/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "art_method.h" #include "arch/context.h" #include "art_field-inl.h" #include "art_method-inl.h" #include "base/stringpiece.h" #include "class_linker-inl.h" #include "debugger.h" #include "dex_file-inl.h" #include "dex_instruction.h" #include "entrypoints/runtime_asm_entrypoints.h" #include "gc/accounting/card_table-inl.h" #include "interpreter/interpreter.h" #include "jit/jit.h" #include "jit/jit_code_cache.h" #include "jit/profiling_info.h" #include "jni_internal.h" #include "mirror/abstract_method.h" #include "mirror/class-inl.h" #include "mirror/object_array-inl.h" #include "mirror/object-inl.h" #include "mirror/string.h" #include "oat_file-inl.h" #include "scoped_thread_state_change.h" #include "well_known_classes.h" namespace art { extern "C" void art_quick_invoke_stub(ArtMethod*, uint32_t*, uint32_t, Thread*, JValue*, const char*); extern "C" void art_quick_invoke_static_stub(ArtMethod*, uint32_t*, uint32_t, Thread*, JValue*, const char*); ArtMethod* ArtMethod::FromReflectedMethod(const ScopedObjectAccessAlreadyRunnable& soa, jobject jlr_method) { auto* abstract_method = soa.Decode<mirror::AbstractMethod*>(jlr_method); DCHECK(abstract_method != nullptr); return abstract_method->GetArtMethod(); } mirror::String* ArtMethod::GetNameAsString(Thread* self) { CHECK(!IsProxyMethod()); StackHandleScope<1> hs(self); Handle<mirror::DexCache> dex_cache(hs.NewHandle(GetDexCache())); auto* dex_file = dex_cache->GetDexFile(); uint32_t dex_method_idx = GetDexMethodIndex(); const DexFile::MethodId& method_id = dex_file->GetMethodId(dex_method_idx); return Runtime::Current()->GetClassLinker()->ResolveString(*dex_file, method_id.name_idx_, dex_cache); } void ArtMethod::ThrowInvocationTimeError() { DCHECK(!IsInvokable()); // NOTE: IsDefaultConflicting must be first since the actual method might or might not be abstract // due to the way we select it. if (IsDefaultConflicting()) { ThrowIncompatibleClassChangeErrorForMethodConflict(this); } else { DCHECK(IsAbstract()); ThrowAbstractMethodError(this); } } InvokeType ArtMethod::GetInvokeType() { // TODO: kSuper? if (IsStatic()) { return kStatic; } else if (GetDeclaringClass()->IsInterface()) { return kInterface; } else if (IsDirect()) { return kDirect; } else { return kVirtual; } } size_t ArtMethod::NumArgRegisters(const StringPiece& shorty) { CHECK_LE(1U, shorty.length()); uint32_t num_registers = 0; for (size_t i = 1; i < shorty.length(); ++i) { char ch = shorty[i]; if (ch == 'D' || ch == 'J') { num_registers += 2; } else { num_registers += 1; } } return num_registers; } bool ArtMethod::HasSameNameAndSignature(ArtMethod* other) { ScopedAssertNoThreadSuspension ants(Thread::Current(), "HasSameNameAndSignature"); const DexFile* dex_file = GetDexFile(); const DexFile::MethodId& mid = dex_file->GetMethodId(GetDexMethodIndex()); if (GetDexCache() == other->GetDexCache()) { const DexFile::MethodId& mid2 = dex_file->GetMethodId(other->GetDexMethodIndex()); return mid.name_idx_ == mid2.name_idx_ && mid.proto_idx_ == mid2.proto_idx_; } const DexFile* dex_file2 = other->GetDexFile(); const DexFile::MethodId& mid2 = dex_file2->GetMethodId(other->GetDexMethodIndex()); if (!DexFileStringEquals(dex_file, mid.name_idx_, dex_file2, mid2.name_idx_)) { return false; // Name mismatch. } return dex_file->GetMethodSignature(mid) == dex_file2->GetMethodSignature(mid2); } ArtMethod* ArtMethod::FindOverriddenMethod(size_t pointer_size) { if (IsStatic()) { return nullptr; } mirror::Class* declaring_class = GetDeclaringClass(); mirror::Class* super_class = declaring_class->GetSuperClass(); uint16_t method_index = GetMethodIndex(); ArtMethod* result = nullptr; // Did this method override a super class method? If so load the result from the super class' // vtable if (super_class->HasVTable() && method_index < super_class->GetVTableLength()) { result = super_class->GetVTableEntry(method_index, pointer_size); } else { // Method didn't override superclass method so search interfaces if (IsProxyMethod()) { result = mirror::DexCache::GetElementPtrSize(GetDexCacheResolvedMethods(pointer_size), GetDexMethodIndex(), pointer_size); CHECK_EQ(result, Runtime::Current()->GetClassLinker()->FindMethodForProxy(GetDeclaringClass(), this)); } else { mirror::IfTable* iftable = GetDeclaringClass()->GetIfTable(); for (size_t i = 0; i < iftable->Count() && result == nullptr; i++) { mirror::Class* interface = iftable->GetInterface(i); for (ArtMethod& interface_method : interface->GetVirtualMethods(pointer_size)) { if (HasSameNameAndSignature(interface_method.GetInterfaceMethodIfProxy(pointer_size))) { result = &interface_method; break; } } } } } DCHECK(result == nullptr || GetInterfaceMethodIfProxy(pointer_size)->HasSameNameAndSignature( result->GetInterfaceMethodIfProxy(pointer_size))); return result; } uint32_t ArtMethod::FindDexMethodIndexInOtherDexFile(const DexFile& other_dexfile, uint32_t name_and_signature_idx) { const DexFile* dexfile = GetDexFile(); const uint32_t dex_method_idx = GetDexMethodIndex(); const DexFile::MethodId& mid = dexfile->GetMethodId(dex_method_idx); const DexFile::MethodId& name_and_sig_mid = other_dexfile.GetMethodId(name_and_signature_idx); DCHECK_STREQ(dexfile->GetMethodName(mid), other_dexfile.GetMethodName(name_and_sig_mid)); DCHECK_EQ(dexfile->GetMethodSignature(mid), other_dexfile.GetMethodSignature(name_and_sig_mid)); if (dexfile == &other_dexfile) { return dex_method_idx; } const char* mid_declaring_class_descriptor = dexfile->StringByTypeIdx(mid.class_idx_); const DexFile::TypeId* other_type_id = other_dexfile.FindTypeId(mid_declaring_class_descriptor); if (other_type_id != nullptr) { const DexFile::MethodId* other_mid = other_dexfile.FindMethodId( *other_type_id, other_dexfile.GetStringId(name_and_sig_mid.name_idx_), other_dexfile.GetProtoId(name_and_sig_mid.proto_idx_)); if (other_mid != nullptr) { return other_dexfile.GetIndexForMethodId(*other_mid); } } return DexFile::kDexNoIndex; } uint32_t ArtMethod::FindCatchBlock(Handle<mirror::Class> exception_type, uint32_t dex_pc, bool* has_no_move_exception) { const DexFile::CodeItem* code_item = GetCodeItem(); // Set aside the exception while we resolve its type. Thread* self = Thread::Current(); StackHandleScope<1> hs(self); Handle<mirror::Throwable> exception(hs.NewHandle(self->GetException())); self->ClearException(); // Default to handler not found. uint32_t found_dex_pc = DexFile::kDexNoIndex; // Iterate over the catch handlers associated with dex_pc. size_t pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); for (CatchHandlerIterator it(*code_item, dex_pc); it.HasNext(); it.Next()) { uint16_t iter_type_idx = it.GetHandlerTypeIndex(); // Catch all case if (iter_type_idx == DexFile::kDexNoIndex16) { found_dex_pc = it.GetHandlerAddress(); break; } // Does this catch exception type apply? mirror::Class* iter_exception_type = GetClassFromTypeIndex(iter_type_idx, true /* resolve */, pointer_size); if (UNLIKELY(iter_exception_type == nullptr)) { // Now have a NoClassDefFoundError