/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "assembler_x86.h" #include "base/casts.h" #include "entrypoints/quick/quick_entrypoints.h" #include "memory_region.h" #include "thread.h" namespace art { namespace x86 { std::ostream& operator<<(std::ostream& os, const XmmRegister& reg) { return os << "XMM" << static_cast<int>(reg); } std::ostream& operator<<(std::ostream& os, const X87Register& reg) { return os << "ST" << static_cast<int>(reg); } void X86Assembler::call(Register reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xFF); EmitRegisterOperand(2, reg); } void X86Assembler::call(const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xFF); EmitOperand(2, address); } void X86Assembler::call(Label* label) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xE8); static const int kSize = 5; // Offset by one because we already have emitted the opcode. EmitLabel(label, kSize - 1); } void X86Assembler::call(const ExternalLabel& label) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); intptr_t call_start = buffer_.GetPosition(); EmitUint8(0xE8); EmitInt32(label.address()); static const intptr_t kCallExternalLabelSize = 5; DCHECK_EQ((buffer_.GetPosition() - call_start), kCallExternalLabelSize); } void X86Assembler::pushl(Register reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x50 + reg); } void X86Assembler::pushl(const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xFF); EmitOperand(6, address); } void X86Assembler::pushl(const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); if (imm.is_int8()) { EmitUint8(0x6A); EmitUint8(imm.value() & 0xFF); } else { EmitUint8(0x68); EmitImmediate(imm); } } void X86Assembler::popl(Register reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x58 + reg); } void X86Assembler::popl(const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x8F); EmitOperand(0, address); } void X86Assembler::movl(Register dst, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xB8 + dst); EmitImmediate(imm); } void X86Assembler::movl(Register dst, Register src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x89); EmitRegisterOperand(src, dst); } void X86Assembler::movl(Register dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x8B); EmitOperand(dst, src); } void X86Assembler::movl(const Address& dst, Register src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x89); EmitOperand(src, dst); } void X86Assembler::movl(const Address& dst, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xC7); EmitOperand(0, dst); EmitImmediate(imm); } void X86Assembler::movl(const Address& dst, Label* lbl) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xC7); EmitOperand(0, dst); EmitLabel(lbl, dst.length_ + 5); } void X86Assembler::movntl(const Address& dst, Register src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0xC3); EmitOperand(src, dst); } void X86Assembler::bswapl(Register dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0xC8 + dst); } void X86Assembler::bsfl(Register dst, Register src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0xBC); EmitRegisterOperand(dst, src); } void X86Assembler::bsfl(Register dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0xBC); EmitOperand(dst, src); } void X86Assembler::bsrl(Register dst, Register src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0xBD); EmitRegisterOperand(dst, src); } void X86Assembler::bsrl(Register dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0xBD); EmitOperand(dst, src); } void X86Assembler::popcntl(Register dst, Register src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitUint8(0x0F); EmitUint8(0xB8); EmitRegisterOperand(dst, src); } void X86Assembler::popcntl(Register dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitUint8(0x0F); EmitUint8(0xB8); EmitOperand(dst, src); } void X86Assembler::movzxb(Register dst, ByteRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0xB6); EmitRegisterOperand(dst, src); } void X86Assembler::movzxb(Register dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0xB6); EmitOperand(dst, src); } void X86Assembler::movsxb(Register dst, ByteRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0xBE); EmitRegisterOperand(dst, src); } void X86Assembler::movsxb(Register dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0xBE); EmitOperand(dst, src); } void X86Assembler::movb(Register /*dst*/, const Address& /*src*/) { LOG(FATAL) << "Use movzxb or movsxb instead."; } void X86Assembler::movb(const Address& dst, ByteRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x88); EmitOperand(src, dst); } void X86Assembler::movb(const Address& dst, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xC6); EmitOperand(EAX, dst); CHECK(imm.is_int8()); EmitUint8(imm.value() & 0xFF); } void X86Assembler::movzxw(Register dst, Register src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0xB7); EmitRegisterOperand(dst, src); } void X86Assembler::movzxw(Register dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0xB7); EmitOperand(dst, src); } void X86Assembler::movsxw(Register dst, Register src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0xBF); EmitRegisterOperand(dst, src); } void X86Assembler::movsxw(Register dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0xBF); EmitOperand(dst, src); } void X86Assembler::movw(Register /*dst*/, const Address& /*src*/) { LOG(FATAL) << "Use movzxw or movsxw instead."; } void X86Assembler::movw(const Address& dst, Register src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOperandSizeOverride(); EmitUint8(0x89); EmitOperand(src, dst); } void X86Assembler::movw(const Address& dst, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOperandSizeOverride(); EmitUint8(0xC7); EmitOperand(0, dst); CHECK(imm.is_uint16() || imm.is_int16()); EmitUint8(imm.value() & 0xFF); EmitUint8(imm.value() >> 8); } void X86Assembler::leal(Register dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x8D); EmitOperand(dst, src); } void X86Assembler::cmovl(Condition condition, Register dst, Register src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0x40 + condition); EmitRegisterOperand(dst, src); } void X86Assembler::cmovl(Condition condition, Register dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0x40 + condition); EmitOperand(dst, src); } void X86Assembler::setb(Condition condition, Register dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0x90 + condition); EmitOperand(0, Operand(dst)); } void X86Assembler::movaps(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0x28); EmitXmmRegisterOperand(dst, src); } void