/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "calling_convention_x86.h"

#include "base/logging.h"
#include "handle_scope-inl.h"
#include "utils/x86/managed_register_x86.h"

namespace art {
namespace x86 {

// Calling convention

ManagedRegister X86ManagedRuntimeCallingConvention::InterproceduralScratchRegister() {
  return X86ManagedRegister::FromCpuRegister(ECX);
}

ManagedRegister X86JniCallingConvention::InterproceduralScratchRegister() {
  return X86ManagedRegister::FromCpuRegister(ECX);
}

ManagedRegister X86JniCallingConvention::ReturnScratchRegister() const {
  return ManagedRegister::NoRegister();  // No free regs, so assembler uses push/pop
}

static ManagedRegister ReturnRegisterForShorty(const char* shorty, bool jni) {
  if (shorty[0] == 'F' || shorty[0] == 'D') {
    if (jni) {
      return X86ManagedRegister::FromX87Register(ST0);
    } else {
      return X86ManagedRegister::FromXmmRegister(XMM0);
    }
  } else if (shorty[0] == 'J') {
    return X86ManagedRegister::FromRegisterPair(EAX_EDX);
  } else if (shorty[0] == 'V') {
    return ManagedRegister::NoRegister();
  } else {
    return X86ManagedRegister::FromCpuRegister(EAX);
  }
}

ManagedRegister X86ManagedRuntimeCallingConvention::ReturnRegister() {
  return ReturnRegisterForShorty(GetShorty(), false);
}

ManagedRegister X86JniCallingConvention::ReturnRegister() {
  return ReturnRegisterForShorty(GetShorty(), true);
}

ManagedRegister X86JniCallingConvention::IntReturnRegister() {
  return X86ManagedRegister::FromCpuRegister(EAX);
}

// Managed runtime calling convention

ManagedRegister X86ManagedRuntimeCallingConvention::MethodRegister() {
  return X86ManagedRegister::FromCpuRegister(EAX);
}

bool X86ManagedRuntimeCallingConvention::IsCurrentParamInRegister() {
  return false;  // Everything is passed by stack
}

bool X86ManagedRuntimeCallingConvention::IsCurrentParamOnStack() {
  // We assume all parameters are on stack, args coming via registers are spilled as entry_spills.
  return true;
}

ManagedRegister X86ManagedRuntimeCallingConvention::CurrentParamRegister() {
  ManagedRegister res = ManagedRegister::NoRegister();
  if (!IsCurrentParamAFloatOrDouble()) {
    switch (gpr_arg_count_) {
      case 0:
        res = X86ManagedRegister::FromCpuRegister(ECX);
        break;
      case 1:
        res = X86ManagedRegister::FromCpuRegister(EDX);
        break;
      case 2:
        // Don't split a long between the last register and the stack.
        if (IsCurrentParamALong()) {
          return ManagedRegister::NoRegister();
        }
        res = X86ManagedRegister::FromCpuRegister(EBX);
        break;
    }
  } else if (itr_float_and_doubles_ < 4) {
    // First four float parameters are passed via XMM0..XMM3
    res = X86ManagedRegister::FromXmmRegister(
                                 static_cast<XmmRegister>(XMM0 + itr_float_and_doubles_));
  }
  return res;
}

ManagedRegister X86ManagedRuntimeCallingConvention::CurrentParamHighLongRegister() {
  ManagedRegister res = ManagedRegister::NoRegister();
  DCHECK(IsCurrentParamALong());
  switch (gpr_arg_count_) {
    case 0: res = X86ManagedRegister::FromCpuRegister(EDX); break;
    case 1: res = X86ManagedRegister::FromCpuRegister(EBX); break;
  }
  return res;
}