as exception. Ignore in case the exception class was // removed by a pro-guard like tool. // Note: this is not RI behavior. RI would have failed when loading the class. self->ClearException(); // Delete any long jump context as this routine is called during a stack walk which will // release its in use context at the end. delete self->GetLongJumpContext(); LOG(WARNING) << "Unresolved exception class when finding catch block: " << DescriptorToDot(GetTypeDescriptorFromTypeIdx(iter_type_idx)); } else if (iter_exception_type->IsAssignableFrom(exception_type.Get())) { found_dex_pc = it.GetHandlerAddress(); break; } } if (found_dex_pc != DexFile::kDexNoIndex) { const Instruction* first_catch_instr = Instruction::At(&code_item->insns_[found_dex_pc]); *has_no_move_exception = (first_catch_instr->Opcode() != Instruction::MOVE_EXCEPTION); } // Put the exception back. if (exception.Get() != nullptr) { self->SetException(exception.Get()); } return found_dex_pc; } void ArtMethod::Invoke(Thread* self, uint32_t* args, uint32_t args_size, JValue* result, const char* shorty) { if (UNLIKELY(__builtin_frame_address(0) < self->GetStackEnd())) { ThrowStackOverflowError(self); return; } if (kIsDebugBuild) { self->AssertThreadSuspensionIsAllowable(); CHECK_EQ(kRunnable, self->GetState()); CHECK_STREQ(GetInterfaceMethodIfProxy(sizeof(void*))->GetShorty(), shorty); } // Push a transition back into managed code onto the linked list in thread. ManagedStack fragment; self->PushManagedStackFragment(&fragment); Runtime* runtime = Runtime::Current(); // Call the invoke stub, passing everything as arguments. // If the runtime is not yet started or it is required by the debugger, then perform the // Invocation by the interpreter, explicitly forcing interpretation over JIT to prevent // cycling around the various JIT/Interpreter methods that handle method invocation. if (UNLIKELY(!runtime->IsStarted() || Dbg::IsForcedInterpreterNeededForCalling(self, this))) { if (IsStatic()) { art::interpreter::EnterInterpreterFromInvoke( self, this, nullptr, args, result, /*stay_in_interpreter*/ true); } else { mirror::Object* receiver = reinterpret_cast<StackReference<mirror::Object>*>(&args[0])->AsMirrorPtr(); art::interpreter::EnterInterpreterFromInvoke( self, this, receiver, args + 1, result, /*stay_in_interpreter*/ true); } } else { DCHECK_EQ(runtime->GetClassLinker()->GetImagePointerSize(), sizeof(void*)); constexpr bool kLogInvocationStartAndReturn = false; bool have_quick_code = GetEntryPointFromQuickCompiledCode() != nullptr; if (LIKELY(have_quick_code)) { if (kLogInvocationStartAndReturn) { LOG(INFO) << StringPrintf( "Invoking '%s' quick code=%p static=%d", PrettyMethod(this).c_str(), GetEntryPointFromQuickCompiledCode(), static_cast<int>(IsStatic() ? 1 : 0)); } // Ensure that we won't be accidentally calling quick compiled code when -Xint. if (kIsDebugBuild && runtime->GetInstrumentation()->IsForcedInterpretOnly()) { CHECK(!runtime->UseJitCompilation()); const void* oat_quick_code = runtime->GetClassLinker()->GetOatMethodQuickCodeFor(this); CHECK(oat_quick_code == nullptr || oat_quick_code != GetEntryPointFromQuickCompiledCode()) << "Don't call compiled code when -Xint " << PrettyMethod(this); } if (!IsStatic()) { (*art_quick_invoke_stub)(this, args, args_size, self, result, shorty); } else { (*art_quick_invoke_static_stub)(this, args, args_size, self, result, shorty); } if (UNLIKELY(self->GetException() == Thread::GetDeoptimizationException())) { // Unusual case where we were running generated