X86Assembler::movss(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitUint8(0x0F); EmitUint8(0x10); EmitOperand(dst, src); } void X86Assembler::movss(const Address& dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitUint8(0x0F); EmitUint8(0x11); EmitOperand(src, dst); } void X86Assembler::movss(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitUint8(0x0F); EmitUint8(0x11); EmitXmmRegisterOperand(src, dst); } void X86Assembler::movd(XmmRegister dst, Register src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitUint8(0x0F); EmitUint8(0x6E); EmitOperand(dst, Operand(src)); } void X86Assembler::movd(Register dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitUint8(0x0F); EmitUint8(0x7E); EmitOperand(src, Operand(dst)); } void X86Assembler::addss(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitUint8(0x0F); EmitUint8(0x58); EmitXmmRegisterOperand(dst, src); } void X86Assembler::addss(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitUint8(0x0F); EmitUint8(0x58); EmitOperand(dst, src); } void X86Assembler::subss(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitUint8(0x0F); EmitUint8(0x5C); EmitXmmRegisterOperand(dst, src); } void X86Assembler::subss(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitUint8(0x0F); EmitUint8(0x5C); EmitOperand(dst, src); } void X86Assembler::mulss(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitUint8(0x0F); EmitUint8(0x59); EmitXmmRegisterOperand(dst, src); } void X86Assembler::mulss(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitUint8(0x0F); EmitUint8(0x59); EmitOperand(dst, src); } void X86Assembler::divss(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitUint8(0x0F); EmitUint8(0x5E); EmitXmmRegisterOperand(dst, src); } void X86Assembler::divss(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitUint8(0x0F); EmitUint8(0x5E); EmitOperand(dst, src); } void X86Assembler::flds(const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitOperand(0, src); } void X86Assembler::fsts(const Address& dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitOperand(2, dst); } void X86Assembler::fstps(const Address& dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitOperand(3, dst); } void X86Assembler::movsd(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitUint8(0x0F); EmitUint8(0x10); EmitOperand(dst, src); } void X86Assembler::movsd(const Address& dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitUint8(0x0F); EmitUint8(0x11); EmitOperand(src, dst); } void X86Assembler::movsd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitUint8(0x0F); EmitUint8(0x11); EmitXmmRegisterOperand(src, dst); } void X86Assembler::movhpd(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitUint8(0x0F); EmitUint8(0x16); EmitOperand(dst, src); } void X86Assembler::movhpd(const Address& dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitUint8(0x0F); EmitUint8(0x17); EmitOperand(src, dst); } void X86Assembler::psrldq(XmmRegister reg, const Immediate& shift_count) { DCHECK(shift_count.is_uint8()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitUint8(0x0F); EmitUint8(0x73); EmitXmmRegisterOperand(3, reg); EmitUint8(shift_count.value()); } void X86Assembler::psrlq(XmmRegister reg, const Immediate& shift_count) { DCHECK(shift_count.is_uint8()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitUint8(0x0F); EmitUint8(0x73); EmitXmmRegisterOperand(2, reg); EmitUint8(shift_count.value()); } void X86Assembler::punpckldq(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitUint8(0x0F); EmitUint8(0x62); EmitXmmRegisterOperand(dst, src); } void X86Assembler::addsd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitUint8(0x0F); EmitUint8(0x58); EmitXmmRegisterOperand(dst, src); } void X86Assembler::addsd(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitUint8(0x0F); EmitUint8(0x58); EmitOperand(dst, src); } void X86Assembler::subsd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitUint8(0x0F); EmitUint8(0x5C); EmitXmmRegisterOperand(dst, src); } void X86Assembler::subsd(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitUint8(0x0F); EmitUint8(0x5C); EmitOperand(dst, src); } void X86Assembler::mulsd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitUint8(0x0F); EmitUint8(0x59); EmitXmmRegisterOperand(dst, src); } void X86Assembler::mulsd(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitUint8(0x0F); EmitUint8(0x59); EmitOperand(dst, src); } void X86Assembler::divsd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitUint8(0x0F); EmitUint8(0x5E); EmitXmmRegisterOperand(dst, src); } void X86Assembler::divsd(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitUint8(0x0F); EmitUint8(0x5E); EmitOperand(dst, src); } void X86Assembler::cvtsi2ss(XmmRegister dst, Register src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitUint8(0x0F); EmitUint8(0x2A); EmitOperand(dst, Operand(src)); } void X86Assembler::cvtsi2sd(XmmRegister dst, Register src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitUint8(0x0F); EmitUint8(0x2A); EmitOperand(dst, Operand(src)); } void X86Assembler::cvtss2si(Register dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitUint8(0x0F); EmitUint8(0x2D); EmitXmmRegisterOperand(dst, src); } void X86Assembler::cvtss2sd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitUint8(0x0F); EmitUint8(0x5A); EmitXmmRegisterOperand(dst, src); } void X86Assembler::cvtsd2si(Register dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitUint8(0x0F); EmitUint8(0x2D); EmitXmmRegisterOperand(dst, src); } void X86Assembler::cvttss2si(Register dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitUint8(0x0F); EmitUint8(0x2C); EmitXmmRegisterOperand(dst, src); } void X86Assembler::cvttsd2si(Register dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitUint8(0x0F); EmitUint8(0x2C); EmitXmmRegisterOperand(dst, src); } void X86Assembler::cvtsd2ss(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitUint8(0x0F); EmitUint8(0x5A); EmitXmmRegisterOperand(dst, src); } void X86Assembler::cvtdq2pd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitUint8(0x0F); EmitUint8(0xE6); EmitXmmRegisterOperand(dst, src); } void X86Assembler::comiss(XmmRegister a, XmmRegister b) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0x2F); EmitXmmRegisterOperand(a, b); } void X86Assembler::comisd(XmmRegister a, XmmRegister b) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitUint8(0x0F); EmitUint8(0x2F); EmitXmmRegisterOperand(a, b); } void X86Assembler::ucomiss(XmmRegister a, XmmRegister b) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0x2E); EmitXmmRegisterOperand(a, b); } void X86Assembler::ucomiss(XmmRegister a, const