/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "check_jni.h" #include <iomanip> #include <sys/mman.h> #include <zlib.h> #include "art_field-inl.h" #include "art_method-inl.h" #include "base/logging.h" #include "base/to_str.h" #include "class_linker.h" #include "class_linker-inl.h" #include "dex_file-inl.h" #include "gc/space/space.h" #include "java_vm_ext.h" #include "jni_internal.h" #include "mirror/class-inl.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "mirror/string-inl.h" #include "mirror/throwable.h" #include "runtime.h" #include "scoped_thread_state_change.h" #include "thread.h" #include "well_known_classes.h" namespace art { /* * =========================================================================== * JNI function helpers * =========================================================================== */ // Flags passed into ScopedCheck. #define kFlag_Default 0x0000 #define kFlag_CritBad 0x0000 // Calling while in critical is not allowed. #define kFlag_CritOkay 0x0001 // Calling while in critical is allowed. #define kFlag_CritGet 0x0002 // This is a critical "get". #define kFlag_CritRelease 0x0003 // This is a critical "release". #define kFlag_CritMask 0x0003 // Bit mask to get "crit" value. #define kFlag_ExcepBad 0x0000 // Raised exceptions are not allowed. #define kFlag_ExcepOkay 0x0004 // Raised exceptions are allowed. #define kFlag_Release 0x0010 // Are we in a non-critical release function? #define kFlag_NullableUtf 0x0020 // Are our UTF parameters nullable? #define kFlag_Invocation 0x8000 // Part of the invocation interface (JavaVM*). #define kFlag_ForceTrace 0x80000000 // Add this to a JNI function's flags if you want to trace every call. class VarArgs; /* * Java primitive types: * B - jbyte * C - jchar * D - jdouble * F - jfloat * I - jint * J - jlong * S - jshort * Z - jboolean (shown as true and false) * V - void * * Java reference types: * L - jobject * a - jarray * c - jclass * s - jstring * t - jthrowable * * JNI types: * b - jboolean (shown as JNI_TRUE and JNI_FALSE) * f - jfieldID * i - JNI error value (JNI_OK, JNI_ERR, JNI_EDETACHED, JNI_EVERSION) * m - jmethodID * p - void* * r - jint (for release mode arguments) * u - const char* (Modified UTF-8) * z - jsize (for lengths; use i if negative values are okay) * v - JavaVM* * w - jobjectRefType * E - JNIEnv* * . - no argument; just print "..." (used for varargs JNI calls) * */ union JniValueType { jarray a; jboolean b; jclass c; jfieldID f; jint i; jmethodID m; const void* p; // Pointer. jint r; // Release mode. jstring s; jthrowable t; const char* u; // Modified UTF-8. JavaVM* v; jobjectRefType w; jsize z; jbyte B; jchar C; jdouble D; JNIEnv* E; jfloat F; jint I; jlong J; jobject L; jshort S; const void* V; // void jboolean Z; const VarArgs* va; }; /* * A structure containing all the information needed to validate varargs arguments. * * Note that actually getting the arguments from this structure mutates it so should only be done on * owned copies. */ class VarArgs { public: VarArgs(jmethodID m, va_list var) : m_(m), type_(kTypeVaList), cnt_(0) { va_copy(vargs_, var); } VarArgs(jmethodID m, const jvalue* vals) : m_(m), type_(kTypePtr), cnt_(0), ptr_(vals) {} ~VarArgs() { if (type_ == kTypeVaList) { va_end(vargs_); } } VarArgs(VarArgs&& other) { m_ = other.m_; cnt_ = other.cnt_; type_ = other.type_; if (other.type_ == kTypeVaList) { va_copy(vargs_, other.vargs_); } else { ptr_ = other.ptr_; } } // This method is const because we