/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_ELF_BUILDER_H_ #define ART_COMPILER_ELF_BUILDER_H_ #include <vector> #include "arch/instruction_set.h" #include "arch/mips/instruction_set_features_mips.h" #include "base/bit_utils.h" #include "base/casts.h" #include "base/unix_file/fd_file.h" #include "elf_utils.h" #include "leb128.h" #include "linker/error_delaying_output_stream.h" #include "utils/array_ref.h" namespace art { // Writes ELF file. // // The basic layout of the elf file: // Elf_Ehdr - The ELF header. // Elf_Phdr[] - Program headers for the linker. // .rodata - DEX files and oat metadata. // .text - Compiled code. // .bss - Zero-initialized writeable section. // .MIPS.abiflags - MIPS specific section. // .dynstr - Names for .dynsym. // .dynsym - A few oat-specific dynamic symbols. // .hash - Hash-table for .dynsym. // .dynamic - Tags which let the linker locate .dynsym. // .strtab - Names for .symtab. // .symtab - Debug symbols. // .eh_frame - Unwind information (CFI). // .eh_frame_hdr - Index of .eh_frame. // .debug_frame - Unwind information (CFI). // .debug_frame.oat_patches - Addresses for relocation. // .debug_info - Debug information. // .debug_info.oat_patches - Addresses for relocation. // .debug_abbrev - Decoding information for .debug_info. // .debug_str - Strings for .debug_info. // .debug_line - Line number tables. // .debug_line.oat_patches - Addresses for relocation. // .text.oat_patches - Addresses for relocation. // .shstrtab - Names of ELF sections. // Elf_Shdr[] - Section headers. // // Some section are optional (the debug sections in particular). // // We try write the section data directly into the file without much // in-memory buffering. This means we generally write sections based on the // dependency order (e.g. .dynamic points to .dynsym which points to .text). // // In the cases where we need to buffer, we write the larger section first // and buffer the smaller one (e.g. .strtab is bigger than .symtab). // // The debug sections are written last for easier stripping. // template <typename ElfTypes> class ElfBuilder FINAL { public: static constexpr size_t kMaxProgramHeaders = 16; using Elf_Addr = typename ElfTypes::Addr; using Elf_Off = typename ElfTypes::Off; using Elf_Word = typename ElfTypes::Word; using Elf_Sword = typename ElfTypes::Sword; using Elf_Ehdr = typename ElfTypes::Ehdr; using Elf_Shdr = typename ElfTypes::Shdr; using Elf_Sym = typename ElfTypes::Sym; using Elf_Phdr = typename ElfTypes::Phdr; using Elf_Dyn = typename ElfTypes::Dyn; // Base class of all sections. class Section : public OutputStream { public: Section(ElfBuilder<ElfTypes>* owner, const std::string& name, Elf_Word type, Elf_Word flags, const Section* link, Elf_Word info, Elf_Word align, Elf_Word entsize) : OutputStream(name), owner_(owner), header_(), section_index_(0), name_(name), link_(link), started_(false), finished_(false), phdr_flags_(PF_R), phdr_type_(0) { DCHECK_GE(align, 1u); header_.sh_type = type; header_.sh_flags = flags; header_.sh_info = info; header_.sh_addralign = align; header_.sh_entsize = entsize; } // Start writing of this section. void Start() { CHECK(!started_); CHECK(!finished_); started_ = true; auto& sections = owner_->sections_; // Check that the previous section is complete. CHECK(sections.empty() || sections.back()->finished_); // The first ELF section index is 1. Index 0 is reserved for NULL. section_index_ = sections.size() + 1; // Page-align if we switch between allocated and non-allocated sections, // or if we change the type of allocation (e.g. executable vs non-executable). if (!sections.empty()) { if (header_.sh_flags != sections.back()->header_.sh_flags) { header_.sh_addralign = kPageSize; } } // Align file position. if (header_.sh_type != SHT_NOBITS) { header_.sh_offset = owner_->AlignFileOffset(header_.sh_addralign); } else { header_.sh_offset = 0; } // Align virtual memory address. if ((header_.sh_flags & SHF_ALLOC) != 0) { header_.sh_addr = owner_->AlignVirtualAddress(header_.sh_addralign); } else { header_.sh_addr = 0; } // Push this section on the list of written sections. sections.push_back(this); } // Finish writing of this section. void End() { CHECK(started_); CHECK(!finished_); finished_ = true; if (header_.sh_type == SHT_NOBITS) { CHECK_GT(header_.sh_size, 0u); } else { // Use the current file position to determine section size. off_t file_offset = owner_->stream_.Seek(0, kSeekCurrent); CHECK_GE(file_offset, (off_t)header_.sh_offset); header_.sh_size = file_offset - header_.sh_offset; } if ((header_.sh_flags & SHF_ALLOC) != 0) { owner_->virtual_address_ += header_.sh_size; } } // Get the location of this section in virtual memory. Elf_Addr GetAddress() const { CHECK(started_); return header_.sh_addr; } // Returns the size of the content of this section. Elf_Word GetSize() const { if (finished_) { return header_.sh_size; } else { CHECK(started_); CHECK_NE(header_.sh_type, (Elf_Word)SHT_NOBITS); return owner_->stream_.Seek(0, kSeekCurrent) - header_.sh_offset; } } // Write this section as "NOBITS" section. (used for the .bss section) // This means that the ELF file does not contain the initial data for this section // and it will be zero-initialized when the ELF file is loaded in the running program. void WriteNoBitsSection(Elf_Word size) { DCHECK_NE(header_.sh_flags & SHF_ALLOC, 0u); header_.sh_type = SHT_NOBITS; Start(); header_.sh_size = size; End(); } // This function always succeeds to simplify code. // Use builder's Good() to check the actual status. bool WriteFully(const void* buffer, size_t byte_count) OVERRIDE { CHECK(started_); CHECK(!finished_); return owner_->stream_.WriteFully(buffer, byte_count); } // This function always succeeds to simplify code. // Use builder's Good() to check the actual status. off_t Seek(off_t offset, Whence whence) OVERRIDE { // Forward the seek as-is and trust the caller to use it reasonably. return owner_->stream_.Seek(offset, whence); } // This function flushes the output and returns whether it succeeded. // If there was a previous failure, this does nothing and returns false, i.e. failed. bool Flush() OVERRIDE { return owner_->stream_.Flush(); } Elf_Word GetSectionIndex() const { DCHECK(started_); DCHECK_NE(section_index_, 0u); return section_index_; } private: ElfBuilder<ElfTypes>* owner_; Elf_Shdr header_; Elf_Word section_index_; const std::string name_; const Section* const link_; bool started_; bool finished_; Elf_Word phdr_flags_; Elf_Word phdr_type_; friend class ElfBuilder; DISALLOW_COPY_AND_ASSIGN(Section); }; class CachedSection : public Section { public: CachedSection(ElfBuilder<ElfTypes>* owner, const std::string& name, Elf_Word type, Elf_Word flags, const Section* link, Elf_Word info, Elf_Word align, Elf_Word entsize) : Section(owner, name, type, flags, link, info, align, entsize), cache_() { } Elf_Word Add(const void* data, size_t length) { Elf_Word offset = cache_.size(); const uint8_t* d = reinterpret_cast<const uint8_t*>(data); cache_.insert(cache_.end(), d, d + length); return offset; } Elf_Word GetCacheSize() { return cache_.size(); } void Write() { this->WriteFully(cache_.data(), cache_.size()); cache_.clear(); cache_.shrink_to_fit(); } void WriteCachedSection() { this->Start(); Write(); this->End(); } private: std::vector<uint8_t> cache_; }; // Writer of .dynstr section. class CachedStringSection FINAL : public CachedSection { public: CachedStringSection(ElfBuilder<ElfTypes>* owner, const std::string& name, Elf_Word flags, Elf_Word align) : CachedSection(owner, name, SHT_STRTAB, flags, /* link */ nullptr, /* info */ 0, align, /* entsize */ 0) { } Elf_Word Add(const std::string& name) { if (CachedSection::GetCacheSize() == 0u) { DCHECK(name.empty()); } return CachedSection::Add(name.c_str(), name.length() + 1); } }; // Writer of .strtab and .shstrtab sections. class StringSection FINAL : public Section { public: StringSection(ElfBuilder<ElfTypes>* owner, const std::string& name, Elf_Word flags, Elf_Word align) : Section(owner, name, SHT_STRTAB, flags, /* link */ nullptr, /* info */ 0, align, /* entsize */ 0), current_offset_(0) { } Elf_Word Write(const std::string& name) { if (current_offset_ == 0) { DCHECK(name.empty()); } Elf_Word offset = current_offset_; this->WriteFully(name.c_str(), name.length() + 1); current_offset_ += name.length() + 1; return offset; } private: Elf_Word current_offset_; }; // Writer of .dynsym and .symtab sections. class SymbolSection FINAL : public CachedSection { public: SymbolSection(ElfBuilder<ElfTypes>* owner, const std::string& name, Elf_Word type, Elf_Word flags, Section* strtab) : CachedSection(owner, name, type, flags, strtab, /* info */ 0, sizeof(Elf_Off), sizeof(Elf_Sym)) { // The symbol table always has to start with NULL symbol. Elf_Sym null_symbol = Elf_Sym(); CachedSection::Add(&null_symbol, sizeof(null_symbol)); } // Buffer symbol for this section. It will be written later. // If the symbol's section is null, it will be considered absolute (SHN_ABS). // (we use this in JIT to reference code which is stored outside the debug ELF file) void Add(Elf_Word name, const Section* section, Elf_Addr addr, Elf_Word size, uint8_t binding, uint8_t type) { Elf_Word section_index; if (section != nullptr) { DCHECK_LE(section->GetAddress(), addr); DCHECK_LE(addr, section->GetAddress() + section->GetSize()); section_index = section->GetSectionIndex(); } else { section_index = static_cast<Elf_Word>(SHN_ABS); } Add(name, section_index, addr, size, binding, type); } void Add(Elf_Word name, Elf_Word section_index, Elf_Addr addr, Elf_Word size, uint8_t binding, uint8_t type) { Elf_Sym sym = Elf_Sym(); sym.st_name = name; sym.st_value = addr; sym.st_size = size; sym.st_other = 0; sym.st_shndx = section_index; sym.st_info = (binding << 4) + (type & 0xf); CachedSection::Add(&sym, sizeof(sym)); } }; class AbiflagsSection FINAL : public Section { public: // Section with Mips abiflag info. static constexpr uint8_t MIPS_AFL_REG_NONE = 0; // no registers static constexpr uint8_t MIPS_AFL_REG_32 = 1; // 32-bit registers static constexpr uint8_t MIPS_AFL_REG_64 = 2; // 64-bit registers static constexpr uint32_t MIPS_AFL_FLAGS1_ODDSPREG = 1; // Uses odd single-prec fp regs static constexpr uint8_t MIPS_ABI_FP_DOUBLE = 1; // -mdouble-float static constexpr uint8_t MIPS_ABI_FP_XX = 5; // -mfpxx static constexpr uint8_t MIPS_ABI_FP_64A = 7; // -mips32r* -mfp64 -mno-odd-spreg AbiflagsSection(ElfBuilder<ElfTypes>* owner, const std::string& name, Elf_Word type, Elf_Word flags, const Section* link, Elf_Word info, Elf_Word align, Elf_Word entsize, InstructionSet isa, const InstructionSetFeatures* features) : Section(owner, name, type, flags, link, info, align, entsize) { if (isa == kMips || isa == kMips64) { bool fpu32 = false; // assume mips64 values uint8_t isa_rev = 6; // assume mips64 values if (isa == kMips) { // adjust for mips32 values fpu32 = features->AsMipsInstructionSetFeatures()->Is32BitFloatingPoint(); isa_rev = features->AsMipsInstructionSetFeatures()->IsR6() ? 