Address& b) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0x2E); EmitOperand(a, b); } void X86Assembler::ucomisd(XmmRegister a, XmmRegister b) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitUint8(0x0F); EmitUint8(0x2E); EmitXmmRegisterOperand(a, b); } void X86Assembler::ucomisd(XmmRegister a, const Address& b) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitUint8(0x0F); EmitUint8(0x2E); EmitOperand(a, b); } void X86Assembler::roundsd(XmmRegister dst, XmmRegister src, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitUint8(0x0F); EmitUint8(0x3A); EmitUint8(0x0B); EmitXmmRegisterOperand(dst, src); EmitUint8(imm.value()); } void X86Assembler::roundss(XmmRegister dst, XmmRegister src, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitUint8(0x0F); EmitUint8(0x3A); EmitUint8(0x0A); EmitXmmRegisterOperand(dst, src); EmitUint8(imm.value()); } void X86Assembler::sqrtsd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitUint8(0x0F); EmitUint8(0x51); EmitXmmRegisterOperand(dst, src); } void X86Assembler::sqrtss(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitUint8(0x0F); EmitUint8(0x51); EmitXmmRegisterOperand(dst, src); } void X86Assembler::xorpd(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitUint8(0x0F); EmitUint8(0x57); EmitOperand(dst, src); } void X86Assembler::xorpd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitUint8(0x0F); EmitUint8(0x57); EmitXmmRegisterOperand(dst, src); } void X86Assembler::andps(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0x54); EmitXmmRegisterOperand(dst, src); } void X86Assembler::andpd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitUint8(0x0F); EmitUint8(0x54); EmitXmmRegisterOperand(dst, src); } void X86Assembler::orpd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitUint8(0x0F); EmitUint8(0x56); EmitXmmRegisterOperand(dst, src); } void X86Assembler::xorps(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0x57); EmitOperand(dst, src); } void X86Assembler::orps(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0x56); EmitXmmRegisterOperand(dst, src); } void X86Assembler::xorps(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0x57); EmitXmmRegisterOperand(dst, src); } void X86Assembler::andps(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0x54); EmitOperand(dst, src); } void X86Assembler::andpd(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitUint8(0x0F); EmitUint8(0x54); EmitOperand(dst, src); } void X86Assembler::fldl(const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xDD); EmitOperand(0, src); } void X86Assembler::fstl(const Address& dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xDD); EmitOperand(2, dst); } void X86Assembler::fstpl(const Address& dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xDD); EmitOperand(3, dst); } void X86Assembler::fstsw() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x9B); EmitUint8(0xDF); EmitUint8(0xE0); } void X86Assembler::fnstcw(const Address& dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitOperand(7, dst); } void X86Assembler::fldcw(const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitOperand(5, src); } void X86Assembler::fistpl(const Address& dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xDF); EmitOperand(7, dst); } void X86Assembler::fistps(const Address& dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xDB); EmitOperand(3, dst); } void X86Assembler::fildl(const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xDF); EmitOperand(5, src); } void X86Assembler::filds(const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xDB); EmitOperand(0, src); } void X86Assembler::fincstp() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitUint8(0xF7); } void X86Assembler::ffree(const Immediate& index) { CHECK_LT(index.value(), 7); AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xDD); EmitUint8(0xC0 + index.value()); } void X86Assembler::fsin() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitUint8(0xFE); } void X86Assembler::fcos() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitUint8(0xFF); } void X86Assembler::fptan() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitUint8(0xF2); } void X86Assembler::fucompp() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xDA); EmitUint8(0xE9); } void X86Assembler::fprem() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitUint8(0xF8); } void X86Assembler::xchgl(Register dst, Register src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x87); EmitRegisterOperand(dst, src); } void X86Assembler::xchgl(Register reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x87); EmitOperand(reg, address); } void X86Assembler::cmpw(const Address& address, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitComplex(7, address, imm); } void X86Assembler::cmpl(Register reg, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitComplex(7, Operand(reg), imm); } void X86Assembler::cmpl(Register reg0, Register reg1) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x3B); EmitOperand(reg0, Operand(reg1)); } void X86Assembler::cmpl(Register reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x3B); EmitOperand(reg, address); } void X86Assembler::addl(Register dst, Register src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x03); EmitRegisterOperand(dst, src); } void X86Assembler::addl(Register reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x03); EmitOperand(reg, address); } void X86Assembler::cmpl(const Address& address, Register reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x39); EmitOperand(reg, address); } void X86Assembler::cmpl(const Address& address, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitComplex(7, address, imm); } void X86Assembler::testl(Register reg1, Register reg2) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x85); EmitRegisterOperand(reg1, reg2); } void X86Assembler::testl(Register reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x85); EmitOperand(reg, address); } void X86Assembler::testl(Register reg, const Immediate& immediate) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); // For registers that have a byte variant (EAX, EBX, ECX, and EDX) // we only test the byte register to keep the encoding short. if (immediate.is_uint8() && reg < 4) { // Use zero-extended 8-bit immediate. if (reg == EAX) { EmitUint8(0xA8); } else { EmitUint8(0xF6); EmitUint8(0xC0 + reg); } EmitUint8(immediate.value() & 0xFF); } else if (reg == EAX) { // Use short form if the destination is EAX. EmitUint8(0xA9); EmitImmediate(immediate); } else { EmitUint8(0xF7); EmitOperand(0, Operand(reg)); EmitImmediate(immediate); } } void X86Assembler::andl(Register