCHAIN_DIR="$ANDROID_NDK_ROOT/../prebuilts/gcc/darwin-x86/host/i686-apple-darwin-4.2.1/bin"
LEGACY_TOOLCHAIN_PREFIX="$LEGACY_TOOLCHAIN_DIR/i686-apple-darwin10-"
fi
if [ -d "$LEGACY_TOOLCHAIN_DIR" ] ; then
log "Forcing generation of $HOST_OS binaries with legacy toolchain"
CC="${LEGACY_TOOLCHAIN_PREFIX}gcc"
CXX="${LEGACY_TOOLCHAIN_PREFIX}g++"
fi
fi
CC=${CC:-gcc}
CXX=${CXX:-g++}
STRIP=${STRIP:-strip}
case $HOST_TAG in
darwin-*)
probe_darwin_sdk
;;
esac
# Force generation of 32-bit binaries on 64-bit systems.
# We used to test the value of $HOST_TAG for *-x86_64, but this is
# not sufficient on certain systems.
#
# For example, Snow Leopard can be booted with a 32-bit kernel, running
# a 64-bit userland, with a compiler that generates 64-bit binaries by
# default *even* though "gcc -v" will report --target=i686-apple-darwin10!
#
# So know, simply probe for the size of void* by performing a small runtime
# compilation test.
#
cat > $TMPC <<EOF
/* this test should fail if the compiler generates 64-bit machine code */
int test_array[1-2*(sizeof(void*) != 4)];
EOF
log_n "Checking whether the compiler generates 32-bit binaries..."
log2 $CC $HOST_CFLAGS -c -o $TMPO $TMPC
$NDK_CCACHE $CC $HOST_CFLAGS -c -o $TMPO $TMPC >$TMPL 2>&1
if [ $? != 0 ] ; then
log "no"
if [ "$TRY64" != "yes" ]; then
# NOTE: We need to modify the definitions of CC and CXX directly
# here. Just changing the value of CFLAGS / HOST_CFLAGS
# will not work well with the GCC toolchain scripts.
CC="$CC -m32"
CXX="$CXX -m32"
fi
else
log "yes"
if [ "$TRY64" = "yes" ]; then
CC="$CC -m64"
CXX="$CXX -m64"
fi
fi
if [ "$TRY64" = "yes" ]; then
HOST_BITS=64
else
force_32bit_binaries # to modify HOST_TAG and others
HOST_BITS=32
fi
}
prepare_host_build ()
{
prepare_common_build
# Now deal with mingw or darwin
if [ "$MINGW" = "yes" -o "$DARWIN" = "yes" ]; then
handle_canadian_build
CC=$ABI_CONFIGURE_HOST-gcc
CXX=$ABI_CONFIGURE_HOST-g++
CPP=$ABI_CONFIGURE_HOST-cpp
LD=$ABI_CONFIGURE_HOST-ld
AR=$ABI_CONFIGURE_HOST-ar
AS=$ABI_CONFIGURE_HOST-as
RANLIB=$ABI_CONFIGURE_HOST-ranlib
STRIP=$ABI_CONFIGURE_HOST-strip
export CC CXX CPP LD AR AS RANLIB STRIP
fi
setup_ccache
}
prepare_abi_configure_build ()
{
# detect build tag
case $HOST_TAG in
linux-x86)
ABI_CONFIGURE_BUILD=i386-linux-gnu
;;
linux-x86_64)
ABI_CONFIGURE_BUILD=x86_64-linux-gnu
;;
darwin-x86)
ABI_CONFIGURE_BUILD=i686-apple-darwin
;;
darwin-x86_64)
ABI_CONFIGURE_BUILD=x86_64-apple-darwin
;;
windows)
ABI_CONFIGURE_BUILD=i686-pc-cygwin
;;
*)
echo "ERROR: Unsupported HOST_TAG: $HOST_TAG"
echo "Please update 'prepare_host_flags' in build/tools/prebuilt-common.sh"
;;
esac
}
prepare_target_build ()
{
prepare_abi_configure_build
# By default, assume host == build
ABI_CONFIGURE_HOST="$ABI_CONFIGURE_BUILD"
prepare_common_build
HOST_GMP_ABI=$HOST_BITS
# Now handle the --mingw/--darwin flag
if [ "$MINGW" = "yes" -o "$DARWIN" = "yes" ] ; then
handle_canadian_build
STRIP=$ABI_CONFIGURE_HOST-strip
if [ "$MINGW" = "yes" ] ; then
# It turns out that we need to undefine this to be able to
# perform a canadian-cross build with mingw. Otherwise, the
# GMP configure scripts will not be called with the right options
HOST_GMP_ABI=
fi
fi
setup_ccache
}
# $1: Toolchain name
#
parse_toolchain_name ()
{
TOOLCHAIN=$1
if [ -z "$TOOLCHAIN" ] ; then
echo "ERROR: Missing toolchain name!"
