/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <jni.h>
#include <time.h>
#include <stdio.h>
#include <memory>
#include <vector>
#include <android/log.h>
#include "GifTranscoder.h"
#define SQUARE(a) (a)*(a)
// GIF does not support partial transparency, so our alpha channels are always 0x0 or 0xff.
static const ColorARGB TRANSPARENT = 0x0;
#define ALPHA(color) (((color) >> 24) & 0xff)
#define RED(color) (((color) >> 16) & 0xff)
#define GREEN(color) (((color) >> 8) & 0xff)
#define BLUE(color) (((color) >> 0) & 0xff)
#define MAKE_COLOR_ARGB(a, r, g, b) \
((a) << 24 | (r) << 16 | (g) << 8 | (b))
#define MAX_COLOR_DISTANCE 255 * 255 * 255
#define TAG "GifTranscoder.cpp"
#define LOGD_ENABLED 0
#if LOGD_ENABLED
#define LOGD(...) ((void)__android_log_print(ANDROID_LOG_DEBUG, TAG, __VA_ARGS__))
#else
#define LOGD(...) ((void)0)
#endif
#define LOGI(...) ((void)__android_log_print(ANDROID_LOG_INFO, TAG, __VA_ARGS__))
#define LOGW(...) ((void)__android_log_print(ANDROID_LOG_WARN, TAG, __VA_ARGS__))
#define LOGE(...) ((void)__android_log_print(ANDROID_LOG_ERROR, TAG, __VA_ARGS__))
// This macro expects the assertion to pass, but logs a FATAL if not.
#define ASSERT(cond, ...) \
( (__builtin_expect((cond) == 0, 0)) \
? ((void)__android_log_assert(#cond, TAG, ## __VA_ARGS__)) \
: (void) 0 )
#define ASSERT_ENABLED 1
namespace {
// Current time in milliseconds since Unix epoch.
double now(void) {
struct timespec res;
clock_gettime(CLOCK_REALTIME, &res);
return 1000.0 * res.tv_sec + (double) res.tv_nsec / 1e6;
}
// Gets the pixel at position (x,y) from a buffer that uses row-major order to store an image with
// the specified width.
template <typename T>
T* getPixel(T* buffer, int width, int x, int y) {
return buffer + (y * width + x);
}
} // namespace
int GifTranscoder::transcode(const char* pathIn, const char* pathOut) {
int error;
double t0;
GifFileType* gifIn;
GifFileType* gifOut;
// Automatically closes the GIF files when this method returns
GifFilesCloser closer;
gifIn = DGifOpenFileName(pathIn, &error);
if (gifIn) {
closer.setGifIn(gifIn);
LOGD("Opened input GIF: %s", pathIn);
} else {
LOGE("Could not open input GIF: %s, error = %d", pathIn, error);
return GIF_ERROR;
}
gifOut = EGifOpenFileName(pathOut, false, &error);
if (gifOut) {
closer.setGifOut(gifOut);
LOGD("Opened output GIF: %s", pathOut);
} else {
LOGE("Could not open output GIF: %s, error = %d", pathOut, error);
return GIF_ERROR;
}
t0 = now();
if (resizeBoxFilter(gifIn, gifOut)) {
LOGD("Resized GIF in %.2f ms", now() - t0);
} else {
LOGE("Could not resize GIF");
return GIF_ERROR;
}
return GIF_OK;
}
bool GifTranscoder::resizeBoxFilter(GifFileType* gifIn, GifFileType* gifOut) {
ASSERT(gifIn != NULL, "gifIn cannot be NULL");
ASSERT(gifOut != NULL, "gifOut cannot be NULL");
if (gifIn->SWidth < 0 || gifIn->SHeight < 0) {
LOGE("Input GIF has invalid size: %d x %d", gifIn->SWidth, gifIn->SHeight);
return false;
}
// Output GIF will be 50% the size of the original.
if (EGifPutScreenDesc(gifOut,
gifIn->SWidth / 2,
gifIn->SHeight / 2,
gifIn->SColorResolution,
gifIn->SBackGroundColor,
gifIn->SColorMap) == GIF_ERROR) {
LOGE("Could not write screen descriptor");
return false;
}
LOGD("Wrote screen descriptor");
// Index of the current image.
