/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <UniquePtr.h>
#include <gtest/gtest.h>
#include <keymaster/android_keymaster.h>
#include <keymaster/android_keymaster_utils.h>
#include <keymaster/keymaster_tags.h>
#include "android_keymaster_test_utils.h"
namespace keymaster {
namespace test {
/**
* Serialize and deserialize a message.
*/
template <typename Message>
Message* round_trip(int32_t ver, const Message& message, size_t expected_size) {
size_t size = message.SerializedSize();
EXPECT_EQ(expected_size, size);
if (size == 0)
return NULL;
UniquePtr<uint8_t[]> buf(new uint8_t[size]);
EXPECT_EQ(buf.get() + size, message.Serialize(buf.get(), buf.get() + size));
Message* deserialized = new Message(ver);
const uint8_t* p = buf.get();
EXPECT_TRUE(deserialized->Deserialize(&p, p + size));
EXPECT_EQ((ptrdiff_t)size, p - buf.get());
return deserialized;
}
struct EmptyKeymasterResponse : public KeymasterResponse {
EmptyKeymasterResponse(int32_t ver) : KeymasterResponse(ver) {}
size_t NonErrorSerializedSize() const { return 1; }
uint8_t* NonErrorSerialize(uint8_t* buf, const uint8_t* /* end */) const {
*buf++ = 0;
return buf;
}
bool NonErrorDeserialize(const uint8_t** buf_ptr, const uint8_t* end) {
if (*buf_ptr >= end)
return false;
EXPECT_EQ(0, **buf_ptr);
(*buf_ptr)++;
return true;
}
};
TEST(RoundTrip, EmptyKeymasterResponse) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
EmptyKeymasterResponse msg(ver);
msg.error = KM_ERROR_OK;
UniquePtr<EmptyKeymasterResponse> deserialized(round_trip(ver, msg, 5));
}
}
TEST(RoundTrip, EmptyKeymasterResponseError) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
EmptyKeymasterResponse msg(ver);
msg.error = KM_ERROR_MEMORY_ALLOCATION_FAILED;
UniquePtr<EmptyKeymasterResponse> deserialized(round_trip(ver, msg, 4));
}
}
TEST(RoundTrip, SupportedByAlgorithmRequest) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
SupportedByAlgorithmRequest req(ver);
req.algorithm = KM_ALGORITHM_EC;
UniquePtr<SupportedByAlgorithmRequest> deserialized(round_trip(ver, req, 4));
EXPECT_EQ(KM_ALGORITHM_EC, deserialized->algorithm);
}
}
TEST(RoundTrip, SupportedByAlgorithmAndPurposeRequest) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
SupportedByAlgorithmAndPurposeRequest req(ver);
req.algorithm = KM_ALGORITHM_EC;
req.purpose = KM_PURPOSE_DECRYPT;
UniquePtr<SupportedByAlgorithmAndPurposeRequest> deserialized(round_trip(ver, req, 8));
EXPECT_EQ(KM_ALGORITHM_EC, deserialized->algorithm);
EXPECT_EQ(KM_PURPOSE_DECRYPT, deserialized->purpose);
}
}
TEST(RoundTrip, SupportedResponse) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
SupportedResponse<keymaster_digest_t> rsp(ver);
keymaster_digest_t digests[] = {KM_DIGEST_NONE, KM_DIGEST_MD5, KM_DIGEST_SHA1};
rsp.error = KM_ERROR_OK;
rsp.SetResults(digests);
UniquePtr<SupportedResponse<keymaster_digest_t>> deserialized(round_trip(ver, rsp, 20));
EXPECT_EQ(array_length(digests), deserialized->results_length);
EXPECT_EQ(0, memcmp(deserialized->results, digests, array_size(digests)));
}
}
static keymaster_key_param_t params[] = {
Authorization(TAG_PURPOSE, KM_PURPOSE_SIGN),
Authorization(TAG_PURPOSE, KM_PURPOSE_VERIFY),
Authorization(TAG_ALGORITHM, KM_ALGORITHM_RSA),
Authorization(TAG_USER_ID, 7),