6 : features->AsMipsInstructionSetFeatures()->IsMipsIsaRevGreaterThanEqual2() ? (fpu32 ? 2 : 5) : 1; } abiflags_.version = 0; // version of flags structure abiflags_.isa_level = (isa == kMips) ? 32 : 64; abiflags_.isa_rev = isa_rev; abiflags_.gpr_size = (isa == kMips) ? MIPS_AFL_REG_32 : MIPS_AFL_REG_64; abiflags_.cpr1_size = fpu32 ? MIPS_AFL_REG_32 : MIPS_AFL_REG_64; abiflags_.cpr2_size = MIPS_AFL_REG_NONE; // Set the fp_abi to MIPS_ABI_FP_64A for mips32 with 64-bit FPUs (ie: mips32 R5 and R6). // Otherwise set to MIPS_ABI_FP_DOUBLE. abiflags_.fp_abi = (isa == kMips && !fpu32) ? MIPS_ABI_FP_64A : MIPS_ABI_FP_DOUBLE; abiflags_.isa_ext = 0; abiflags_.ases = 0; // To keep the code simple, we are not using odd FP reg for single floats for both // mips32 and mips64 ART. Therefore we are not setting the MIPS_AFL_FLAGS1_ODDSPREG bit. abiflags_.flags1 = 0; abiflags_.flags2 = 0; } } Elf_Word GetSize() const { return sizeof(abiflags_); } void Write() { this->WriteFully(&abiflags_, sizeof(abiflags_)); } private: struct { uint16_t version; // version of this structure uint8_t isa_level, isa_rev, gpr_size, cpr1_size, cpr2_size; uint8_t fp_abi; uint32_t isa_ext, ases, flags1, flags2; } abiflags_; }; ElfBuilder(InstructionSet isa, const InstructionSetFeatures* features, OutputStream* output) : isa_(isa), features_(features), stream_(output), rodata_(this, ".rodata", SHT_PROGBITS, SHF_ALLOC, nullptr, 0, kPageSize, 0), text_(this, ".text", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR, nullptr, 0, kPageSize, 0), bss_(this, ".bss", SHT_NOBITS, SHF_ALLOC, nullptr, 0, kPageSize, 0), dynstr_(this, ".dynstr", SHF_ALLOC, kPageSize), dynsym_(this, ".dynsym", SHT_DYNSYM, SHF_ALLOC, &dynstr_), hash_(this, ".hash", SHT_HASH, SHF_ALLOC, &dynsym_, 0, sizeof(Elf_Word), sizeof(Elf_Word)), dynamic_(this, ".dynamic", SHT_DYNAMIC, SHF_ALLOC, &dynstr_, 0, kPageSize, sizeof(Elf_Dyn)), eh_frame_(this, ".eh_frame", SHT_PROGBITS, SHF_ALLOC, nullptr, 0, kPageSize, 0), eh_frame_hdr_(this, ".eh_frame_hdr", SHT_PROGBITS, SHF_ALLOC, nullptr, 0, 4, 0), strtab_(this, ".strtab", 0, 1), symtab_(this, ".symtab", SHT_SYMTAB, 0, &strtab_), debug_frame_(this, ".debug_frame", SHT_PROGBITS, 0, nullptr, 0, sizeof(Elf_Addr), 0), debug_info_(this, ".debug_info", SHT_PROGBITS, 0, nullptr, 0, 1, 0), debug_line_(this, ".debug_line", SHT_PROGBITS, 0, nullptr, 0, 1, 0), shstrtab_(this, ".shstrtab", 0, 1), abiflags_(this, ".MIPS.abiflags", SHT_MIPS_ABIFLAGS, SHF_ALLOC, nullptr, 0, kPageSize, 0, isa, features), started_(false), write_program_headers_(false), loaded_size_(0u), virtual_address_(0) { text_.phdr_flags_ = PF_R | PF_X; bss_.phdr_flags_ = PF_R | PF_W; dynamic_.phdr_flags_ = PF_R | PF_W; dynamic_.phdr_type_ = PT_DYNAMIC; eh_frame_hdr_.phdr_type_ = PT_GNU_EH_FRAME; abiflags_.phdr_type_ = PT_MIPS_ABIFLAGS; } ~ElfBuilder() {} InstructionSet GetIsa() { return isa_; } Section* GetRoData() { return &rodata_; } Section* GetText() { return &text_; } Section* GetBss() { return &bss_; } StringSection* GetStrTab() { return &strtab_; } SymbolSection* GetSymTab() { return &symtab_; } Section* GetEhFrame() { return &eh_frame_; } Section* GetEhFrameHdr() { return &eh_frame_hdr_; } Section* GetDebugFrame() { return &debug_frame_; } Section* GetDebugInfo() { return &debug_info_; } Section* GetDebugLine() { return &debug_line_; } // Encode patch locations as LEB128 list of deltas between consecutive addresses. // (exposed publicly for tests) static void EncodeOatPatches(const ArrayRef<const