int imageIndex = 0;
// Transparent color of the current image.
int transparentColor = NO_TRANSPARENT_COLOR;
// Buffer for reading raw images from the input GIF.
std::vector<GifByteType> srcBuffer(gifIn->SWidth * gifIn->SHeight);
// Buffer for rendering images from the input GIF.
std::unique_ptr<ColorARGB> renderBuffer(new ColorARGB[gifIn->SWidth * gifIn->SHeight]);
// Buffer for writing new images to output GIF (one row at a time).
std::unique_ptr<GifByteType> dstRowBuffer(new GifByteType[gifOut->SWidth]);
// Many GIFs use DISPOSE_DO_NOT to make images draw on top of previous images. They can also
// use DISPOSE_BACKGROUND to clear the last image region before drawing the next one. We need
// to keep track of the disposal mode as we go along to properly render the GIF.
int disposalMode = DISPOSAL_UNSPECIFIED;
int prevImageDisposalMode = DISPOSAL_UNSPECIFIED;
GifImageDesc prevImageDimens;
// Background color (applies to entire GIF).
ColorARGB bgColor = TRANSPARENT;
GifRecordType recordType;
do {
if (DGifGetRecordType(gifIn, &recordType) == GIF_ERROR) {
LOGE("Could not get record type");
return false;
}
LOGD("Read record type: %d", recordType);
switch (recordType) {
case IMAGE_DESC_RECORD_TYPE: {
if (DGifGetImageDesc(gifIn) == GIF_ERROR) {
LOGE("Could not read image descriptor (%d)", imageIndex);
return false;
}
// Sanity-check the current image position.
if (gifIn->Image.Left < 0 ||
gifIn->Image.Top < 0 ||
gifIn->Image.Left + gifIn->Image.Width > gifIn->SWidth ||
gifIn->Image.Top + gifIn->Image.Height > gifIn->SHeight) {
LOGE("GIF image extends beyond logical screen");
return false;
}
// Write the new image descriptor.
if (EGifPutImageDesc(gifOut,
0, // Left
0, // Top
gifOut->SWidth,
gifOut->SHeight,
false, // Interlace
gifIn->Image.ColorMap) == GIF_ERROR) {
LOGE("Could not write image descriptor (%d)", imageIndex);
return false;
}
// Read the image from the input GIF. The buffer is already initialized to the
// size of the GIF, which is usually equal to the size of all the images inside it.
// If not, the call to resize below ensures that the buffer is the right size.
srcBuffer.resize(gifIn->Image.Width * gifIn->Image.Height);
if (readImage(gifIn, srcBuffer.data()) == false) {
LOGE("Could not read image data (%d)", imageIndex);
return false;
}
LOGD("Read image data (%d)", imageIndex);
// Render the image from the input GIF.
if (renderImage(gifIn,
srcBuffer.data(),
imageIndex,
transparentColor,
renderBuffer.get(),
bgColor,
prevImageDimens,
prevImageDisposalMode) == false) {
LOGE("Could not render %d", imageIndex);
return false;
}
LOGD("Rendered image (%d)", imageIndex);
// Generate the image in the output GIF.
for (int y = 0; y < gifOut->SHeight; y++) {
for (int x = 0; x < gifOut->SWidth; x++) {
const GifByteType dstColorIndex = computeNewColorIndex(
gifIn, transparentColor, renderBuffer.get(), x, y);
*(dstRowBuffer.get() + x) = dstColorIndex;
}
if (EGifPutLine(gifOut, dstRowBuffer.get(), gifOut->SWidth) == GIF_ERROR) {
LOGE("Could not write raster data (%d)", imageIndex);
return false;
}
}
LOGD("Wrote raster data (%d)", imageIndex);
// Save the disposal mode for rendering the next image.