Authorization(TAG_USER_AUTH_TYPE, HW_AUTH_PASSWORD),
Authorization(TAG_APPLICATION_ID, "app_id", 6),
Authorization(TAG_AUTH_TIMEOUT, 300),
};
uint8_t TEST_DATA[] = "a key blob";
TEST(RoundTrip, GenerateKeyRequest) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
GenerateKeyRequest req(ver);
req.key_description.Reinitialize(params, array_length(params));
UniquePtr<GenerateKeyRequest> deserialized(round_trip(ver, req, 78));
EXPECT_EQ(deserialized->key_description, req.key_description);
}
}
TEST(RoundTrip, GenerateKeyResponse) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
GenerateKeyResponse rsp(ver);
rsp.error = KM_ERROR_OK;
rsp.key_blob.key_material = dup_array(TEST_DATA);
rsp.key_blob.key_material_size = array_length(TEST_DATA);
rsp.enforced.Reinitialize(params, array_length(params));
UniquePtr<GenerateKeyResponse> deserialized(round_trip(ver, rsp, 109));
EXPECT_EQ(KM_ERROR_OK, deserialized->error);
EXPECT_EQ(deserialized->enforced, rsp.enforced);
EXPECT_EQ(deserialized->unenforced, rsp.unenforced);
}
}
TEST(RoundTrip, GenerateKeyResponseTestError) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
GenerateKeyResponse rsp(ver);
rsp.error = KM_ERROR_UNSUPPORTED_ALGORITHM;
rsp.key_blob.key_material = dup_array(TEST_DATA);
rsp.key_blob.key_material_size = array_length(TEST_DATA);
rsp.enforced.Reinitialize(params, array_length(params));
UniquePtr<GenerateKeyResponse> deserialized(round_trip(ver, rsp, 4));
EXPECT_EQ(KM_ERROR_UNSUPPORTED_ALGORITHM, deserialized->error);
EXPECT_EQ(0U, deserialized->enforced.size());
EXPECT_EQ(0U, deserialized->unenforced.size());
EXPECT_EQ(0U, deserialized->key_blob.key_material_size);
}
}
TEST(RoundTrip, GetKeyCharacteristicsRequest) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
GetKeyCharacteristicsRequest req(ver);
req.additional_params.Reinitialize(params, array_length(params));
req.SetKeyMaterial("foo", 3);
UniquePtr<GetKeyCharacteristicsRequest> deserialized(round_trip(ver, req, 85));
EXPECT_EQ(7U, deserialized->additional_params.size());
EXPECT_EQ(3U, deserialized->key_blob.key_material_size);
EXPECT_EQ(0, memcmp(deserialized->key_blob.key_material, "foo", 3));
}
}
TEST(RoundTrip, GetKeyCharacteristicsResponse) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
GetKeyCharacteristicsResponse msg(ver);
msg.error = KM_ERROR_OK;
msg.enforced.Reinitialize(params, array_length(params));
msg.unenforced.Reinitialize(params, array_length(params));
UniquePtr<GetKeyCharacteristicsResponse> deserialized(round_trip(ver, msg, 160));
EXPECT_EQ(msg.enforced, deserialized->enforced);
EXPECT_EQ(msg.unenforced, deserialized->unenforced);
}
}
TEST(RoundTrip, BeginOperationRequest) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
BeginOperationRequest msg(ver);
msg.purpose = KM_PURPOSE_SIGN;
msg.SetKeyMaterial("foo", 3);
msg.additional_params.Reinitialize(params, array_length(params));
UniquePtr<BeginOperationRequest> deserialized(round_trip(ver, msg, 89));
EXPECT_EQ(KM_PURPOSE_SIGN, deserialized->purpose);
EXPECT_EQ(3U, deserialized->key_blob.key_material_size);
EXPECT_EQ(0, memcmp(deserialized->key_blob.key_material, "foo", 3));
EXPECT_EQ(msg.additional_params, deserialized->additional_params);
}
}