uintptr_t>& locations, std::vector<uint8_t>* buffer) { buffer->reserve(buffer->size() + locations.size() * 2); // guess 2 bytes per ULEB128. uintptr_t address = 0; // relative to start of section. for (uintptr_t location : locations) { DCHECK_GE(location, address) << "Patch locations are not in sorted order"; EncodeUnsignedLeb128(buffer, dchecked_integral_cast<uint32_t>(location - address)); address = location; } } void WritePatches(const char* name, const ArrayRef<const uintptr_t>& patch_locations) { std::vector<uint8_t> buffer; EncodeOatPatches(patch_locations, &buffer); std::unique_ptr<Section> s(new Section(this, name, SHT_OAT_PATCH, 0, nullptr, 0, 1, 0)); s->Start(); s->WriteFully(buffer.data(), buffer.size()); s->End(); other_sections_.push_back(std::move(s)); } void WriteSection(const char* name, const std::vector<uint8_t>* buffer) { std::unique_ptr<Section> s(new Section(this, name, SHT_PROGBITS, 0, nullptr, 0, 1, 0)); s->Start(); s->WriteFully(buffer->data(), buffer->size()); s->End(); other_sections_.push_back(std::move(s)); } // Reserve space for ELF header and program headers. // We do not know the number of headers until later, so // it is easiest to just reserve a fixed amount of space. // Program headers are required for loading by the linker. // It is possible to omit them for ELF files used for debugging. void Start(bool write_program_headers = true) { int size = sizeof(Elf_Ehdr); if (write_program_headers) { size += sizeof(Elf_Phdr) * kMaxProgramHeaders; } stream_.Seek(size, kSeekSet); started_ = true; virtual_address_ += size; write_program_headers_ = write_program_headers; } void End() { DCHECK(started_); // Note: loaded_size_ == 0 for tests that don't write .rodata, .text, .bss, // .dynstr, dynsym, .hash and .dynamic. These tests should not read loaded_size_. // TODO: Either refactor the .eh_frame creation so that it counts towards loaded_size_, // or remove all support for .eh_frame. (The currently unused .eh_frame counts towards // the virtual_address_ but we don't consider it for loaded_size_.) CHECK(loaded_size_ == 0 || loaded_size_ == RoundUp(virtual_address_, kPageSize)) << loaded_size_ << " " << virtual_address_; // Write section names and finish the section headers. shstrtab_.Start(); shstrtab_.Write(""); for (auto* section : sections_) { section->header_.sh_name = shstrtab_.Write(section->name_); if (section->link_ != nullptr) { section->header_.sh_link = section->link_->GetSectionIndex(); } } shstrtab_.End(); // Write section headers at the end of the ELF file. std::vector<Elf_Shdr> shdrs; shdrs.reserve(1u + sections_.size()); shdrs.push_back(Elf_Shdr()); // NULL at index 0. for (auto* section : sections_) { shdrs.push_back(section->header_); } Elf_Off section_headers_offset; section_headers_offset = AlignFileOffset(sizeof(Elf_Off)); stream_.WriteFully(shdrs.data(), shdrs.size() * sizeof(shdrs[0])); // Flush everything else before writing the program headers. This should prevent // the OS from reordering writes, so that we don't end up with valid headers // and partially written data if we suddenly lose power, for example. stream_.Flush(); // The main ELF header. Elf_Ehdr elf_header = MakeElfHeader(isa_, features_); elf_header.e_shoff = section_headers_offset; elf_header.e_shnum = shdrs.size(); elf_header.e_shstrndx = shstrtab_.GetSectionIndex(); // Program headers (i.e. mmap instructions). std::vector<Elf_Phdr> phdrs; if (write_program_headers_) { phdrs = MakeProgramHeaders(); CHECK_LE(phdrs.size(), kMaxProgramHeaders); elf_header.e_phoff = sizeof(Elf_Ehdr); elf_header.e_phnum = phdrs.size(); } stream_.Seek(0, kSeekSet); stream_.WriteFully(&elf_header, sizeof(elf_header)); stream_.WriteFully(phdrs.data(), phdrs.size() * sizeof(phdrs[0])); stream_.Flush(); } // The