exit 1
fi
ABI_CFLAGS_FOR_TARGET=
ABI_CXXFLAGS_FOR_TARGET=
# Determine ABI based on toolchain name
#
case "$TOOLCHAIN" in
arm-linux-androideabi-*)
ARCH="arm"
ABI="armeabi"
ABI_CONFIGURE_TARGET="arm-linux-androideabi"
ABI_CONFIGURE_EXTRA_FLAGS="--with-arch=armv5te"
;;
arm-eabi-*)
ARCH="arm"
ABI="armeabi"
ABI_CONFIGURE_TARGET="arm-eabi"
ABI_CONFIGURE_EXTRA_FLAGS="--with-arch=armv5te --disable-gold --disable-libgomp"
;;
aarch64-linux-android-*)
ARCH="arm64"
ABI="arm64-v8a"
ABI_CONFIGURE_TARGET="aarch64-linux-android"
;;
x86-*)
ARCH="x86"
ABI=$ARCH
ABI_INSTALL_NAME="x86"
ABI_CONFIGURE_TARGET="i686-linux-android"
# Enable C++ exceptions, RTTI and GNU libstdc++ at the same time
# You can't really build these separately at the moment.
ABI_CFLAGS_FOR_TARGET="-fPIC"
;;
x86_64-*)
ARCH="x86_64"
ABI=$ARCH
ABI_INSTALL_NAME="x86_64"
ABI_CONFIGURE_TARGET="x86_64-linux-android"
# Enable C++ exceptions, RTTI and GNU libstdc++ at the same time
# You can't really build these separately at the moment.
ABI_CFLAGS_FOR_TARGET="-fPIC"
;;
mipsel*)
ARCH="mips"
ABI=$ARCH
ABI_INSTALL_NAME="mips"
ABI_CONFIGURE_TARGET="mipsel-linux-android"
# Set default to mips32
ABI_CONFIGURE_EXTRA_FLAGS="--with-arch=mips32"
# Enable C++ exceptions, RTTI and GNU libstdc++ at the same time
# You can't really build these separately at the moment.
# Add -fpic, because MIPS NDK will need to link .a into .so.
ABI_CFLAGS_FOR_TARGET="-fexceptions -fpic"
ABI_CXXFLAGS_FOR_TARGET="-frtti -fpic"
# Add --disable-fixed-point to disable fixed-point support
ABI_CONFIGURE_EXTRA_FLAGS="$ABI_CONFIGURE_EXTRA_FLAGS --disable-fixed-point"
;;
mips64el*)
ARCH="mips64"
ABI=$ARCH
ABI_INSTALL_NAME="mips64"
ABI_CONFIGURE_TARGET="mips64el-linux-android"
# Set default to mips64r6
ABI_CONFIGURE_EXTRA_FLAGS="--with-arch=mips64r6"