TEST(RoundTrip, BeginOperationResponse) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
BeginOperationResponse msg(ver);
msg.error = KM_ERROR_OK;
msg.op_handle = 0xDEADBEEF;
msg.output_params.push_back(Authorization(TAG_NONCE, "foo", 3));
UniquePtr<BeginOperationResponse> deserialized;
switch (ver) {
case 0:
deserialized.reset(round_trip(ver, msg, 12));
break;
case 1:
case 2:
deserialized.reset(round_trip(ver, msg, 39));
break;
default:
FAIL();
}
EXPECT_EQ(KM_ERROR_OK, deserialized->error);
EXPECT_EQ(0xDEADBEEF, deserialized->op_handle);
switch (ver) {
case 0:
EXPECT_EQ(0U, deserialized->output_params.size());
break;
case 1:
case 2:
EXPECT_EQ(msg.output_params, deserialized->output_params);
break;
default:
FAIL();
}
}
}
TEST(RoundTrip, BeginOperationResponseError) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
BeginOperationResponse msg(ver);
msg.error = KM_ERROR_INVALID_OPERATION_HANDLE;
msg.op_handle = 0xDEADBEEF;
UniquePtr<BeginOperationResponse> deserialized(round_trip(ver, msg, 4));
EXPECT_EQ(KM_ERROR_INVALID_OPERATION_HANDLE, deserialized->error);
}
}
TEST(RoundTrip, UpdateOperationRequest) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
UpdateOperationRequest msg(ver);
msg.op_handle = 0xDEADBEEF;
msg.input.Reinitialize("foo", 3);
UniquePtr<UpdateOperationRequest> deserialized;
switch (ver) {
case 0:
deserialized.reset(round_trip(ver, msg, 15));
break;
case 1:
case 2:
deserialized.reset(round_trip(ver, msg, 27));
break;
default:
FAIL();
}
EXPECT_EQ(3U, deserialized->input.available_read());
EXPECT_EQ(0, memcmp(deserialized->input.peek_read(), "foo", 3));
}
}
TEST(RoundTrip, UpdateOperationResponse) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
UpdateOperationResponse msg(ver);
msg.error = KM_ERROR_OK;
msg.output.Reinitialize("foo", 3);
msg.input_consumed = 99;
msg.output_params.push_back(TAG_APPLICATION_ID, "bar", 3);
UniquePtr<UpdateOperationResponse> deserialized;
switch (ver) {
case 0:
deserialized.reset(round_trip(ver, msg, 11));
break;
case 1:
deserialized.reset(round_trip(ver, msg, 15));
break;
case 2:
deserialized.reset(round_trip(ver, msg, 42));
break;
default:
FAIL();
}
EXPECT_EQ(KM_ERROR_OK, deserialized->error);
EXPECT_EQ(3U, deserialized->output.available_read());
EXPECT_EQ(0, memcmp(deserialized->output.peek_read(), "foo", 3));
switch (ver) {
case 0:
EXPECT_EQ(0U, deserialized->input_consumed);
break;
case 1:
EXPECT_EQ(99U, deserialized->input_consumed);
break;
case 2:
EXPECT_EQ(99U, deserialized->input_consumed);
EXPECT_EQ(1U, deserialized->output_params.size());
break;
default:
FAIL();
}
}
}
TEST(RoundTrip, FinishOperationRequest) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
FinishOperationRequest msg(ver);
msg.op_handle = 0xDEADBEEF;
msg.signature.Reinitialize("bar", 3);
UniquePtr<FinishOperationRequest> deserialized;
switch (ver) {
case 0:
deserialized.reset(round_trip(ver, msg, 15));
break;
case 1:
case 2:
deserialized.reset(round_trip(ver, msg, 27));
break;
default:
FAIL();
}
EXPECT_EQ(0xDEADBEEF, deserialized->op_handle);
EXPECT_EQ(3U, deserialized->signature.available_read());
EXPECT_EQ(0, memcmp(deserialized->signature.peek_read(), "bar", 3));
}
}
TEST(Round_Trip, FinishOperationResponse) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