need to ensure that one only uses the GetValue method on an // owned copy of the VarArgs. This is because getting the next argument from a va_list is a // mutating operation. Therefore we pass around these VarArgs with the 'const' qualifier and when // we want to use one we need to Clone() it. VarArgs Clone() const { if (type_ == kTypeVaList) { // const_cast needed to make sure the compiler is okay with va_copy, which (being a macro) is // messed up if the source argument is not the exact type 'va_list'. return VarArgs(m_, cnt_, const_cast<VarArgs*>(this)->vargs_); } else { return VarArgs(m_, cnt_, ptr_); } } jmethodID GetMethodID() const { return m_; } JniValueType GetValue(char fmt) { JniValueType o; if (type_ == kTypeVaList) { switch (fmt) { case 'Z': o.Z = static_cast<jboolean>(va_arg(vargs_, jint)); break; case 'B': o.B = static_cast<jbyte>(va_arg(vargs_, jint)); break; case 'C': o.C = static_cast<jchar>(va_arg(vargs_, jint)); break; case 'S': o.S = static_cast<jshort>(va_arg(vargs_, jint)); break; case 'I': o.I = va_arg(vargs_, jint); break; case 'J': o.J = va_arg(vargs_, jlong); break; case 'F': o.F = static_cast<jfloat>(va_arg(vargs_, jdouble)); break; case 'D': o.D = va_arg(vargs_, jdouble); break; case 'L': o.L = va_arg(vargs_, jobject); break; default: LOG(FATAL) << "Illegal type format char " << fmt; UNREACHABLE(); } } else { CHECK(type_ == kTypePtr); jvalue v = ptr_[cnt_]; cnt_++; switch (fmt) { case 'Z': o.Z = v.z; break; case 'B': o.B = v.b; break; case 'C': o.C = v.c; break; case 'S': o.S = v.s; break; case 'I': o.I = v.i; break; case 'J': o.J = v.j; break; case 'F': o.F = v.f; break; case 'D': o.D = v.d; break; case 'L': o.L = v.l; break; default: LOG(FATAL) << "Illegal type format char " << fmt; UNREACHABLE(); } } return o; } private: VarArgs(jmethodID m, uint32_t cnt, va_list var) : m_(m), type_(kTypeVaList), cnt_(cnt) { va_copy(vargs_, var); } VarArgs(jmethodID m, uint32_t cnt, const jvalue* vals) : m_(m), type_(kTypePtr), cnt_(cnt), ptr_(vals) {} enum VarArgsType { kTypeVaList, kTypePtr, }; jmethodID m_; VarArgsType type_; uint32_t cnt_; union { va_list vargs_; const jvalue* ptr_; }; }; class ScopedCheck { public: ScopedCheck(int flags, const char* functionName, bool has_method = true) : function_name_(functionName), flags_(flags), indent_(0), has_method_(has_method) { } ~ScopedCheck() {} // Checks that 'class_name' is a valid "fully-qualified" JNI class name, like "java/lang/Thread" // or "[Ljava/lang/Object;". A ClassLoader can actually normalize class names a couple of // times, so using "java.lang.Thread" instead of "java/lang/Thread" might work in some // circumstances, but this is incorrect. bool CheckClassName(const char* class_name) { if ((class_name == nullptr) || !IsValidJniClassName(class_name)) { AbortF("illegal class name '%s'\n" " (should be of the form 'package/Class', [Lpackage/Class;' or '[[B')", class_name); return false; } return true; } /* * Verify that this instance field ID is valid for this object. * * Assumes "jobj" has already been validated. */ bool CheckInstanceFieldID(ScopedObjectAccess& soa, jobject java_object, jfieldID fid) SHARED_REQUIRES(Locks::mutator_lock_) { mirror::Object* o = soa.Decode<mirror::Object*>(java_object); if (o == nullptr) { AbortF("field operation on NULL object: %p", java_object); return false; } if (!Runtime::Current()->GetHeap()->IsValidObjectAddress(o)) { Runtime::Current()->GetHeap()->DumpSpaces(LOG(ERROR)); AbortF("field operation on