dst, Register src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x23); EmitOperand(dst, Operand(src)); } void X86Assembler::andl(Register reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x23); EmitOperand(reg, address); } void X86Assembler::andl(Register dst, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitComplex(4, Operand(dst), imm); } void X86Assembler::orl(Register dst, Register src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0B); EmitOperand(dst, Operand(src)); } void X86Assembler::orl(Register reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0B); EmitOperand(reg, address); } void X86Assembler::orl(Register dst, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitComplex(1, Operand(dst), imm); } void X86Assembler::xorl(Register dst, Register src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x33); EmitOperand(dst, Operand(src)); } void X86Assembler::xorl(Register reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x33); EmitOperand(reg, address); } void X86Assembler::xorl(Register dst, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitComplex(6, Operand(dst), imm); } void X86Assembler::addl(Register reg, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitComplex(0, Operand(reg), imm); } void X86Assembler::addl(const Address& address, Register reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x01); EmitOperand(reg, address); } void X86Assembler::addl(const Address& address, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitComplex(0, address, imm); } void X86Assembler::adcl(Register reg, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitComplex(2, Operand(reg), imm); } void X86Assembler::adcl(Register dst, Register src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x13); EmitOperand(dst, Operand(src)); } void X86Assembler::adcl(Register dst, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x13); EmitOperand(dst, address); } void X86Assembler::subl(Register dst, Register src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x2B); EmitOperand(dst, Operand(src)); } void X86Assembler::subl(Register reg, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitComplex(5, Operand(reg), imm); } void X86Assembler::subl(Register reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x2B); EmitOperand(reg, address); } void X86Assembler::subl(const Address& address, Register reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x29); EmitOperand(reg, address); } void X86Assembler::cdq() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x99); } void X86Assembler::idivl(Register reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF7); EmitUint8(0xF8 | reg); } void X86Assembler::imull(Register dst, Register src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0xAF); EmitOperand(dst, Operand(src)); } void X86Assembler::imull(Register dst, Register src, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); // See whether imm can be represented as a sign-extended 8bit value. int32_t v32 = static_cast<int32_t>(imm.value()); if (IsInt<8>(v32)) { // Sign-extension works. EmitUint8(0x6B); EmitOperand(dst, Operand(src)); EmitUint8(static_cast<uint8_t>(v32 & 0xFF)); } else { // Not representable, use full immediate. EmitUint8(0x69); EmitOperand(dst, Operand(src)); EmitImmediate(imm); } } void X86Assembler::imull(Register reg, const Immediate& imm) { imull(reg, reg, imm); } void X86Assembler::imull(Register reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0xAF); EmitOperand(reg, address); } void X86Assembler::imull(Register reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF7); EmitOperand(5, Operand(reg)); } void X86Assembler::imull(const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF7); EmitOperand(5, address); } void X86Assembler::mull(Register reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF7); EmitOperand(4, Operand(reg)); } void X86Assembler::mull(const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF7); EmitOperand(4, address); } void X86Assembler::sbbl(Register dst, Register src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x1B); EmitOperand(dst, Operand(src)); } void X86Assembler::sbbl(Register reg, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitComplex(3, Operand(reg), imm); } void X86Assembler::sbbl(Register dst, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x1B); EmitOperand(dst, address); } void X86Assembler::sbbl(const Address& address, Register src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x19); EmitOperand(src, address); } void X86Assembler::incl(Register reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x40 + reg); } void X86Assembler::incl(const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xFF); EmitOperand(0, address); } void X86Assembler::decl(Register reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x48 + reg); } void X86Assembler::decl(const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xFF); EmitOperand(1, address); } void X86Assembler::shll(Register reg, const Immediate& imm) { EmitGenericShift(4, Operand(reg), imm); } void X86Assembler::shll(Register operand, Register shifter) { EmitGenericShift(4, Operand(operand), shifter); } void X86Assembler::shll(const Address& address, const Immediate& imm) { EmitGenericShift(4, address, imm); } void X86Assembler::shll(const Address& address, Register shifter) { EmitGenericShift(4, address, shifter); } void X86Assembler::shrl(Register reg, const Immediate& imm) { EmitGenericShift(5, Operand(reg), imm); } void X86Assembler::shrl(Register operand, Register shifter) { EmitGenericShift(5, Operand(operand), shifter); } void X86Assembler::shrl(const Address& address, const Immediate& imm) { EmitGenericShift(5, address, imm); } void X86Assembler::shrl(const Address& address, Register shifter) { EmitGenericShift(5, address, shifter); } void X86Assembler::sarl(Register reg, const Immediate& imm) { EmitGenericShift(7, Operand(reg), imm); } void X86Assembler::sarl(Register operand, Register shifter) { EmitGenericShift(7, Operand(operand), shifter); } void X86Assembler::sarl(const Address& address, const Immediate& imm) { EmitGenericShift(7, address, imm); } void X86Assembler::sarl(const Address& address, Register shifter) { EmitGenericShift(7, address, shifter); } void X86Assembler::shld(Register dst, Register src, Register shifter) { DCHECK_EQ(ECX, shifter); AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0xA5); EmitRegisterOperand(src, dst); } void X86Assembler::shld(Register dst, Register src, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0xA4); EmitRegisterOperand(src, dst); EmitUint8(imm.value() & 