// We only support DISPOSE_DO_NOT and DISPOSE_BACKGROUND.
prevImageDisposalMode = disposalMode;
if (prevImageDisposalMode == DISPOSAL_UNSPECIFIED) {
prevImageDisposalMode = DISPOSE_DO_NOT;
} else if (prevImageDisposalMode == DISPOSE_PREVIOUS) {
prevImageDisposalMode = DISPOSE_BACKGROUND;
}
if (prevImageDisposalMode == DISPOSE_BACKGROUND) {
prevImageDimens.Left = gifIn->Image.Left;
prevImageDimens.Top = gifIn->Image.Top;
prevImageDimens.Width = gifIn->Image.Width;
prevImageDimens.Height = gifIn->Image.Height;
}
if (gifOut->Image.ColorMap) {
GifFreeMapObject(gifOut->Image.ColorMap);
gifOut->Image.ColorMap = NULL;
}
imageIndex++;
} break;
case EXTENSION_RECORD_TYPE: {
int extCode;
GifByteType* ext;
if (DGifGetExtension(gifIn, &extCode, &ext) == GIF_ERROR) {
LOGE("Could not read extension block");
return false;
}
LOGD("Read extension block, code: %d", extCode);
if (extCode == GRAPHICS_EXT_FUNC_CODE) {
GraphicsControlBlock gcb;
if (DGifExtensionToGCB(ext[0], ext + 1, &gcb) == GIF_ERROR) {
LOGE("Could not interpret GCB extension");
return false;
}
transparentColor = gcb.TransparentColor;
// This logic for setting the background color based on the first GCB
// doesn't quite match the GIF spec, but empirically it seems to work and it
// matches what libframesequence (Rastermill) does.
if (imageIndex == 0 && gifIn->SColorMap) {
if (gcb.TransparentColor == NO_TRANSPARENT_COLOR) {
GifColorType bgColorIndex =
gifIn->SColorMap->Colors[gifIn->SBackGroundColor];
bgColor = gifColorToColorARGB(bgColorIndex);
LOGD("Set background color based on first GCB");
}
}
// Record the original disposal mode and then update it.
disposalMode = gcb.DisposalMode;
gcb.DisposalMode = DISPOSE_BACKGROUND;
EGifGCBToExtension(&gcb, ext + 1);
}
if (EGifPutExtensionLeader(gifOut, extCode) == GIF_ERROR) {
LOGE("Could not write extension leader");
return false;
}
if (EGifPutExtensionBlock(gifOut, ext[0], ext + 1) == GIF_ERROR) {
LOGE("Could not write extension block");
return false;
}
LOGD("Wrote extension block");
while (ext != NULL) {
if (DGifGetExtensionNext(gifIn, &ext) == GIF_ERROR) {
LOGE("Could not read extension continuation");
return false;
}
if (ext != NULL) {
LOGD("Read extension continuation");
if (EGifPutExtensionBlock(gifOut, ext[0], ext + 1) == GIF_ERROR) {
LOGE("Could not write extension continuation");
return false;
}
LOGD("Wrote extension continuation");
}
}
if (EGifPutExtensionTrailer(gifOut) == GIF_ERROR) {
LOGE("Could not write extension trailer");
return false;
}
} break;
}
} while (recordType != TERMINATE_RECORD_TYPE);
LOGD("No more records");
return true;
}
bool GifTranscoder::readImage(GifFileType* gifIn, GifByteType* rasterBits) {
if (gifIn->Image.Interlace) {
int interlacedOffset[] = { 0, 4, 2, 1 };
int interlacedJumps[] = { 8, 8, 4, 2 };
// Need to perform 4 passes on the image
for (int i = 0; i < 4; i++) {
for (int j = interlacedOffset[i]; j < gifIn->Image.Height; j += interlacedJumps[i]) {
if (DGifGetLine(gifIn,
rasterBits + j * gifIn->Image.Width,
gifIn->Image.Width) == GIF_ERROR) {
LOGE("Could not read interlaced raster data");
return false;
}
}
}
} else {
if (DGifGetLine(gifIn, rasterBits, gifIn->Image.Width * gifIn->Image.Height) == GIF_ERROR) {
LOGE("Could not read raster data");
return false;
}
}
return true;
}
bool GifTranscoder::renderImage(GifFileType* gifIn,
GifByteType* rasterBits,
int imageIndex,
int transparentColorIndex,
ColorARGB* renderBuffer,
ColorARGB bgColor,
GifImageDesc prevImageDimens,
int prevImageDisposalMode) {
ASSERT(imageIndex < gifIn->ImageCount,
"Image index %d is out of bounds (count=%d)", imageIndex, gifIn->ImageCount);
ColorMapObject* colorMap = getColorMap(gifIn);
if (colorMap == NULL) {
LOGE("No GIF color map found");
return false;
}
// Clear all or part of the background, before drawing the first image and maybe before drawing
// subsequent images (depending on the DisposalMode).