invalid %s: %p", ToStr<IndirectRefKind>(GetIndirectRefKind(java_object)).c_str(), java_object); return false; } ArtField* f = CheckFieldID(soa, fid); if (f == nullptr) { return false; } mirror::Class* c = o->GetClass(); if (c->FindInstanceField(f->GetName(), f->GetTypeDescriptor()) == nullptr) { AbortF("jfieldID %s not valid for an object of class %s", PrettyField(f).c_str(), PrettyTypeOf(o).c_str()); return false; } return true; } /* * Verify that the pointer value is non-null. */ bool CheckNonNull(const void* ptr) { if (UNLIKELY(ptr == nullptr)) { AbortF("non-nullable argument was NULL"); return false; } return true; } /* * Verify that the method's return type matches the type of call. * 'expectedType' will be "L" for all objects, including arrays. */ bool CheckMethodAndSig(ScopedObjectAccess& soa, jobject jobj, jclass jc, jmethodID mid, Primitive::Type type, InvokeType invoke) SHARED_REQUIRES(Locks::mutator_lock_) { ArtMethod* m = CheckMethodID(soa, mid); if (m == nullptr) { return false; } if (type != Primitive::GetType(m->GetShorty()[0])) { AbortF("the return type of %s does not match %s", function_name_, PrettyMethod(m).c_str()); return false; } bool is_static = (invoke == kStatic); if (is_static != m->IsStatic()) { if (is_static) { AbortF("calling non-static method %s with %s", PrettyMethod(m).c_str(), function_name_); } else { AbortF("calling static method %s with %s", PrettyMethod(m).c_str(), function_name_); } return false; } if (invoke != kVirtual) { mirror::Class* c = soa.Decode<mirror::Class*>(jc); if (!m->GetDeclaringClass()->IsAssignableFrom(c)) { AbortF("can't call %s %s with class %s", invoke == kStatic ? "static" : "nonvirtual", PrettyMethod(m).c_str(), PrettyClass(c).c_str()); return false; } } if (invoke != kStatic) { mirror::Object* o = soa.Decode<mirror::Object*>(jobj); if (o == nullptr) { AbortF("can't call %s on null object", PrettyMethod(m).c_str()); return false; } else if (!o->InstanceOf(m->GetDeclaringClass())) { AbortF("can't call %s on instance of %s", PrettyMethod(m).c_str(), PrettyTypeOf(o).c_str()); return false; } } return true; } /* * Verify that this static field ID is valid for this class. * * Assumes "java_class" has already been validated. */ bool CheckStaticFieldID(ScopedObjectAccess& soa, jclass java_class, jfieldID fid) SHARED_REQUIRES(Locks::mutator_lock_) { mirror::Class* c = soa.Decode<mirror::Class*>(java_class); ArtField* f = CheckFieldID(soa, fid); if (f == nullptr) { return false; } if (f->GetDeclaringClass() != c) { AbortF("static jfieldID %p not valid for class %s", fid, PrettyClass(c).c_str()); return false; } return true; } /* * Verify that "mid" is appropriate for "java_class". * * A mismatch isn't dangerous, because the jmethodID defines the class. In * fact, java_class is unused in the implementation. It's best if we don't * allow bad code in the system though. * * Instances of "java_class" must be instances of the method's declaring class. */ bool CheckStaticMethod(ScopedObjectAccess& soa, jclass java_class, jmethodID mid) SHARED_REQUIRES(Locks::mutator_lock_) { ArtMethod* m = CheckMethodID(soa, mid); if (m == nullptr) { return false; } mirror::Class* c = soa.Decode<mirror::Class*>(java_class); if (!m->GetDeclaringClass()->IsAssignableFrom(c)) { AbortF("can't call static %s on class %s", PrettyMethod(m).c_str(), PrettyClass(c).c_str()); return false; } return true; } /* * Verify that "mid" is appropriate for "jobj". * * Make sure the object is an instance of the