0xFF); } void X86Assembler::shrd(Register dst, Register src, Register shifter) { DCHECK_EQ(ECX, shifter); AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0xAD); EmitRegisterOperand(src, dst); } void X86Assembler::shrd(Register dst, Register src, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0xAC); EmitRegisterOperand(src, dst); EmitUint8(imm.value() & 0xFF); } void X86Assembler::roll(Register reg, const Immediate& imm) { EmitGenericShift(0, Operand(reg), imm); } void X86Assembler::roll(Register operand, Register shifter) { EmitGenericShift(0, Operand(operand), shifter); } void X86Assembler::rorl(Register reg, const Immediate& imm) { EmitGenericShift(1, Operand(reg), imm); } void X86Assembler::rorl(Register operand, Register shifter) { EmitGenericShift(1, Operand(operand), shifter); } void X86Assembler::negl(Register reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF7); EmitOperand(3, Operand(reg)); } void X86Assembler::notl(Register reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF7); EmitUint8(0xD0 | reg); } void X86Assembler::enter(const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xC8); CHECK(imm.is_uint16()); EmitUint8(imm.value() & 0xFF); EmitUint8((imm.value() >> 8) & 0xFF); EmitUint8(0x00); } void X86Assembler::leave() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xC9); } void X86Assembler::ret() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xC3); } void X86Assembler::ret(const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xC2); CHECK(imm.is_uint16()); EmitUint8(imm.value() & 0xFF); EmitUint8((imm.value() >> 8) & 0xFF); } void X86Assembler::nop() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x90); } void X86Assembler::int3() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xCC); } void X86Assembler::hlt() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF4); } void X86Assembler::j(Condition condition, Label* label) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); if (label->IsBound()) { static const int kShortSize = 2; static const int kLongSize = 6; int offset = label->Position() - buffer_.Size(); CHECK_LE(offset, 0); if (IsInt<8>(offset - kShortSize)) { EmitUint8(0x70 + condition); EmitUint8((offset - kShortSize) & 0xFF); } else { EmitUint8(0x0F); EmitUint8(0x80 + condition); EmitInt32(offset - kLongSize); } } else { EmitUint8(0x0F); EmitUint8(0x80 + condition); EmitLabelLink(label); } } void X86Assembler::j(Condition condition, NearLabel* label) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); if (label->IsBound()) { static const int kShortSize = 2; int offset = label->Position() - buffer_.Size(); CHECK_LE(offset, 0); CHECK(IsInt<8>(offset - kShortSize)); EmitUint8(0x70 + condition); EmitUint8((offset - kShortSize) & 0xFF); } else { EmitUint8(0x70 + condition); EmitLabelLink(label); } } void X86Assembler::jecxz(NearLabel* label) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); if (label->IsBound()) { static const int kShortSize = 2; int offset = label->Position() - buffer_.Size(); CHECK_LE(offset, 0); CHECK(IsInt<8>(offset - kShortSize)); EmitUint8(0xE3); EmitUint8((offset - kShortSize) & 0xFF); } else { EmitUint8(0xE3); EmitLabelLink(label); } } void X86Assembler::jmp(Register reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xFF); EmitRegisterOperand(4, reg); } void X86Assembler::jmp(const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xFF); EmitOperand(4, address); } void X86Assembler::jmp(Label* label) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); if (label->IsBound()) { static const int kShortSize = 2; static const int kLongSize = 5; int offset = label->Position() - buffer_.Size(); CHECK_LE(offset, 0); if (IsInt<8>(offset - kShortSize)) { EmitUint8(0xEB); EmitUint8((offset - kShortSize) & 0xFF); } else { EmitUint8(0xE9); EmitInt32(offset - kLongSize); } } else { EmitUint8(0xE9); EmitLabelLink(label); } } void X86Assembler::jmp(NearLabel* label) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); if (label->IsBound()) { static const int kShortSize = 2; int offset = label->Position() - buffer_.Size(); CHECK_LE(offset, 0); CHECK(IsInt<8>(offset - kShortSize)); EmitUint8(0xEB); EmitUint8((offset - kShortSize) & 0xFF); } else { EmitUint8(0xEB); EmitLabelLink(label); } } void X86Assembler::repne_scasw() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitUint8(0xF2); EmitUint8(0xAF); } void X86Assembler::repe_cmpsw() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitUint8(0xF3); EmitUint8(0xA7); } void X86Assembler::repe_cmpsl() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitUint8(0xA7); } void X86Assembler::rep_movsw() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitUint8(0xF3); EmitUint8(0xA5); } X86Assembler* X86Assembler::lock() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF0); return this; } void X86Assembler::cmpxchgl(const Address& address, Register reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0xB1); EmitOperand(reg, address); } void X86Assembler::cmpxchg8b(const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0xC7); EmitOperand(1, address); } void X86Assembler::mfence() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0xAE); EmitUint8(0xF0); } X86Assembler* X86Assembler::fs() { // TODO: fs is a prefix and not an instruction AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x64); return this; } X86Assembler* X86Assembler::gs() { // TODO: fs is a prefix and not an instruction AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x65); return this; } void X86Assembler::AddImmediate(Register reg, const Immediate& imm) { int value = imm.value(); if (value > 0) { if (value == 1) { incl(reg); } else if (value != 0) { addl(reg, imm); } } else if (value < 0) { value = -value; if (value == 1) { decl(reg); } else if (value != 0) { subl(reg, Immediate(value)); } } } void X86Assembler::LoadLongConstant(XmmRegister dst, int64_t value) { // TODO: Need to have a code constants table. pushl(Immediate(High32Bits(value))); pushl(Immediate(Low32Bits(value))); movsd(dst, Address(ESP, 0)); addl(ESP, Immediate(2 * sizeof(int32_t))); } void X86Assembler::LoadDoubleConstant(XmmRegister dst, double value) { // TODO: Need to have a code constants table. int64_t constant = bit_cast<int64_t, double>(value); LoadLongConstant(dst, constant); } void X86Assembler::Align(int alignment, int offset) { CHECK(IsPowerOfTwo(alignment)); // Emit nop instruction until the real position is aligned. while (((offset + buffer_.GetPosition()) & (alignment-1)) != 0) { nop(); } } void X86Assembler::Bind(Label* label) { int bound = buffer_.Size(); CHECK(!label->IsBound()); // Labels