# Enable C++ exceptions, RTTI and GNU libstdc++ at the same time
# You can't really build these separately at the moment.
# Add -fpic, because MIPS NDK will need to link .a into .so.
ABI_CFLAGS_FOR_TARGET="-fexceptions -fpic"
ABI_CXXFLAGS_FOR_TARGET="-frtti -fpic"
# Add --disable-fixed-point to disable fixed-point support
ABI_CONFIGURE_EXTRA_FLAGS="$ABI_CONFIGURE_EXTRA_FLAGS --disable-fixed-point"
;;
* )
echo "Invalid toolchain specified. Expected (arm-linux-androideabi-*|arm-eabi-*|x86-*|mipsel*|mips64el*)"
echo ""
print_help
exit 1
;;
esac
log "Targetting CPU: $ARCH"
GCC_VERSION=`expr -- "$TOOLCHAIN" : '.*-\([0-9x\.]*\)'`
log "Using GCC version: $GCC_VERSION"
# Determine --host value when building gdbserver
case "$TOOLCHAIN" in
arm-*)
GDBSERVER_HOST=arm-eabi-linux
GDBSERVER_CFLAGS="-fno-short-enums"
GDBSERVER_LDFLAGS=
;;
aarch64-*)
GDBSERVER_HOST=aarch64-eabi-linux
GDBSERVER_CFLAGS="-fno-short-enums -DUAPI_HEADERS"
GDBSERVER_LDFLAGS=
;;
x86-*)
GDBSERVER_HOST=i686-linux-android
GDBSERVER_CFLAGS=
GDBSERVER_LDFLAGS=
;;
x86_64-*)
GDBSERVER_HOST=x86_64-linux-android
GDBSERVER_CFLAGS=-DUAPI_HEADERS
GDBSERVER_LDFLAGS=
;;
mipsel-*)
GDBSERVER_HOST=mipsel-linux-android
GDBSERVER_CFLAGS=
GDBSERVER_LDFLAGS=
;;
mips64el-*)
GDBSERVER_HOST=mips64el-linux-android
GDBSERVER_CFLAGS=-DUAPI_HEADERS
GDBSERVER_LDFLAGS=
;;
*)
echo "Unknown TOOLCHAIN=$TOOLCHAIN"
exit
esac
}
# Return the host "tag" used to identify prebuilt host binaries.
# NOTE: Handles the case where '$MINGW = true' or '$DARWIN = true'
# For now, valid values are: linux-x86, darwin-x86 and windows
get_prebuilt_host_tag ()
{
local RET=$HOST_TAG
if [ "$MINGW" = "yes" ]; then
if [ "$TRY64" = "no" ]; then
RET=windows
else
RET=windows-x86_64
fi
fi
if [ "$DARWIN" = "yes" ]; then
RET=darwin-x86_64 # let the following handles 32-bit case
fi
case $RET in
linux-x86_64)
if [ "$TRY64" = "no" ]; then
RET=linux-x86
fi
;;
darwin-x86_64)
if [ "$TRY64" = "no" ]; then
RET=darwin-x86
fi
;;
esac
echo $RET
}
# Return the executable suffix corresponding to host executables
get_prebuilt_host_exe_ext ()
{
if [ "$MINGW" = "yes" ]; then
echo ".exe"
else
echo ""
fi
}
# Find all archs from $DEV_DIR/platforms or $NDK_DIR/platforms
# Return: the list of found arch name
find_ndk_archs ()
{
local NDK_ROOT_DIR DEVDIR
local RESULT FOUND_ARCHS
if [ ! -z "$NDK_DIR" ]; then
NDK_ROOT_DIR=$NDK_DIR
else
NDK_ROOT_DIR=$ANDROID_NDK_ROOT
fi
DEVDIR="$ANDROID_NDK_ROOT/../development/ndk"
# Check development directory first
if [ -d $DEVDIR/platforms ]; then
RESULT=$(ls $DEVDIR/platforms/android-* | grep "arch-")
for arch in $RESULT; do
arch=$(basename $arch | sed -e 's/^arch-//')
FOUND_ARCHS="$FOUND_ARCHS $arch"
done
fi
# Check ndk directory
if [ -z "$FOUND_ARCHS" ] && [ -d $NDK_ROOT_DIR/platforms ]; then
RESULT=$(ls $NDK_ROOT_DIR/platforms/android-* | grep "arch-")
for arch in $RESULT; do
arch=$(basename $arch | sed -e 's/^arch-//')
FOUND_ARCHS="$FOUND_ARCHS $arch"
done
fi
# If we cannot find any arch, set to default archs
if [ -z "$FOUND_ARCHS" ]; then
FOUND_ARCHS=$DEFAULT_ARCHS
fi
echo "$(sort_uniq $FOUND_ARCHS)"
}
# Find unknown archs from $NDK_DIR/platforms
# Return: arch names not in ndk default archs
find_ndk_unknown_archs()
{
local FOUND_ARCHS=$(find_ndk_archs)