if (imageIndex == 0) {
fillRect(renderBuffer, gifIn->SWidth, gifIn->SHeight,
0, 0, gifIn->SWidth, gifIn->SHeight, bgColor);
} else if (prevImageDisposalMode == DISPOSE_BACKGROUND) {
fillRect(renderBuffer, gifIn->SWidth, gifIn->SHeight,
prevImageDimens.Left, prevImageDimens.Top,
prevImageDimens.Width, prevImageDimens.Height, TRANSPARENT);
}
// Paint this image onto the canvas
for (int y = 0; y < gifIn->Image.Height; y++) {
for (int x = 0; x < gifIn->Image.Width; x++) {
GifByteType colorIndex = *getPixel(rasterBits, gifIn->Image.Width, x, y);
// This image may be smaller than the GIF's "logical screen"
int renderX = x + gifIn->Image.Left;
int renderY = y + gifIn->Image.Top;
// Skip drawing transparent pixels if this image renders on top of the last one
if (imageIndex > 0 && prevImageDisposalMode == DISPOSE_DO_NOT &&
colorIndex == transparentColorIndex) {
continue;
}
ColorARGB* renderPixel = getPixel(renderBuffer, gifIn->SWidth, renderX, renderY);
*renderPixel = getColorARGB(colorMap, transparentColorIndex, colorIndex);
}
}
return true;
}
void GifTranscoder::fillRect(ColorARGB* renderBuffer,
int imageWidth,
int imageHeight,
int left,
int top,
int width,
int height,
ColorARGB color) {
ASSERT(left + width <= imageWidth, "Rectangle is outside image bounds");
ASSERT(top + height <= imageHeight, "Rectangle is outside image bounds");
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
ColorARGB* renderPixel = getPixel(renderBuffer, imageWidth, x + left, y + top);
*renderPixel = color;
}
}
}
GifByteType GifTranscoder::computeNewColorIndex(GifFileType* gifIn,
int transparentColorIndex,
ColorARGB* renderBuffer,
int x,
int y) {
ColorMapObject* colorMap = getColorMap(gifIn);
// Compute the average color of 4 adjacent pixels from the input image.
ColorARGB c1 = *getPixel(renderBuffer, gifIn->SWidth, x * 2, y * 2);
ColorARGB c2 = *getPixel(renderBuffer, gifIn->SWidth, x * 2 + 1, y * 2);
ColorARGB c3 = *getPixel(renderBuffer, gifIn->SWidth, x * 2, y * 2 + 1);
ColorARGB c4 = *getPixel(renderBuffer, gifIn->SWidth, x * 2 + 1, y * 2 + 1);
ColorARGB avgColor = computeAverage(c1, c2, c3, c4);
// Search the color map for the best match.
return findBestColor(colorMap, transparentColorIndex, avgColor);
}
ColorARGB GifTranscoder::computeAverage(ColorARGB c1, ColorARGB c2, ColorARGB c3, ColorARGB c4) {
char avgAlpha = (char)(((int) ALPHA(c1) + (int) ALPHA(c2) +
(int) ALPHA(c3) + (int) ALPHA(c4)) / 4);
char avgRed = (char)(((int) RED(c1) + (int) RED(c2) +
(int) RED(c3) + (int) RED(c4)) / 4);
char avgGreen = (char)(((int) GREEN(c1) + (int) GREEN(c2) +
(int) GREEN(c3) + (int) GREEN(c4)) / 4);
char avgBlue = (char)(((int) BLUE(c1) + (int) BLUE(c2) +
(int) BLUE(c3) + (int) BLUE(c4)) / 4);
return MAKE_COLOR_ARGB(avgAlpha, avgRed, avgGreen, avgBlue);
}
GifByteType GifTranscoder::findBestColor(ColorMapObject* colorMap, int transparentColorIndex,
ColorARGB targetColor) {
// Return the transparent color if the average alpha is zero.