can only be bound once. while (label->IsLinked()) { int position = label->LinkPosition(); int next = buffer_.Load<int32_t>(position); buffer_.Store<int32_t>(position, bound - (position + 4)); label->position_ = next; } label->BindTo(bound); } void X86Assembler::Bind(NearLabel* label) { int bound = buffer_.Size(); CHECK(!label->IsBound()); // Labels can only be bound once. while (label->IsLinked()) { int position = label->LinkPosition(); uint8_t delta = buffer_.Load<uint8_t>(position); int offset = bound - (position + 1); CHECK(IsInt<8>(offset)); buffer_.Store<int8_t>(position, offset); label->position_ = delta != 0u ? label->position_ - delta : 0; } label->BindTo(bound); } void X86Assembler::EmitOperand(int reg_or_opcode, const Operand& operand) { CHECK_GE(reg_or_opcode, 0); CHECK_LT(reg_or_opcode, 8); const int length = operand.length_; CHECK_GT(length, 0); // Emit the ModRM byte updated with the given reg value. CHECK_EQ(operand.encoding_[0] & 0x38, 0); EmitUint8(operand.encoding_[0] + (reg_or_opcode << 3)); // Emit the rest of the encoded operand. for (int i = 1; i < length; i++) { EmitUint8(operand.encoding_[i]); } AssemblerFixup* fixup = operand.GetFixup(); if (fixup != nullptr) { EmitFixup(fixup); } } void X86Assembler::EmitImmediate(const Immediate& imm) { EmitInt32(imm.value()); } void X86Assembler::EmitComplex(int reg_or_opcode, const Operand& operand, const Immediate& immediate) { CHECK_GE(reg_or_opcode, 0); CHECK_LT(reg_or_opcode, 8); if (immediate.is_int8()) { // Use sign-extended 8-bit immediate. EmitUint8(0x83); EmitOperand(reg_or_opcode, operand); EmitUint8(immediate.value() & 0xFF); } else if (operand.IsRegister(EAX)) { // Use short form if the destination is eax. EmitUint8(0x05 + (reg_or_opcode << 3)); EmitImmediate(immediate); } else { EmitUint8(0x81); EmitOperand(reg_or_opcode, operand); EmitImmediate(immediate); } } void X86Assembler::EmitLabel(Label* label, int instruction_size) { if (label->IsBound()) { int offset = label->Position() - buffer_.Size(); CHECK_LE(offset, 0); EmitInt32(offset - instruction_size); } else { EmitLabelLink(label); } } void X86Assembler::EmitLabelLink(Label* label) { CHECK(!label->IsBound()); int position = buffer_.Size(); EmitInt32(label->position_); label->LinkTo(position); } void X86Assembler::EmitLabelLink(NearLabel* label) { CHECK(!label->IsBound()); int position = buffer_.Size(); if (label->IsLinked()) { // Save the delta in the byte that we have to play with. uint32_t delta = position - label->LinkPosition(); CHECK(IsUint<8>(delta)); EmitUint8(delta & 0xFF); } else { EmitUint8(0); } label->LinkTo(position); } void X86Assembler::EmitGenericShift(int reg_or_opcode, const Operand& operand, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK(imm.is_int8()); if (imm.value() == 1) { EmitUint8(0xD1); EmitOperand(reg_or_opcode, operand); } else { EmitUint8(0xC1); EmitOperand(reg_or_opcode, operand); EmitUint8(imm.value() & 0xFF); } } void X86Assembler::EmitGenericShift(int reg_or_opcode, const Operand& operand, Register shifter) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK_EQ(shifter, ECX); EmitUint8(0xD3); EmitOperand(reg_or_opcode, operand); } static dwarf::Reg DWARFReg(Register reg) { return dwarf::Reg::X86Core(static_cast<int>(reg)); } constexpr size_t kFramePointerSize = 4; void X86Assembler::BuildFrame(size_t frame_size, ManagedRegister method_reg, const std::vector<ManagedRegister>& spill_regs, const ManagedRegisterEntrySpills& entry_spills) { DCHECK_EQ(buffer_.Size(), 0U); // Nothing emitted yet. cfi_.SetCurrentCFAOffset(4); // Return address on stack. CHECK_ALIGNED(frame_size, kStackAlignment); int gpr_count = 0; for (int i = spill_regs.size() - 1; i >= 0; --i) { Register spill = spill_regs.at(i).AsX86().AsCpuRegister(); pushl(spill); gpr_count++; cfi_.AdjustCFAOffset(kFramePointerSize); cfi_.RelOffset(DWARFReg(spill), 0); } // return address then method on stack. int32_t adjust = frame_size - gpr_count * kFramePointerSize - kFramePointerSize /*method*/ - kFramePointerSize /*return address*/; addl(ESP, Immediate(-adjust)); cfi_.AdjustCFAOffset(adjust); pushl(method_reg.AsX86().AsCpuRegister()); cfi_.AdjustCFAOffset(kFramePointerSize); DCHECK_EQ(static_cast<size_t>(cfi_.GetCurrentCFAOffset()), frame_size); for (size_t i = 0; i < entry_spills.size(); ++i) { ManagedRegisterSpill spill = entry_spills.at(i); if (spill.AsX86().IsCpuRegister()) { int offset = frame_size + spill.getSpillOffset(); movl(Address(ESP, offset), spill.AsX86().AsCpuRegister()); } else { DCHECK(spill.AsX86().IsXmmRegister()); if (spill.getSize() == 8) { movsd(Address(ESP, frame_size + spill.getSpillOffset()), spill.AsX86().AsXmmRegister()); } else { CHECK_EQ(spill.getSize(), 4); movss(Address(ESP, frame_size + spill.getSpillOffset()), spill.AsX86().AsXmmRegister()); } } } } void X86Assembler::RemoveFrame(size_t frame_size, const std::vector<ManagedRegister>& spill_regs) { CHECK_ALIGNED(frame_size, kStackAlignment); cfi_.RememberState(); // -kFramePointerSize for ArtMethod*. int adjust = frame_size - spill_regs.size() * kFramePointerSize - kFramePointerSize; addl(ESP, Immediate(adjust)); cfi_.AdjustCFAOffset(-adjust); for (size_t i = 0; i < spill_regs.size(); ++i) { Register spill = spill_regs.at(i).AsX86().AsCpuRegister(); popl(spill); cfi_.AdjustCFAOffset(-static_cast<int>(kFramePointerSize)); cfi_.Restore(DWARFReg(spill)); } ret(); // The CFI should be restored for any code that follows the exit block. cfi_.RestoreState(); cfi_.DefCFAOffset(frame_size); } void X86Assembler::IncreaseFrameSize(size_t adjust) { CHECK_ALIGNED(adjust, kStackAlignment); addl(ESP, Immediate(-adjust)); cfi_.AdjustCFAOffset(adjust); } void X86Assembler::DecreaseFrameSize(size_t adjust) { CHECK_ALIGNED(adjust, kStackAlignment); addl(ESP, Immediate(adjust)); cfi_.AdjustCFAOffset(-adjust); } void X86Assembler::Store(FrameOffset offs, ManagedRegister msrc, size_t size) { X86ManagedRegister src = msrc.AsX86(); if (src.IsNoRegister()) { CHECK_EQ(0u, size); } else if (src.IsCpuRegister()) { CHECK_EQ(4u, size); movl(Address(ESP, offs), src.AsCpuRegister()); } else if (src.IsRegisterPair()) { CHECK_EQ(8u, size); movl(Address(ESP, offs), src.AsRegisterPairLow()); movl(Address(ESP, FrameOffset(offs.Int32Value()+4)), src.AsRegisterPairHigh()); } else if (src.IsX87Register()) { if (size == 4) { fstps(Address(ESP, offs)); } else { fstpl(Address(ESP, offs)); } } else { CHECK(src.IsXmmRegister()); if (size == 4) { movss(Address(ESP, offs), src.AsXmmRegister()); } else { movsd(Address(ESP, offs), src.AsXmmRegister()); } } } void X86Assembler::StoreRef(FrameOffset dest, ManagedRegister msrc) { X86ManagedRegister