# TODO: arm64, x86_64 is here just to be found as known arch.
# It can be removed as soon as it is added into $DEFAULT_ARCHS
echo "$(filter_out "$DEFAULT_ARCHS arm64 x86_64 mips64" "$FOUND_ARCHS")"
}
# Determine whether given arch is in unknown archs list
# $1: arch
# Return: yes or no
arch_in_unknown_archs()
{
local UNKNOWN_ARCH=$(find_ndk_unknown_archs | grep $1)
if [ -z "$UNKNOWN_ARCH" ]; then
echo "no"
else
echo "yes"
fi
}
# Get library suffix for given ABI
# $1: ABI
# Return: .so or .bc
get_lib_suffix_for_abi ()
{
local ABI=$1
if [ $(arch_in_unknown_archs $ABI) = "yes" ]; then
echo ".bc"
else
echo ".so"
fi
}
# Convert an ABI name into an Architecture name
# $1: ABI name
# Result: Arch name
convert_abi_to_arch ()
{
local RET
local ABI=$1
case $ABI in
armeabi|armeabi-v7a|armeabi-v7a-hard)
RET=arm
;;
x86|mips|x86_64|mips64)
RET=$ABI
;;
mips32r6)
RET=mips
;;
arm64-v8a)
RET=arm64
;;
*)
if [ "$(arch_in_unknown_archs $ABI)" = "yes" ]; then
RET=$ABI
else
>&2 echo "ERROR: Unsupported ABI name: $ABI, use one of: armeabi, armeabi-v7a, x86, mips, armeabi-v7a-hard, arm64-v8a, x86_64 or mips64"
exit 1
fi
;;
esac
echo "$RET"
}
# Take architecture name as input, and output the list of corresponding ABIs
# Inverse for convert_abi_to_arch
# $1: ARCH name
# Out: ABI names list (comma-separated)
convert_arch_to_abi ()
{
local RET
local ARCH=$1
case $ARCH in
arm)
RET=armeabi,armeabi-v7a,armeabi-v7a-hard
;;
x86|x86_64|mips|mips64)
RET=$ARCH
;;
arm64)
RET=arm64-v8a
;;
*)
if [ "$(arch_in_unknown_archs $ARCH)" = "yes" ]; then
RET=$ARCH
else
>&2 echo "ERROR: Unsupported ARCH name: $ARCH, use one of: arm, x86, mips"
exit 1
fi
;;
esac
echo "$RET"
}
# Take a list of architecture names as input, and output the list of corresponding ABIs
# $1: ARCH names list (separated by spaces or commas)
# Out: ABI names list (comma-separated)
convert_archs_to_abis ()
{
local RET
for ARCH in $(commas_to_spaces $@); do
ABI=$(convert_arch_to_abi $ARCH)
if [ -n "$ABI" ]; then
if [ -n "$RET" ]; then
RET=$RET",$ABI"
else
RET=$ABI
fi
else # Error message is printed by convert_arch_to_abi
exit 1
fi
done
echo "$RET"
}
# Return the default toolchain binary path prefix for given architecture and gcc version
# For example: arm 4.8 -> toolchains/arm-linux-androideabi-4.8/prebuilt/<system>/bin/arm-linux-androideabi-
# $1: Architecture name
# $2: GCC version
# $3: optional, system name, defaults to $HOST_TAG
get_toolchain_binprefix_for_arch ()
{
local NAME PREFIX DIR BINPREFIX
local SYSTEM=${3:-$(get_prebuilt_host_tag)}
NAME=$(get_toolchain_name_for_arch $1 $2)
PREFIX=$(get_default_toolchain_prefix_for_arch $1)
DIR=$(get_toolchain_install . $NAME $SYSTEM)
BINPREFIX=${DIR#./}/bin/$PREFIX-
echo "$BINPREFIX"
}