code and an // exception was thrown to force the activations to be removed from the // stack. Continue execution in the interpreter. self->DeoptimizeWithDeoptimizationException(result); } if (kLogInvocationStartAndReturn) { LOG(INFO) << StringPrintf("Returned '%s' quick code=%p", PrettyMethod(this).c_str(), GetEntryPointFromQuickCompiledCode()); } } else { LOG(INFO) << "Not invoking '" << PrettyMethod(this) << "' code=null"; if (result != nullptr) { result->SetJ(0); } } } // Pop transition. self->PopManagedStackFragment(fragment); } void ArtMethod::RegisterNative(const void* native_method, bool is_fast) { CHECK(IsNative()) << PrettyMethod(this); CHECK(!IsFastNative()) << PrettyMethod(this); CHECK(native_method != nullptr) << PrettyMethod(this); if (is_fast) { SetAccessFlags(GetAccessFlags() | kAccFastNative); } SetEntryPointFromJni(native_method); } void ArtMethod::UnregisterNative() { CHECK(IsNative() && !IsFastNative()) << PrettyMethod(this); // restore stub to lookup native pointer via dlsym RegisterNative(GetJniDlsymLookupStub(), false); } bool ArtMethod::IsOverridableByDefaultMethod() { return GetDeclaringClass()->IsInterface(); } bool ArtMethod::EqualParameters(Handle<mirror::ObjectArray<mirror::Class>> params) { auto* dex_cache = GetDexCache(); auto* dex_file = dex_cache->GetDexFile(); const auto& method_id = dex_file->GetMethodId(GetDexMethodIndex()); const auto& proto_id = dex_file->GetMethodPrototype(method_id); const DexFile::TypeList* proto_params = dex_file->GetProtoParameters(proto_id); auto count = proto_params != nullptr ? proto_params->Size() : 0u; auto param_len = params.Get() != nullptr ? params->GetLength() : 0u; if (param_len != count) { return false; } auto* cl = Runtime::Current()->GetClassLinker(); for (size_t i = 0; i < count; ++i) { auto type_idx = proto_params->GetTypeItem(i).type_idx_; auto* type = cl->ResolveType(type_idx, this); if (type == nullptr) { Thread::Current()->AssertPendingException(); return false; } if (type != params->GetWithoutChecks(i)) { return false; } } return true; } const uint8_t* ArtMethod::GetQuickenedInfo() { bool found = false; OatFile::OatMethod oat_method = Runtime::Current()->GetClassLinker()->FindOatMethodFor(this, &found); if (!found || (oat_method.GetQuickCode() != nullptr)) { return nullptr; } return oat_method.GetVmapTable(); } const OatQuickMethodHeader* ArtMethod::GetOatQuickMethodHeader(uintptr_t pc) { // Our callers should make sure they don't pass the instrumentation exit pc, // as this method does not look at the side instrumentation stack. DCHECK_NE(pc, reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc())); if (IsRuntimeMethod()) { return nullptr; } Runtime* runtime = Runtime::Current(); const void* existing_entry_point = GetEntryPointFromQuickCompiledCode(); CHECK(existing_entry_point != nullptr) << PrettyMethod(this) << "@" << this; ClassLinker* class_linker = runtime->GetClassLinker(); if (class_linker->IsQuickGenericJniStub(existing_entry_point)) { // The generic JNI does not have any method header. return nullptr; } if (existing_entry_point == GetQuickProxyInvokeHandler()) { DCHECK(IsProxyMethod() && !IsConstructor()); // The proxy entry point does not have any method header. return nullptr; } // Check whether the current entry point contains this pc. if (!class_linker->IsQuickResolutionStub(existing_entry_point) && !class_linker->IsQuickToInterpreterBridge(existing_entry_point)) { OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromEntryPoint(existing_entry_point); if (method_header->Contains(pc)) { return method_header; } } // Check whether the pc is in the JIT code cache. jit::Jit* jit = Runtime::Current()->GetJit(); if (jit != nullptr) { jit::JitCodeCache* code_cache = jit->GetCodeCache(); OatQuickMethodHeader* method_header = code_cache->LookupMethodHeader(pc, this); if (method_header != nullptr) { DCHECK(method_header->Contains(pc)); return method_header; } else { DCHECK(!code_cache->ContainsPc(reinterpret_cast<const void*>(pc))) << PrettyMethod(this) << ", pc=" << std::hex << pc << ", entry_point=" << std::hex << reinterpret_cast<uintptr_t>(existing_entry_point) << ", copy=" << std::boolalpha << IsCopied() << ", proxy=" << std::boolalpha << IsProxyMethod(); } } // The code has to be in an oat file. bool found; OatFile::OatMethod oat_method = class_linker->FindOatMethodFor(this, &found); if (!found) { if (class_linker->IsQuickResolutionStub(existing_entry_point)) { // We are running the generic jni stub, but the entry point of the method has not // been updated yet. DCHECK_EQ(pc, 0u) << "Should be a downcall"; DCHECK(IsNative()); return nullptr; } if (existing_entry_point == GetQuickInstrumentationEntryPoint()) { // We are running the generic jni stub, but the method is being instrumented. DCHECK_EQ(pc, 0u) << "Should be a downcall"; DCHECK(IsNative()); return nullptr; } // Only for unit tests. // TODO(ngeoffray): Update these tests to pass the right pc? return OatQuickMethodHeader::FromEntryPoint(existing_entry_point); } const void* oat_entry_point = oat_method.GetQuickCode(); if (oat_entry_point == nullptr || class_linker->IsQuickGenericJniStub(oat_entry_point)) { DCHECK(IsNative()) << PrettyMethod(this); return nullptr; } OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromEntryPoint(oat_entry_point); if (pc == 0) { // This is a downcall, it can only happen for a native method. DCHECK(IsNative()); return method_header; } DCHECK(method_header->Contains(pc)) << PrettyMethod(this) << std::hex << pc << " " << oat_entry_point << " " << (uintptr_t)(method_header->code_ + method_header->code_size_); return method_header; } bool ArtMethod::HasAnyCompiledCode() { // Check whether the JIT has compiled it. jit::Jit* jit = Runtime::Current()->GetJit(); if (jit != nullptr && jit->GetCodeCache()->ContainsMethod(this)) { return true; } // Check whether we have AOT code. return Runtime::Current()->GetClassLinker()->GetOatMethodQuickCodeFor(this) != nullptr; } void ArtMethod::CopyFrom(ArtMethod* src, size_t image_pointer_size) { memcpy(reinterpret_cast<void*>(this), reinterpret_cast<const void*>(src), Size(image_pointer_size)); declaring_class_ = GcRoot<mirror::Class>(const_cast<ArtMethod*>(src)->GetDeclaringClass()); // If the entry point of the method we are copying from is from JIT code, we just // put the entry point of the new method to interpreter. We could set the entry point // to the JIT code, but this would require taking the JIT code cache lock to notify // it, which we do not want at this level. Runtime* runtime = Runtime::Current(); if (runtime->UseJitCompilation()) { if (runtime->GetJit()->GetCodeCache()->ContainsPc(GetEntryPointFromQuickCompiledCode())) { SetEntryPointFromQuickCompiledCodePtrSize(GetQuickToInterpreterBridge(), image_pointer_size); } } // Clear the profiling info for the same reasons as the JIT code. if (!src->IsNative()) { SetProfilingInfoPtrSize(nullptr, image_pointer_size); } // Clear hotness to let the JIT properly decide when to compile this method. hotness_count_ = 0; } } // namespace art