running program does not have access to section headers // and the loader is not supposed to use them either. // The dynamic sections therefore replicates some of the layout // information like the address and size of .rodata and .text. // It also contains other metadata like the SONAME. // The .dynamic section is found using the PT_DYNAMIC program header. void PrepareDynamicSection(const std::string& elf_file_path, Elf_Word rodata_size, Elf_Word text_size, Elf_Word bss_size) { std::string soname(elf_file_path); size_t directory_separator_pos = soname.rfind('/'); if (directory_separator_pos != std::string::npos) { soname = soname.substr(directory_separator_pos + 1); } // Calculate addresses of .text, .bss and .dynstr. DCHECK_EQ(rodata_.header_.sh_addralign, static_cast<Elf_Word>(kPageSize)); DCHECK_EQ(text_.header_.sh_addralign, static_cast<Elf_Word>(kPageSize)); DCHECK_EQ(bss_.header_.sh_addralign, static_cast<Elf_Word>(kPageSize)); DCHECK_EQ(dynstr_.header_.sh_addralign, static_cast<Elf_Word>(kPageSize)); Elf_Word rodata_address = rodata_.GetAddress(); Elf_Word text_address = RoundUp(rodata_address + rodata_size, kPageSize); Elf_Word bss_address = RoundUp(text_address + text_size, kPageSize); Elf_Word abiflags_address = RoundUp(bss_address + bss_size, kPageSize); Elf_Word abiflags_size = 0; if (isa_ == kMips || isa_ == kMips64) { abiflags_size = abiflags_.GetSize(); } Elf_Word dynstr_address = RoundUp(abiflags_address + abiflags_size, kPageSize); // Cache .dynstr, .dynsym and .hash data. dynstr_.Add(""); // dynstr should start with empty string. Elf_Word rodata_index = rodata_.GetSectionIndex(); Elf_Word oatdata = dynstr_.Add("oatdata"); dynsym_.Add(oatdata, rodata_index, rodata_address, rodata_size, STB_GLOBAL, STT_OBJECT); if (text_size != 0u) { Elf_Word text_index = rodata_index + 1u; Elf_Word oatexec = dynstr_.Add("oatexec"); dynsym_.Add(oatexec, text_index, text_address, text_size, STB_GLOBAL, STT_OBJECT); Elf_Word oatlastword = dynstr_.Add("oatlastword"); Elf_Word oatlastword_address = text_address + text_size - 4; dynsym_.Add(oatlastword, text_index, oatlastword_address, 4, STB_GLOBAL, STT_OBJECT); } else if (rodata_size != 0) { // rodata_ can be size 0 for dwarf_test. Elf_Word oatlastword = dynstr_.Add("oatlastword"); Elf_Word oatlastword_address = rodata_address + rodata_size - 4; dynsym_.Add(oatlastword, rodata_index, oatlastword_address, 4, STB_GLOBAL, STT_OBJECT); } if (bss_size != 0u) { Elf_Word bss_index = rodata_index + 1u + (text_size != 0 ? 1u : 0u); Elf_Word oatbss = dynstr_.Add("oatbss"); dynsym_.Add(oatbss, bss_index, bss_address, bss_size, STB_GLOBAL, STT_OBJECT); Elf_Word oatbsslastword = dynstr_.Add("oatbsslastword"); Elf_Word bsslastword_address = bss_address + bss_size - 4; dynsym_.Add(oatbsslastword, bss_index, bsslastword_address, 4, STB_GLOBAL, STT_OBJECT); } Elf_Word soname_offset = dynstr_.Add(soname); // We do not really need a hash-table since there is so few entries. // However, the hash-table is the only way the linker can actually // determine the number of symbols in .dynsym so it is required. int count = dynsym_.GetCacheSize() / sizeof(Elf_Sym); // Includes NULL. std::vector<Elf_Word> hash; hash.push_back(1); // Number of buckets. hash.push_back(count); // Number of chains. // Buckets. Having just one makes it linear search. hash.push_back(1); // Point to first non-NULL symbol. // Chains. This creates linked list of symbols. hash.push_back(0); // Dummy entry for the NULL symbol. for (int i = 1; i < count - 1; i++) { hash.push_back(i + 