FrameOffset X86ManagedRuntimeCallingConvention::CurrentParamStackOffset() {
  return FrameOffset(displacement_.Int32Value() +   // displacement
                     kFramePointerSize +                 // Method*
                     (itr_slots_ * kFramePointerSize));  // offset into in args
}

const ManagedRegisterEntrySpills& X86ManagedRuntimeCallingConvention::EntrySpills() {
  // We spill the argument registers on X86 to free them up for scratch use, we then assume
  // all arguments are on the stack.
  if (entry_spills_.size() == 0) {
    ResetIterator(FrameOffset(0));
    while (HasNext()) {
      ManagedRegister in_reg = CurrentParamRegister();
      bool is_long = IsCurrentParamALong();
      if (!in_reg.IsNoRegister()) {
        int32_t size = IsParamADouble(itr_args_) ? 8 : 4;
        int32_t spill_offset = CurrentParamStackOffset().Uint32Value();
        ManagedRegisterSpill spill(in_reg, size, spill_offset);
        entry_spills_.push_back(spill);
        if (is_long) {
          // special case, as we need a second register here.
          in_reg = CurrentParamHighLongRegister();
          DCHECK(!in_reg.IsNoRegister());
          // We have to spill the second half of the long.
          ManagedRegisterSpill spill2(in_reg, size, spill_offset + 4);
          entry_spills_.push_back(spill2);
        }

        // Keep track of the number of GPRs allocated.
        if (!IsCurrentParamAFloatOrDouble()) {
          if (is_long) {
            // Long was allocated in 2 registers.
            gpr_arg_count_ += 2;
          } else {
            gpr_arg_count_++;
          }
        }
      } else if (is_long) {
        // We need to skip the unused last register, which is empty.
        // If we are already out of registers, this is harmless.
        gpr_arg_count_ += 2;
      }
      Next();
    }
  }
  return entry_spills_;
}

// JNI calling convention

X86JniCallingConvention::X86JniCallingConvention(bool is_static, bool is_synchronized,
                                                 const char* shorty)
    : JniCallingConvention(is_static, is_synchronized, shorty, kFramePointerSize) {
  callee_save_regs_.push_back(X86ManagedRegister::FromCpuRegister(EBP));
  callee_save_regs_.push_back(X86ManagedRegister::FromCpuRegister(ESI));
  callee_save_regs_.push_back(X86ManagedRegister::FromCpuRegister(EDI));
}

uint32_t X86JniCallingConvention::CoreSpillMask() const {
  return 1 << EBP | 1 << ESI | 1 << EDI | 1 << kNumberOfCpuRegisters;
}

size_t X86JniCallingConvention::FrameSize() {
  // Method*, return address and callee save area size, local reference segment state
  size_t frame_data_size = kX86PointerSize +
      (2 + CalleeSaveRegisters().size()) * kFramePointerSize;
  // References plus 2 words for HandleScope header
  size_t handle_scope_size = HandleScope::SizeOf(kFramePointerSize, ReferenceCount());
  // Plus return value spill area size
  return RoundUp(frame_data_size + handle_scope_size + SizeOfReturnValue(), kStackAlignment);
}

size_t X86JniCallingConvention::OutArgSize() {
  return RoundUp(NumberOfOutgoingStackArgs() * kFramePointerSize, kStackAlignment);
}

bool X86JniCallingConvention::IsCurrentParamInRegister() {
  return false;  // Everything is passed by stack.
}

bool X86JniCallingConvention::IsCurrentParamOnStack() {
  return true;  // Everything is passed by stack.
}

ManagedRegister X86JniCallingConvention::CurrentParamRegister() {
  LOG(FATAL) << "Should not reach here";
  return ManagedRegister::NoRegister();
}

FrameOffset X86JniCallingConvention::CurrentParamStackOffset() {
  return FrameOffset(displacement_.Int32Value() - OutArgSize() + (itr_slots_ * kFramePointerSize));
}

size_t X86JniCallingConvention::NumberOfOutgoingStackArgs() {
  size_t static_args = IsStatic() ? 1 : 0;  // count jclass
  // regular argument parameters and this
  size_t param_args = NumArgs() + NumLongOrDoubleArgs();
  // count JNIEnv* and return pc (pushed after Method*)
  size_t total_args = static_args + param_args + 2;
  return total_args;
}

}  // namespace x86
}  // namespace art