FinishOperationResponse msg(ver);
msg.error = KM_ERROR_OK;
msg.output.Reinitialize("foo", 3);
UniquePtr<FinishOperationResponse> deserialized;
switch (ver) {
case 0:
case 1:
deserialized.reset(round_trip(ver, msg, 11));
break;
case 2:
deserialized.reset(round_trip(ver, msg, 23));
break;
default:
FAIL();
}
EXPECT_EQ(msg.error, deserialized->error);
EXPECT_EQ(msg.output.available_read(), deserialized->output.available_read());
EXPECT_EQ(0, memcmp(msg.output.peek_read(), deserialized->output.peek_read(),
msg.output.available_read()));
}
}
TEST(RoundTrip, ImportKeyRequest) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
ImportKeyRequest msg(ver);
msg.key_description.Reinitialize(params, array_length(params));
msg.key_format = KM_KEY_FORMAT_X509;
msg.SetKeyMaterial("foo", 3);
UniquePtr<ImportKeyRequest> deserialized(round_trip(ver, msg, 89));
EXPECT_EQ(msg.key_description, deserialized->key_description);
EXPECT_EQ(msg.key_format, deserialized->key_format);
EXPECT_EQ(msg.key_data_length, deserialized->key_data_length);
EXPECT_EQ(0, memcmp(msg.key_data, deserialized->key_data, msg.key_data_length));
}
}
TEST(RoundTrip, ImportKeyResponse) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
ImportKeyResponse msg(ver);
msg.error = KM_ERROR_OK;
msg.SetKeyMaterial("foo", 3);
msg.enforced.Reinitialize(params, array_length(params));
msg.unenforced.Reinitialize(params, array_length(params));
UniquePtr<ImportKeyResponse> deserialized(round_trip(ver, msg, 167));
EXPECT_EQ(msg.error, deserialized->error);
EXPECT_EQ(msg.key_blob.key_material_size, deserialized->key_blob.key_material_size);
EXPECT_EQ(0, memcmp(msg.key_blob.key_material, deserialized->key_blob.key_material,
msg.key_blob.key_material_size));
EXPECT_EQ(msg.enforced, deserialized->enforced);
EXPECT_EQ(msg.unenforced, deserialized->unenforced);
}
}
TEST(RoundTrip, ExportKeyRequest) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
ExportKeyRequest msg(ver);
msg.additional_params.Reinitialize(params, array_length(params));
msg.key_format = KM_KEY_FORMAT_X509;
msg.SetKeyMaterial("foo", 3);
UniquePtr<ExportKeyRequest> deserialized(round_trip(ver, msg, 89));
EXPECT_EQ(msg.additional_params, deserialized->additional_params);
EXPECT_EQ(msg.key_format, deserialized->key_format);
EXPECT_EQ(3U, deserialized->key_blob.key_material_size);
EXPECT_EQ(0, memcmp("foo", deserialized->key_blob.key_material, 3));
}
}
TEST(RoundTrip, ExportKeyResponse) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
ExportKeyResponse msg(ver);
msg.error = KM_ERROR_OK;
msg.SetKeyMaterial("foo", 3);
UniquePtr<ExportKeyResponse> deserialized(round_trip(ver, msg, 11));
EXPECT_EQ(3U, deserialized->key_data_length);
EXPECT_EQ(0, memcmp("foo", deserialized->key_data, 3));
}
}
TEST(RoundTrip, DeleteKeyRequest) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
DeleteKeyRequest msg(ver);
msg.SetKeyMaterial("foo", 3);
UniquePtr<DeleteKeyRequest> deserialized(round_trip(ver, msg, 7));
EXPECT_EQ(3U, deserialized->key_blob.key_material_size);
EXPECT_EQ(0, memcmp("foo", deserialized->key_blob.key_material, 3));
}
}
TEST(RoundTrip, DeleteKeyResponse) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
DeleteKeyResponse msg(ver);
UniquePtr<DeleteKeyResponse> deserialized(round_trip(ver, msg, 4));