1); // Each symbol points to the next one. } hash.push_back(0); // Last symbol terminates the chain. hash_.Add(hash.data(), hash.size() * sizeof(hash[0])); // Calculate addresses of .dynsym, .hash and .dynamic. DCHECK_EQ(dynstr_.header_.sh_flags, dynsym_.header_.sh_flags); DCHECK_EQ(dynsym_.header_.sh_flags, hash_.header_.sh_flags); Elf_Word dynsym_address = RoundUp(dynstr_address + dynstr_.GetCacheSize(), dynsym_.header_.sh_addralign); Elf_Word hash_address = RoundUp(dynsym_address + dynsym_.GetCacheSize(), hash_.header_.sh_addralign); DCHECK_EQ(dynamic_.header_.sh_addralign, static_cast<Elf_Word>(kPageSize)); Elf_Word dynamic_address = RoundUp(hash_address + dynsym_.GetCacheSize(), kPageSize); Elf_Dyn dyns[] = { { DT_HASH, { hash_address } }, { DT_STRTAB, { dynstr_address } }, { DT_SYMTAB, { dynsym_address } }, { DT_SYMENT, { sizeof(Elf_Sym) } }, { DT_STRSZ, { dynstr_.GetCacheSize() } }, { DT_SONAME, { soname_offset } }, { DT_NULL, { 0 } }, }; dynamic_.Add(&dyns, sizeof(dyns)); loaded_size_ = RoundUp(dynamic_address + dynamic_.GetCacheSize(), kPageSize); } void WriteDynamicSection() { dynstr_.WriteCachedSection(); dynsym_.WriteCachedSection(); hash_.WriteCachedSection(); dynamic_.WriteCachedSection(); CHECK_EQ(loaded_size_, RoundUp(dynamic_.GetAddress() + dynamic_.GetSize(), kPageSize)); } Elf_Word GetLoadedSize() { CHECK_NE(loaded_size_, 0u); return loaded_size_; } void WriteMIPSabiflagsSection() { abiflags_.Start(); abiflags_.Write(); abiflags_.End(); } // Returns true if all writes and seeks on the output stream succeeded. bool Good() { return stream_.Good(); } // Returns the builder's internal stream. OutputStream* GetStream() { return &stream_; } off_t AlignFileOffset(size_t alignment) { return stream_.Seek(RoundUp(stream_.Seek(0, kSeekCurrent), alignment), kSeekSet); } Elf_Addr AlignVirtualAddress(size_t alignment) { return virtual_address_ = RoundUp(virtual_address_, alignment); } private: static Elf_Ehdr MakeElfHeader(InstructionSet isa, const InstructionSetFeatures* features) { Elf_Ehdr elf_header = Elf_Ehdr(); switch (isa) { case kArm: // Fall through. case kThumb2: { elf_header.e_machine = EM_ARM; elf_header.e_flags = EF_ARM_EABI_VER5; break; } case kArm64: { elf_header.e_machine = EM_AARCH64; elf_header.e_flags = 0; break; } case kX86: { elf_header.e_machine = EM_386; elf_header.e_flags = 0; break; } case kX86_64: { elf_header.e_machine = EM_X86_64; elf_header.e_flags = 0; break; } case kMips: { elf_header.e_machine = EM_MIPS; elf_header.e_flags = (EF_MIPS_NOREORDER | EF_MIPS_PIC | EF_MIPS_CPIC | EF_MIPS_ABI_O32 | features->AsMipsInstructionSetFeatures()->IsR6() ? EF_MIPS_ARCH_32R6 : EF_MIPS_ARCH_32R2); break; } case kMips64: { elf_header.e_machine = EM_MIPS; elf_header.e_flags = (EF_MIPS_NOREORDER | EF_MIPS_PIC | EF_MIPS_CPIC | EF_MIPS_ARCH_64R6); break; } case kNone: { LOG(FATAL) << "No instruction set"; break; } default: { LOG(FATAL) << "Unknown instruction set " << isa; } } elf_header.e_ident[EI_MAG0] = ELFMAG0; elf_header.e_ident[EI_MAG1] = ELFMAG1; elf_header.e_ident[EI_MAG2] = ELFMAG2; elf_header.e_ident[EI_MAG3] = ELFMAG3; elf_header.e_ident[EI_CLASS] = (sizeof(Elf_Addr) == sizeof(Elf32_Addr)) ? ELFCLASS32 : ELFCLASS64;; elf_header.e_ident[EI_DATA] = ELFDATA2LSB; elf_header.e_ident[EI_VERSION] = EV_CURRENT; elf_header.e_ident[EI_OSABI] = ELFOSABI_LINUX; elf_header.e_ident[EI_ABIVERSION] = 0; elf_header.e_type = ET_DYN; elf_header.e_version = 1; elf_header.e_entry = 0; elf_header.e_ehsize = sizeof(Elf_Ehdr); elf_header.e_phentsize = sizeof(Elf_Phdr); elf_header.e_shentsize = sizeof(Elf_Shdr); elf_header.e_phoff = sizeof(Elf_Ehdr); return elf_header; } // Create