# Return llvm toolchain binary path prefix for given llvm version
# $1: llvm version
# $2: optional, system name, defaults to $HOST_TAG
get_llvm_toolchain_binprefix ()
{
local NAME DIR BINPREFIX
local SYSTEM=${2:-$(get_prebuilt_host_tag)}
NAME=llvm-$1
DIR=$(get_toolchain_install . $NAME $SYSTEM)
BINPREFIX=${DIR#./}/bin/
echo "$BINPREFIX"
}
# Return the default toochain binary path prefix for a given architecture
# For example: arm -> toolchains/arm-linux-androideabi-4.8/prebuilt/<system>/bin/arm-linux-androideabi-
# $1: Architecture name
# $2: optional, system name, defaults to $HOST_TAG
get_default_toolchain_binprefix_for_arch ()
{
local GCCVER=$(get_default_gcc_version_for_arch $ARCH)
get_toolchain_binprefix_for_arch $1 $GCCVER $2
}
# Return default API level for a given arch
# This is the level used to build the toolchains.
#
# $1: Architecture name
get_default_api_level_for_arch ()
{
# For unknown arch, use API level $FIRST_API64_LEVEL
if [ $(arch_in_unknown_archs $1) = "yes" ]; then
echo $FIRST_API64_LEVEL
else
# For now, always build the toolchain against API level 9 for 32-bit arch
# and API level $FIRST_API64_LEVEL for 64-bit arch
case $1 in
*64) echo $FIRST_API64_LEVEL ;;
*) echo 9 ;;
esac
fi
}
# Return the default platform sysroot corresponding to a given architecture
# This is the sysroot used to build the toolchain and other binaries like
# the STLport libraries.
# $1: Architecture name
get_default_platform_sysroot_for_arch ()
{
local ARCH=$1
local LEVEL=$(get_default_api_level_for_arch $ARCH)
if [ "$ARCH" != "${ARCH%%64*}" ] ; then
LEVEL=$FIRST_API64_LEVEL
fi
echo "platforms/android-$LEVEL/arch-$ARCH"
}
# Return the default platform sysroot corresponding to a given abi
# $1: ABI
get_default_platform_sysroot_for_abi ()
{
local ARCH=$(convert_abi_to_arch $1)
$(get_default_platform_sysroot_for_arch $ARCH)
}
# Return the default libs dir corresponding to a given architecture
# $1: Architecture name
get_default_libdir_for_arch ()
{
case $1 in
x86_64|mips64) echo "lib64" ;;
arm64) echo "lib" ;; # return "lib" until aarch64 is built to look for sysroot/usr/lib64
*) echo "lib" ;;
esac
}
# Return the default libs dir corresponding to a given abi
# $1: ABI
get_default_libdir_for_abi ()
{
local ARCH
case $1 in
mips32r6) echo "libr6" ;;
*)
local ARCH=$(convert_abi_to_arch $1)
echo "$(get_default_libdir_for_arch $ARCH)"
;;
esac
}
# Return the host/build specific path for prebuilt toolchain binaries
# relative to $1.
#
# $1: target root NDK directory
# $2: toolchain name
# $3: optional, host system name
#
get_toolchain_install ()
{
local NDK="$1"
shift
echo "$NDK/$(get_toolchain_install_subdir "$@")"
}
# $1: toolchain name
# $2: optional, host system name
get_toolchain_install_subdir ()
{
local SYSTEM=${2:-$(get_prebuilt_host_tag)}
echo "toolchains/$1/prebuilt/$SYSTEM"