}
}
TEST(RoundTrip, DeleteAllKeysRequest) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
DeleteAllKeysRequest msg(ver);
UniquePtr<DeleteAllKeysRequest> deserialized(round_trip(ver, msg, 0));
}
}
TEST(RoundTrip, DeleteAllKeysResponse) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
DeleteAllKeysResponse msg(ver);
UniquePtr<DeleteAllKeysResponse> deserialized(round_trip(ver, msg, 4));
}
}
TEST(RoundTrip, GetVersionRequest) {
GetVersionRequest msg;
size_t size = msg.SerializedSize();
ASSERT_EQ(0U, size);
UniquePtr<uint8_t[]> buf(new uint8_t[size]);
EXPECT_EQ(buf.get() + size, msg.Serialize(buf.get(), buf.get() + size));
GetVersionRequest deserialized;
const uint8_t* p = buf.get();
EXPECT_TRUE(deserialized.Deserialize(&p, p + size));
EXPECT_EQ((ptrdiff_t)size, p - buf.get());
}
TEST(RoundTrip, GetVersionResponse) {
GetVersionResponse msg;
msg.error = KM_ERROR_OK;
msg.major_ver = 9;
msg.minor_ver = 98;
msg.subminor_ver = 38;
size_t size = msg.SerializedSize();
ASSERT_EQ(7U, size);
UniquePtr<uint8_t[]> buf(new uint8_t[size]);
EXPECT_EQ(buf.get() + size, msg.Serialize(buf.get(), buf.get() + size));
GetVersionResponse deserialized;
const uint8_t* p = buf.get();
EXPECT_TRUE(deserialized.Deserialize(&p, p + size));
EXPECT_EQ((ptrdiff_t)size, p - buf.get());
EXPECT_EQ(9U, msg.major_ver);
EXPECT_EQ(98U, msg.minor_ver);
EXPECT_EQ(38U, msg.subminor_ver);
}
TEST(RoundTrip, AddEntropyRequest) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
AddEntropyRequest msg(ver);
msg.random_data.Reinitialize("foo", 3);
UniquePtr<AddEntropyRequest> deserialized(round_trip(ver, msg, 7));
EXPECT_EQ(3U, deserialized->random_data.available_read());
EXPECT_EQ(0, memcmp("foo", deserialized->random_data.peek_read(), 3));
}
}
TEST(RoundTrip, AddEntropyResponse) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
AddEntropyResponse msg(ver);
UniquePtr<AddEntropyResponse> deserialized(round_trip(ver, msg, 4));
}
}
TEST(RoundTrip, AbortOperationRequest) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
AbortOperationRequest msg(ver);
UniquePtr<AbortOperationRequest> deserialized(round_trip(ver, msg, 8));
}
}
TEST(RoundTrip, AbortOperationResponse) {
for (int ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
AbortOperationResponse msg(ver);
UniquePtr<AbortOperationResponse> deserialized(round_trip(ver, msg, 4));
}
}
uint8_t msgbuf[] = {
220, 88, 183, 255, 71, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 173, 0, 0, 0, 228, 174, 98, 187, 191, 135, 253, 200, 51, 230, 114, 247, 151, 109,
237, 79, 87, 32, 94, 5, 204, 46, 154, 30, 91, 6, 103, 148, 254, 129, 65, 171, 228,
167, 224, 163, 9, 15, 206, 90, 58, 11, 205, 55, 211, 33, 87, 178, 149, 91, 28, 236,
218, 112, 231, 34, 82, 82, 134, 103, 137, 115, 27, 156, 102, 159, 220, 226, 89, 42, 25,
37, 9, 84, 239, 76, 161, 198, 72, 167, 163, 39, 91, 148, 191, 17, 191, 87, 169, 179,
136, 10, 194, 154, 4, 40, 107, 109, 61, 161, 20, 176, 247, 13, 214, 106, 229, 45, 17,
5, 60, 189, 64, 39, 166, 208, 14, 57, 25, 140, 148, 25, 177, 246, 189, 43, 181, 88,
204, 29, 126, 224, 100, 143, 93, 60, 57, 249, 55, 0, 87, 83, 227, 224, 166, 59, 214,
81, 144, 129, 58, 6, 57, 46, 254, 232, 41, 220, 209, 230, 167, 138, 158, 94, 180, 125,