char alpha = ALPHA(targetColor);
if (alpha == 0 && transparentColorIndex != NO_TRANSPARENT_COLOR) {
return transparentColorIndex;
}
GifByteType closestColorIndex = 0;
int closestColorDistance = MAX_COLOR_DISTANCE;
for (int i = 0; i < colorMap->ColorCount; i++) {
// Skip the transparent color (we've already eliminated that option).
if (i == transparentColorIndex) {
continue;
}
ColorARGB indexedColor = gifColorToColorARGB(colorMap->Colors[i]);
int distance = computeDistance(targetColor, indexedColor);
if (distance < closestColorDistance) {
closestColorIndex = i;
closestColorDistance = distance;
}
}
return closestColorIndex;
}
int GifTranscoder::computeDistance(ColorARGB c1, ColorARGB c2) {
return SQUARE(RED(c1) - RED(c2)) +
SQUARE(GREEN(c1) - GREEN(c2)) +
SQUARE(BLUE(c1) - BLUE(c2));
}
ColorMapObject* GifTranscoder::getColorMap(GifFileType* gifIn) {
if (gifIn->Image.ColorMap) {
return gifIn->Image.ColorMap;
}
return gifIn->SColorMap;
}
ColorARGB GifTranscoder::getColorARGB(ColorMapObject* colorMap, int transparentColorIndex,
GifByteType colorIndex) {
if (colorIndex == transparentColorIndex) {
return TRANSPARENT;
}
return gifColorToColorARGB(colorMap->Colors[colorIndex]);
}
ColorARGB GifTranscoder::gifColorToColorARGB(const GifColorType& color) {
return MAKE_COLOR_ARGB(0xff, color.Red, color.Green, color.Blue);
}
GifFilesCloser::~GifFilesCloser() {
if (mGifIn) {
DGifCloseFile(mGifIn);
mGifIn = NULL;
}
if (mGifOut) {
EGifCloseFile(mGifOut);
mGifOut = NULL;
}
}
void GifFilesCloser::setGifIn(GifFileType* gifIn) {
ASSERT(mGifIn == NULL, "mGifIn is already set");
mGifIn = gifIn;
}
void GifFilesCloser::releaseGifIn() {
ASSERT(mGifIn != NULL, "mGifIn is already NULL");
mGifIn = NULL;
}
void GifFilesCloser::setGifOut(GifFileType* gifOut) {
ASSERT(mGifOut == NULL, "mGifOut is already set");
mGifOut = gifOut;
}
void GifFilesCloser::releaseGifOut() {
ASSERT(mGifOut != NULL, "mGifOut is already NULL");
mGifOut = NULL;
}
// JNI stuff
jboolean transcode(JNIEnv* env, jobject clazz, jstring filePath, jstring outFilePath) {
const char* pathIn = env->GetStringUTFChars(filePath, JNI_FALSE);
const char* pathOut = env->GetStringUTFChars(outFilePath, JNI_FALSE);
GifTranscoder transcoder;
int gifCode = transcoder.transcode(pathIn, pathOut);
env->ReleaseStringUTFChars(filePath, pathIn);
env->ReleaseStringUTFChars(outFilePath, pathOut);
return (gifCode == GIF_OK);
}
const char *kClassPathName = "com/android/messaging/util/GifTranscoder";
JNINativeMethod kMethods[] = {
{ "transcodeInternal", "(Ljava/lang/String;Ljava/lang/String;)Z", (void*)transcode },
};
int registerNativeMethods(JNIEnv* env, const char* className,
JNINativeMethod* gMethods, int numMethods) {
jclass clazz = env->FindClass(className);
if (clazz == NULL) {
return JNI_FALSE;
}
if (env->RegisterNatives(clazz, gMethods, numMethods) < 0) {
return JNI_FALSE;
}
return JNI_TRUE;
}
jint JNI_OnLoad(JavaVM* vm, void* reserved) {
JNIEnv* env;
if (vm->GetEnv(reinterpret_cast<void**>(&env), JNI_VERSION_1_6) != JNI_OK) {
return -1;
}
if (!registerNativeMethods(env, kClassPathName,
kMethods, sizeof(kMethods) / sizeof(kMethods[0]))) {
return -1;
}
return JNI_VERSION_1_6;
}