method's declaring class. * (Note the mid might point to a declaration in an interface; this * will be handled automatically by the instanceof check.) */ bool CheckVirtualMethod(ScopedObjectAccess& soa, jobject java_object, jmethodID mid) SHARED_REQUIRES(Locks::mutator_lock_) { ArtMethod* m = CheckMethodID(soa, mid); if (m == nullptr) { return false; } mirror::Object* o = soa.Decode<mirror::Object*>(java_object); if (o == nullptr) { AbortF("can't call %s on null object", PrettyMethod(m).c_str()); return false; } else if (!o->InstanceOf(m->GetDeclaringClass())) { AbortF("can't call %s on instance of %s", PrettyMethod(m).c_str(), PrettyTypeOf(o).c_str()); return false; } return true; } /** * The format string is a sequence of the following characters, * and must be followed by arguments of the corresponding types * in the same order. * * Java primitive types: * B - jbyte * C - jchar * D - jdouble * F - jfloat * I - jint * J - jlong * S - jshort * Z - jboolean (shown as true and false) * V - void * * Java reference types: * L - jobject * a - jarray * c - jclass * s - jstring * * JNI types: * b - jboolean (shown as JNI_TRUE and JNI_FALSE) * f - jfieldID * m - jmethodID * p - void* * r - jint (for release mode arguments) * u - const char* (Modified UTF-8) * z - jsize (for lengths; use i if negative values are okay) * v - JavaVM* * E - JNIEnv* * . - VarArgs* for Jni calls with variable length arguments * * Use the kFlag_NullableUtf flag where 'u' field(s) are nullable. */ bool Check(ScopedObjectAccess& soa, bool entry, const char* fmt, JniValueType* args) SHARED_REQUIRES(Locks::mutator_lock_) { ArtMethod* traceMethod = nullptr; if (has_method_ && soa.Vm()->IsTracingEnabled()) { // We need to guard some of the invocation interface's calls: a bad caller might // use DetachCurrentThread or GetEnv on a thread that's not yet attached. Thread* self = Thread::Current(); if ((flags_ & kFlag_Invocation) == 0 || self != nullptr) { traceMethod = self->GetCurrentMethod(nullptr); } } if (((flags_ & kFlag_ForceTrace) != 0) || (traceMethod != nullptr && soa.Vm()->ShouldTrace(traceMethod))) { std::string msg; for (size_t i = 0; fmt[i] != '\0'; ++i) { TracePossibleHeapValue(soa, entry, fmt[i], args[i], &msg); if (fmt[i + 1] != '\0') { StringAppendF(&msg, ", "); } } if ((flags_ & kFlag_ForceTrace) != 0) { LOG(INFO) << "JNI: call to " << function_name_ << "(" << msg << ")"; } else if (entry) { if (has_method_) { std::string methodName(PrettyMethod(traceMethod, false)); LOG(INFO) << "JNI: " << methodName << " -> " << function_name_ << "(" << msg << ")"; indent_ = methodName.size() + 1; } else { LOG(INFO) << "JNI: -> " << function_name_ << "(" << msg << ")"; indent_ = 0; } } else { LOG(INFO) << StringPrintf("JNI: %*s<- %s returned %s", indent_, "", function_name_, msg.c_str()); } } // We always do the thorough checks on entry, and never on exit... if (entry) { for (size_t i = 0; fmt[i] != '\0'; ++i) { if (!CheckPossibleHeapValue(soa, fmt[i], args[i])) { return false; } } } return true; } bool CheckNonHeap(JavaVMExt* vm, bool entry, const char* fmt, JniValueType* args) { bool should_trace = (flags_ & kFlag_ForceTrace) != 0; if (!should_trace && vm != nullptr && vm->IsTracingEnabled()) { // We need to guard some of the invocation interface's calls: a bad caller might // use DetachCurrentThread or GetEnv on a thread that's not yet attached. Thread* self = Thread::Current(); if ((flags_ & kFlag_Invocation) == 0 || self != nullptr) { ScopedObjectAccess