247, 26, 162, 116, 238, 202, 187, 100, 65, 13, 180, 44, 245, 159, 83, 161, 176, 58, 72,
236, 109, 105, 160, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 11, 0, 0, 0, 98, 0, 0, 0, 1, 0, 0, 32, 2, 0, 0, 0, 1, 0,
0, 32, 3, 0, 0, 0, 2, 0, 0, 16, 1, 0, 0, 0, 3, 0, 0, 48, 0,
1, 0, 0, 200, 0, 0, 80, 3, 0, 0, 0, 0, 0, 0, 0, 244, 1, 0, 112,
1, 246, 1, 0, 112, 1, 189, 2, 0, 96, 144, 178, 236, 250, 255, 255, 255, 255, 145,
1, 0, 96, 144, 226, 33, 60, 222, 2, 0, 0, 189, 2, 0, 96, 0, 0, 0, 0,
0, 0, 0, 0, 190, 2, 0, 16, 1, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 110, 0, 0, 0, 0, 0, 0, 0, 11, 0,
0, 0, 98, 0, 0, 0, 1, 0, 0, 32, 2, 0, 0, 0, 1, 0, 0, 32, 3,
0, 0, 0, 2, 0, 0, 16, 1, 0, 0, 0, 3, 0, 0, 48, 0, 1, 0, 0,
200, 0, 0, 80, 3, 0, 0, 0, 0, 0, 0, 0, 244, 1, 0, 112, 1, 246, 1,
0, 112, 1, 189, 2, 0, 96, 144, 178, 236, 250, 255, 255, 255, 255, 145, 1, 0, 96,
144, 226, 33, 60, 222, 2, 0, 0, 189, 2, 0, 96, 0, 0, 0, 0, 0, 0, 0,
0, 190, 2, 0, 16, 1, 0, 0, 0,
};
/*
* These tests don't have any assertions or expectations. They just try to parse garbage, to see if
* the result will be a crash. This is especially informative when run under Valgrind memcheck.
*/
template <typename Message> void parse_garbage() {
for (int32_t ver = 0; ver <= MAX_MESSAGE_VERSION; ++ver) {
Message msg(ver);
const uint8_t* end = msgbuf + array_length(msgbuf);
for (size_t i = 0; i < array_length(msgbuf); ++i) {
const uint8_t* begin = msgbuf + i;
const uint8_t* p = begin;
msg.Deserialize(&p, end);
}
}
time_t now = time(NULL);
std::cout << "Seeding rand() with " << now << " for fuzz test." << std::endl;
srand(now);
// Fill large buffer with random bytes.
const int kBufSize = 10000;
UniquePtr<uint8_t[]> buf(new uint8_t[kBufSize]);
for (size_t i = 0; i < kBufSize; ++i)
buf[i] = static_cast<uint8_t>(rand());
for (uint32_t ver = 0; ver < MAX_MESSAGE_VERSION; ++ver) {
Message msg(ver);
const uint8_t* end = buf.get() + kBufSize;
for (size_t i = 0; i < kBufSize; ++i) {
const uint8_t* begin = buf.get() + i;
const uint8_t* p = begin;
msg.Deserialize(&p, end);
}
}
}
#define GARBAGE_TEST(Message) \
TEST(GarbageTest, Message) { parse_garbage<Message>(); }
GARBAGE_TEST(AbortOperationRequest);
GARBAGE_TEST(AbortOperationResponse);
GARBAGE_TEST(AddEntropyRequest);
GARBAGE_TEST(AddEntropyResponse);
GARBAGE_TEST(BeginOperationRequest);
GARBAGE_TEST(BeginOperationResponse);
GARBAGE_TEST(DeleteAllKeysRequest);
GARBAGE_TEST(DeleteAllKeysResponse);
GARBAGE_TEST(DeleteKeyRequest);
GARBAGE_TEST(DeleteKeyResponse);
GARBAGE_TEST(ExportKeyRequest);
GARBAGE_TEST(ExportKeyResponse);
GARBAGE_TEST(FinishOperationRequest);
GARBAGE_TEST(FinishOperationResponse);
GARBAGE_TEST(GenerateKeyRequest);
GARBAGE_TEST(GenerateKeyResponse);
GARBAGE_TEST(GetKeyCharacteristicsRequest);
GARBAGE_TEST(GetKeyCharacteristicsResponse);
GARBAGE_TEST(ImportKeyRequest);
GARBAGE_TEST(ImportKeyResponse);
GARBAGE_TEST(SupportedByAlgorithmAndPurposeRequest)
GARBAGE_TEST(SupportedByAlgorithmRequest)
GARBAGE_TEST(UpdateOperationRequest);
GARBAGE_TEST(UpdateOperationResponse);
// The macro doesn't work on this one.
TEST(GarbageTest, SupportedResponse) {
parse_garbage<SupportedResponse<keymaster_digest_t>>();
}
} // namespace test
} // namespace keymaster