program headers based on written sections. std::vector<Elf_Phdr> MakeProgramHeaders() { CHECK(!sections_.empty()); std::vector<Elf_Phdr> phdrs; { // The program headers must start with PT_PHDR which is used in // loaded process to determine the number of program headers. Elf_Phdr phdr = Elf_Phdr(); phdr.p_type = PT_PHDR; phdr.p_flags = PF_R; phdr.p_offset = phdr.p_vaddr = phdr.p_paddr = sizeof(Elf_Ehdr); phdr.p_filesz = phdr.p_memsz = 0; // We need to fill this later. phdr.p_align = sizeof(Elf_Off); phdrs.push_back(phdr); // Tell the linker to mmap the start of file to memory. Elf_Phdr load = Elf_Phdr(); load.p_type = PT_LOAD; load.p_flags = PF_R; load.p_offset = load.p_vaddr = load.p_paddr = 0; load.p_filesz = load.p_memsz = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * kMaxProgramHeaders; load.p_align = kPageSize; phdrs.push_back(load); } // Create program headers for sections. for (auto* section : sections_) { const Elf_Shdr& shdr = section->header_; if ((shdr.sh_flags & SHF_ALLOC) != 0 && shdr.sh_size != 0) { // PT_LOAD tells the linker to mmap part of the file. // The linker can only mmap page-aligned sections. // Single PT_LOAD may contain several ELF sections. Elf_Phdr& prev = phdrs.back(); Elf_Phdr load = Elf_Phdr(); load.p_type = PT_LOAD; load.p_flags = section->phdr_flags_; load.p_offset = shdr.sh_offset; load.p_vaddr = load.p_paddr = shdr.sh_addr; load.p_filesz = (shdr.sh_type != SHT_NOBITS ? shdr.sh_size : 0u); load.p_memsz = shdr.sh_size; load.p_align = shdr.sh_addralign; if (prev.p_type == load.p_type && prev.p_flags == load.p_flags && prev.p_filesz == prev.p_memsz && // Do not merge .bss load.p_filesz == load.p_memsz) { // Do not merge .bss // Merge this PT_LOAD with the previous one. Elf_Word size = shdr.sh_offset + shdr.sh_size - prev.p_offset; prev.p_filesz = size; prev.p_memsz = size; } else { // If we are adding new load, it must be aligned. CHECK_EQ(shdr.sh_addralign, (Elf_Word)kPageSize); phdrs.push_back(load); } } } for (auto* section : sections_) { const Elf_Shdr& shdr = section->header_; if ((shdr.sh_flags & SHF_ALLOC) != 0 && shdr.sh_size != 0) { // Other PT_* types allow the program to locate interesting // parts of memory at runtime. They must overlap with PT_LOAD. if (section->phdr_type_ != 0) { Elf_Phdr phdr = Elf_Phdr(); phdr.p_type = section->phdr_type_; phdr.p_flags = section->phdr_flags_; phdr.p_offset = shdr.sh_offset; phdr.p_vaddr = phdr.p_paddr = shdr.sh_addr; phdr.p_filesz = phdr.p_memsz = shdr.sh_size; phdr.p_align = shdr.sh_addralign; phdrs.push_back(phdr); } } } // Set the size of the initial PT_PHDR. CHECK_EQ(phdrs[0].p_type, (Elf_Word)PT_PHDR); phdrs[0].p_filesz = phdrs[0].p_memsz = phdrs.size() * sizeof(Elf_Phdr); return phdrs; } InstructionSet isa_; const InstructionSetFeatures* features_; ErrorDelayingOutputStream stream_; Section rodata_; Section text_; Section bss_; CachedStringSection dynstr_; SymbolSection dynsym_; CachedSection hash_; CachedSection dynamic_; Section eh_frame_; Section eh_frame_hdr_; StringSection strtab_; SymbolSection symtab_; Section debug_frame_; Section debug_info_; Section debug_line_; StringSection shstrtab_; AbiflagsSection abiflags_; std::vector<std::unique_ptr<Section>> other_sections_; // List of used section in the order in which they were written. std::vector<Section*> sections_; bool started_; bool write_program_headers_; // The size of the memory taken by the ELF file when loaded. size_t loaded_size_; // Used for allocation of virtual address space. Elf_Addr virtual_address_; DISALLOW_COPY_AND_ASSIGN(ElfBuilder); }; } // namespace art #endif // ART_COMPILER_ELF_BUILDER_H_