}
# Return the relative install prefix for prebuilt host
# executables (relative to the NDK top directory).
# NOTE: This deals with MINGW==yes or DARWIN==yes appropriately
#
# $1: optional, system name
# Out: relative path to prebuilt install prefix
get_prebuilt_install_prefix ()
{
local TAG=${1:-$(get_prebuilt_host_tag)}
echo "prebuilt/$TAG"
}
# Return the relative path of an installed prebuilt host
# executable
# NOTE: This deals with MINGW==yes or DARWIN==yes appropriately.
#
# $1: executable name
# $2: optional, host system name
# Out: path to prebuilt host executable, relative
get_prebuilt_host_exec ()
{
local PREFIX EXE
PREFIX=$(get_prebuilt_install_prefix $2)
EXE=$(get_prebuilt_host_exe_ext)
echo "$PREFIX/bin/$1$EXE"
}
# Return the name of a given host executable
# $1: executable base name
# Out: executable name, with optional suffix (e.g. .exe for windows)
get_host_exec_name ()
{
local EXE=$(get_prebuilt_host_exe_ext)
echo "$1$EXE"
}
# Return the directory where host-specific binaries are installed.
# $1: target root NDK directory
get_host_install ()
{
echo "$1/$(get_prebuilt_install_prefix)"
}
# Set the toolchain target NDK location.
# this sets TOOLCHAIN_PATH and TOOLCHAIN_PREFIX
# $1: target NDK path
# $2: toolchain name
set_toolchain_ndk ()
{
TOOLCHAIN_PATH=`get_toolchain_install "$1" $2`
log "Using toolchain path: $TOOLCHAIN_PATH"
TOOLCHAIN_PREFIX=$TOOLCHAIN_PATH/bin/$ABI_CONFIGURE_TARGET
log "Using toolchain prefix: $TOOLCHAIN_PREFIX"
}
# Check that a toolchain is properly installed at a target NDK location
#
# $1: target root NDK directory
# $2: toolchain name
#
check_toolchain_install ()
{
TOOLCHAIN_PATH=`get_toolchain_install "$1" $2`
if [ ! -d "$TOOLCHAIN_PATH" ] ; then
echo "ERROR: Cannot find directory '$TOOLCHAIN_PATH'!"
echo " Toolchain '$2' not installed in '$NDK_DIR'!"
echo " Ensure that the toolchain has been installed there before."
exit 1
fi
set_toolchain_ndk $1 $2
}
# $1: toolchain source directory
check_toolchain_src_dir ()
{
local SRC_DIR="$1"
if [ -z "$SRC_DIR" ]; then
echo "ERROR: Please provide the path to the toolchain source tree. See --help"
exit 1
fi
if [ ! -d "$SRC_DIR" ]; then
echo "ERROR: Not a directory: '$SRC_DIR'"
exit 1
fi
if [ ! -f "$SRC_DIR/build/configure" -o ! -d "$SRC_DIR/gcc" ]; then
echo "ERROR: Either the file $SRC_DIR/build/configure or"
echo " the directory $SRC_DIR/gcc does not exist."
echo "This is not the top of a toolchain tree: $SRC_DIR"
echo "You must give the path to a copy of the toolchain source directories"
echo "created by 'download-toolchain-sources.sh."
exit 1
fi
}
#
# The NDK_TMPDIR variable is used to specify a root temporary directory
# when invoking toolchain build scripts. If it is not defined, we will
# create one here, and export the value to ensure that any scripts we
# call after that use the same one.
#
if [ -z "$NDK_TMPDIR" ]; then
NDK_TMPDIR=/tmp/ndk-$USER/tmp/build-$$
mkdir -p $NDK_TMPDIR
if [ $? != 0 ]; then
echo "ERROR: Could not create NDK_TMPDIR: $NDK_TMPDIR"
exit 1
fi
export NDK_TMPDIR
fi
# Define HOST_TAG32, as the 32-bit version of HOST_TAG
# We do this by replacing an -x86_64 suffix by -x86
HOST_TAG32=$HOST_TAG
case $HOST_TAG32 in
*-x86_64)
HOST_TAG32=${HOST_TAG%%_64}
;;
esac