src = msrc.AsX86(); CHECK(src.IsCpuRegister()); movl(Address(ESP, dest), src.AsCpuRegister()); } void X86Assembler::StoreRawPtr(FrameOffset dest, ManagedRegister msrc) { X86ManagedRegister src = msrc.AsX86(); CHECK(src.IsCpuRegister()); movl(Address(ESP, dest), src.AsCpuRegister()); } void X86Assembler::StoreImmediateToFrame(FrameOffset dest, uint32_t imm, ManagedRegister) { movl(Address(ESP, dest), Immediate(imm)); } void X86Assembler::StoreImmediateToThread32(ThreadOffset<4> dest, uint32_t imm, ManagedRegister) { fs()->movl(Address::Absolute(dest), Immediate(imm)); } void X86Assembler::StoreStackOffsetToThread32(ThreadOffset<4> thr_offs, FrameOffset fr_offs, ManagedRegister mscratch) { X86ManagedRegister scratch = mscratch.AsX86(); CHECK(scratch.IsCpuRegister()); leal(scratch.AsCpuRegister(), Address(ESP, fr_offs)); fs()->movl(Address::Absolute(thr_offs), scratch.AsCpuRegister()); } void X86Assembler::StoreStackPointerToThread32(ThreadOffset<4> thr_offs) { fs()->movl(Address::Absolute(thr_offs), ESP); } void X86Assembler::StoreSpanning(FrameOffset /*dst*/, ManagedRegister /*src*/, FrameOffset /*in_off*/, ManagedRegister /*scratch*/) { UNIMPLEMENTED(FATAL); // this case only currently exists for ARM } void X86Assembler::Load(ManagedRegister mdest, FrameOffset src, size_t size) { X86ManagedRegister dest = mdest.AsX86(); if (dest.IsNoRegister()) { CHECK_EQ(0u, size); } else if (dest.IsCpuRegister()) { CHECK_EQ(4u, size); movl(dest.AsCpuRegister(), Address(ESP, src)); } else if (dest.IsRegisterPair()) { CHECK_EQ(8u, size); movl(dest.AsRegisterPairLow(), Address(ESP, src)); movl(dest.AsRegisterPairHigh(), Address(ESP, FrameOffset(src.Int32Value()+4))); } else if (dest.IsX87Register()) { if (size == 4) { flds(Address(ESP, src)); } else { fldl(Address(ESP, src)); } } else { CHECK(dest.IsXmmRegister()); if (size == 4) { movss(dest.AsXmmRegister(), Address(ESP, src)); } else { movsd(dest.AsXmmRegister(), Address(ESP, src)); } } } void X86Assembler::LoadFromThread32(ManagedRegister mdest, ThreadOffset<4> src, size_t size) { X86ManagedRegister dest = mdest.AsX86(); if (dest.IsNoRegister()) { CHECK_EQ(0u, size); } else if (dest.IsCpuRegister()) { CHECK_EQ(4u, size); fs()->movl(dest.AsCpuRegister(), Address::Absolute(src)); } else if (dest.IsRegisterPair()) { CHECK_EQ(8u, size); fs()->movl(dest.AsRegisterPairLow(), Address::Absolute(src)); fs()->movl(dest.AsRegisterPairHigh(), Address::Absolute(ThreadOffset<4>(src.Int32Value()+4))); } else if (dest.IsX87Register()) { if (size == 4) { fs()->flds(Address::Absolute(src)); } else { fs()->fldl(Address::Absolute(src)); } } else { CHECK(dest.IsXmmRegister()); if (size == 4) { fs()->movss(dest.AsXmmRegister(), Address::Absolute(src)); } else { fs()->movsd(dest.AsXmmRegister(), Address::Absolute(src)); } } } void X86Assembler::LoadRef(ManagedRegister mdest, FrameOffset src) { X86ManagedRegister dest = mdest.AsX86(); CHECK(dest.IsCpuRegister()); movl(dest.AsCpuRegister(), Address(ESP, src)); } void X86Assembler::LoadRef(ManagedRegister mdest, ManagedRegister base, MemberOffset offs, bool unpoison_reference) { X86ManagedRegister dest = mdest.AsX86(); CHECK(dest.IsCpuRegister() && dest.IsCpuRegister()); movl(dest.AsCpuRegister(), Address(base.AsX86().AsCpuRegister(), offs)); if (unpoison_reference) { MaybeUnpoisonHeapReference(dest.AsCpuRegister()); } } void X86Assembler::LoadRawPtr(ManagedRegister mdest, ManagedRegister base, Offset offs) { X86ManagedRegister dest = mdest.AsX86(); CHECK(dest.IsCpuRegister() && dest.IsCpuRegister()); movl(dest.AsCpuRegister(), Address(base.AsX86().AsCpuRegister(), offs)); } void X86Assembler::LoadRawPtrFromThread32(ManagedRegister mdest, ThreadOffset<4> offs) { X86ManagedRegister dest = mdest.AsX86(); CHECK(dest.IsCpuRegister()); fs()->movl(dest.AsCpuRegister(), Address::Absolute(offs)); } void X86Assembler::SignExtend(ManagedRegister mreg, size_t size) { X86ManagedRegister reg = mreg.AsX86(); CHECK(size == 1 || size == 2) << size; CHECK(reg.IsCpuRegister()) << reg; if (size == 1) { movsxb(reg.AsCpuRegister(), reg.AsByteRegister()); } else { movsxw(reg.AsCpuRegister(), reg.AsCpuRegister()); } } void X86Assembler::ZeroExtend(ManagedRegister mreg, size_t size) { X86ManagedRegister reg = mreg.AsX86(); CHECK(size == 1 || size == 2) << size; CHECK(reg.IsCpuRegister()) << reg; if (size == 1) { movzxb(reg.AsCpuRegister(), reg.AsByteRegister()); } else { movzxw(reg.AsCpuRegister(), reg.AsCpuRegister()); } } void X86Assembler::Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) { X86ManagedRegister dest = mdest.AsX86(); X86ManagedRegister src = msrc.AsX86(); if (!dest.Equals(src)) { if (dest.IsCpuRegister() && src.IsCpuRegister()) { movl(dest.AsCpuRegister(), src.AsCpuRegister()); } else if (src.IsX87Register() && dest.IsXmmRegister()) { // Pass via stack and pop X87 register subl(ESP, Immediate(16)); if (size == 4) { CHECK_EQ(src.AsX87Register(), ST0); fstps(Address(ESP, 0)); movss(dest.AsXmmRegister(), Address(ESP, 0)); } else { CHECK_EQ(src.AsX87Register(), ST0); fstpl(Address(ESP, 0)); movsd(dest.AsXmmRegister(), Address(ESP, 0)); } addl(ESP, Immediate(16)); } else { // TODO: x87, SSE UNIMPLEMENTED(FATAL) << ": Move " << dest << ", " << src; } } } void X86Assembler::CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister mscratch) { X86ManagedRegister scratch = mscratch.AsX86(); CHECK(scratch.IsCpuRegister()); movl(scratch.AsCpuRegister(), Address(ESP, src)); movl(Address(ESP, dest), scratch.AsCpuRegister()); } void X86Assembler::CopyRawPtrFromThread32(FrameOffset fr_offs, ThreadOffset<4> thr_offs, ManagedRegister mscratch) { X86ManagedRegister scratch = mscratch.AsX86(); CHECK(scratch.IsCpuRegister()); fs()->movl(scratch.AsCpuRegister(), Address::Absolute(thr_offs)); Store(fr_offs, scratch, 4); } void X86Assembler::CopyRawPtrToThread32(ThreadOffset<4> thr_offs, FrameOffset fr_offs, ManagedRegister mscratch) { X86ManagedRegister scratch = mscratch.AsX86(); CHECK(scratch.IsCpuRegister()); Load(scratch, fr_offs, 4); fs()->movl(Address::Absolute(thr_offs), scratch.AsCpuRegister()); } void X86Assembler::Copy(FrameOffset dest, FrameOffset src, ManagedRegister mscratch, size_t size) { X86ManagedRegister scratch = mscratch.AsX86(); if (scratch.IsCpuRegister() && size == 8) { Load(scratch, src, 4); Store(dest, scratch, 4); Load(scratch, FrameOffset(src.Int32Value() + 4), 4); Store(FrameOffset(dest.Int32Value() + 4), scratch, 4); } else { Load(scratch, src, size); Store(dest, scratch, size); } } void X86Assembler::Copy(FrameOffset /*dst*/, ManagedRegister /*src_base*/, Offset /*src_offset*/, ManagedRegister /*scratch*/, size_t /*size*/) { UNIMPLEMENTED(FATAL); } void X86Assembler::Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src, ManagedRegister scratch, size_t size) { CHECK(scratch.IsNoRegister()); CHECK_EQ(size, 4u); pushl(Address(ESP, src)); popl(Address(dest_base.AsX86().AsCpuRegister(), dest_offset)); } void X86Assembler::Copy(FrameOffset dest, FrameOffset src_base, Offset src_offset, ManagedRegister mscratch, size_t size) { Register scratch = mscratch.AsX86().AsCpuRegister(); CHECK_EQ(size, 4u); movl(scratch, Address(ESP, src_base)); movl(scratch, Address(scratch, src_offset)); movl(Address(ESP, dest), scratch); } void X86Assembler::Copy(ManagedRegister dest, Offset dest_offset, ManagedRegister src, Offset src_offset, ManagedRegister scratch, size_t size) { CHECK_EQ(size, 4u); CHECK(scratch.IsNoRegister()); pushl(Address(src.AsX86().AsCpuRegister(), src_offset)); popl(Address(dest.AsX86().AsCpuRegister(), dest_offset)); } void X86Assembler::Copy(FrameOffset dest, Offset dest_offset, FrameOffset src, Offset src_offset, ManagedRegister mscratch, size_t size) { Register scratch = mscratch.AsX86().AsCpuRegister(); CHECK_EQ(size, 4u); CHECK_EQ(dest.Int32Value(), src.Int32Value()); movl(scratch, Address(ESP, src)); pushl(Address(scratch, src_offset)); popl(Address(scratch, dest_offset)); } void X86Assembler::MemoryBarrier(ManagedRegister) { mfence(); } void X86Assembler::CreateHandleScopeEntry(ManagedRegister mout_reg, FrameOffset handle_scope_offset, ManagedRegister min_reg, bool null_allowed) { X86ManagedRegister out_reg = mout_reg.AsX86(); X86ManagedRegister in_reg = min_reg.AsX86(); CHECK(in_reg.IsCpuRegister()); CHECK(out_reg.IsCpuRegister()); VerifyObject(in_reg, null_allowed); if (null_allowed) { Label null_arg; if (!out_reg.Equals(in_reg)) { xorl(out_reg.AsCpuRegister(), out_reg.AsCpuRegister()); } testl(in_reg.AsCpuRegister(), in_reg.AsCpuRegister()); j(kZero, &null_arg); leal(out_reg.AsCpuRegister(), Address(ESP, handle_scope_offset)); Bind(&null_arg); } else { leal(out_reg.AsCpuRegister(), Address(ESP, handle_scope_offset)); } } void X86Assembler::CreateHandleScopeEntry(FrameOffset out_off, FrameOffset handle_scope_offset, ManagedRegister mscratch, bool null_allowed) { X86ManagedRegister scratch = mscratch.AsX86(); CHECK(scratch.IsCpuRegister()); if (null_allowed) { Label null_arg; movl(scratch.AsCpuRegister(), Address(ESP, handle_scope_offset)); testl(scratch.AsCpuRegister(), scratch.AsCpuRegister()); j(kZero, &null_arg); leal(scratch.AsCpuRegister(), Address(ESP, handle_scope_offset)); Bind(&null_arg); } else { leal(scratch.AsCpuRegister(), Address(ESP, handle_scope_offset)); } Store(out_off, scratch, 4); } // Given a handle scope entry, load the associated reference. void X86Assembler::LoadReferenceFromHandleScope(ManagedRegister mout_reg, ManagedRegister min_reg) { X86ManagedRegister out_reg = mout_reg.AsX86(); X86ManagedRegister in_reg = min_reg.AsX86(); CHECK(out_reg.IsCpuRegister()); CHECK(in_reg.IsCpuRegister()); Label null_arg; if (!out_reg.Equals(in_reg)) { xorl(out_reg.AsCpuRegister(), out_reg.AsCpuRegister()); } testl(in_reg.AsCpuRegister(), in_reg.AsCpuRegister()); j(kZero, &null_arg); movl(out_reg.AsCpuRegister(), Address(in_reg.AsCpuRegister(), 0)); Bind(&null_arg); } void X86Assembler::VerifyObject(ManagedRegister /*src*/, bool /*could_be_null*/) { // TODO: not validating references } void X86Assembler::VerifyObject(FrameOffset /*src*/, bool /*could_be_null*/) { // TODO: not validating references } void X86Assembler::Call(ManagedRegister mbase, Offset offset, ManagedRegister) { X86ManagedRegister base = mbase.AsX86(); CHECK(base.IsCpuRegister()); call(Address(base.AsCpuRegister(), offset.Int32Value())); // TODO: place reference map on call } void X86Assembler::Call(FrameOffset base, Offset offset, ManagedRegister mscratch) { Register scratch = mscratch.AsX86().AsCpuRegister(); movl(scratch, Address(ESP, base)); call(Address(scratch, offset)); } void X86Assembler::CallFromThread32(ThreadOffset<4> offset, ManagedRegister /*mscratch*/) { fs()->call(Address::Absolute(offset)); } void X86Assembler::GetCurrentThread(ManagedRegister tr) { fs()->movl(tr.AsX86().AsCpuRegister(), Address::Absolute(Thread::SelfOffset<4>())); } void X86Assembler::GetCurrentThread(FrameOffset offset, ManagedRegister mscratch) { X86ManagedRegister scratch = mscratch.AsX86(); fs()->movl(scratch.AsCpuRegister(), Address::Absolute(Thread::SelfOffset<4>())); movl(Address(ESP, offset), scratch.AsCpuRegister()); } void X86Assembler::ExceptionPoll(ManagedRegister /*scratch*/, size_t stack_adjust) { X86ExceptionSlowPath* slow = new (GetArena()) X86ExceptionSlowPath(stack_adjust); buffer_.EnqueueSlowPath(slow); fs()->cmpl(Address::Absolute(Thread::ExceptionOffset<4>()), Immediate(0)); j(kNotEqual, slow->Entry()); } void X86ExceptionSlowPath::Emit(Assembler *sasm) { X86Assembler* sp_asm = down_cast<X86Assembler*>(sasm); #define __ sp_asm-> __ Bind(&entry_); // Note: the return value is dead if (stack_adjust_ != 0) { // Fix up the frame. __ DecreaseFrameSize(stack_adjust_); } // Pass exception as argument in EAX __ fs()->movl(EAX, Address::Absolute(Thread::ExceptionOffset<4>())); __ fs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(4, pDeliverException))); // this call should never return __ int3(); #undef __ } void X86Assembler::AddConstantArea() { ArrayRef<const int32_t> area = constant_area_.GetBuffer(); // Generate the data for the literal area. for (size_t i = 0, e = area.size(); i < e; i++) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitInt32(area[i]); } } size_t ConstantArea::AppendInt32(int32_t v) { size_t result = buffer_.size() * elem_size_; buffer_.push_back(v); return result; } size_t ConstantArea::AddInt32(int32_t v) { for (size_t i = 0, e = buffer_.size(); i < e; i++) { if (v == buffer_[i]) { return i * elem_size_; } } // Didn't match anything. return AppendInt32(v); } size_t ConstantArea::AddInt64(int64_t v) { int32_t v_low = Low32Bits(v); int32_t v_high = High32Bits(v); if (buffer_.size() > 1) { // Ensure we don't pass the end of the buffer. for (size_t i = 0, e = buffer_.size() - 1; i < e; i++) { if (v_low == buffer_[i] && v_high == buffer_[i + 1]) { return i * elem_size_; } } } // Didn't match anything. size_t result = buffer_.size() * elem_size_; buffer_.push_back(v_low); buffer_.push_back(v_high); return result; } size_t ConstantArea::AddDouble(double v) { // Treat the value as a 64-bit integer value. return AddInt64(bit_cast<int64_t, double>(v)); } size_t ConstantArea::AddFloat(float v) { // Treat the value as a 32-bit integer value. return AddInt32(bit_cast<int32_t, float>(v)); } } // namespace x86 } // namespace art