soa(self); ArtMethod* traceMethod = self->GetCurrentMethod(nullptr); should_trace = (traceMethod != nullptr && vm->ShouldTrace(traceMethod)); } } if (should_trace) { std::string msg; for (size_t i = 0; fmt[i] != '\0'; ++i) { TraceNonHeapValue(fmt[i], args[i], &msg); if (fmt[i + 1] != '\0') { StringAppendF(&msg, ", "); } } if ((flags_ & kFlag_ForceTrace) != 0) { LOG(INFO) << "JNI: call to " << function_name_ << "(" << msg << ")"; } else if (entry) { if (has_method_) { Thread* self = Thread::Current(); ScopedObjectAccess soa(self); ArtMethod* traceMethod = self->GetCurrentMethod(nullptr); std::string methodName(PrettyMethod(traceMethod, false)); LOG(INFO) << "JNI: " << methodName << " -> " << function_name_ << "(" << msg << ")"; indent_ = methodName.size() + 1; } else { LOG(INFO) << "JNI: -> " << function_name_ << "(" << msg << ")"; indent_ = 0; } } else { LOG(INFO) << StringPrintf("JNI: %*s<- %s returned %s", indent_, "", function_name_, msg.c_str()); } } // We always do the thorough checks on entry, and never on exit... if (entry) { for (size_t i = 0; fmt[i] != '\0'; ++i) { if (!CheckNonHeapValue(fmt[i], args[i])) { return false; } } } return true; } bool CheckReflectedMethod(ScopedObjectAccess& soa, jobject jmethod) SHARED_REQUIRES(Locks::mutator_lock_) { mirror::Object* method = soa.Decode<mirror::Object*>(jmethod); if (method == nullptr) { AbortF("expected non-null method"); return false; } mirror::Class* c = method->GetClass(); if (soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_reflect_Method) != c && soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_reflect_Constructor) != c) { AbortF("expected java.lang.reflect.Method or " "java.lang.reflect.Constructor but got object of type %s: %p", PrettyTypeOf(method).c_str(), jmethod); return false; } return true; } bool CheckConstructor(ScopedObjectAccess& soa, jmethodID mid) SHARED_REQUIRES(Locks::mutator_lock_) { ArtMethod* method = soa.DecodeMethod(mid); if (method == nullptr) { AbortF("expected non-null constructor"); return false; } if (!method->IsConstructor() || method->IsStatic()) { AbortF("expected a constructor but %s: %p", PrettyMethod(method).c_str(), mid); return false; } return true; } bool CheckReflectedField(ScopedObjectAccess& soa, jobject jfield) SHARED_REQUIRES(Locks::mutator_lock_) { mirror::Object* field = soa.Decode<mirror::Object*>(jfield); if (field == nullptr) { AbortF("expected non-null java.lang.reflect.Field"); return false; } mirror::Class* c = field->GetClass(); if (soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_reflect_Field) != c) { AbortF("expected java.lang.reflect.Field but got object of type %s: %p", PrettyTypeOf(field).c_str(), jfield); return false; } return true; } bool CheckThrowable(ScopedObjectAccess& soa, jthrowable jobj) SHARED_REQUIRES(Locks::mutator_lock_) { mirror::Object* obj = soa.Decode<mirror::Object*>(jobj); if (!obj->GetClass()->IsThrowableClass()) { AbortF("expected java.lang.Throwable but got object of type " "%s: %p", PrettyTypeOf(obj).c_str(), obj); return false; } return true; } bool CheckThrowableClass(ScopedObjectAccess& soa, jclass jc) SHARED_REQUIRES(Locks::mutator_lock_) { mirror::Class* c = soa.Decode<mirror::Class*>(jc); if (!c->IsThrowableClass()) { AbortF("expected java.lang.Throwable class but got object of " "type %s: %p", PrettyDescriptor(c).c_str(), c); return false; } return true; } bool CheckReferenceKind(IndirectRefKind expected_kind, Thread* self, jobject obj) { IndirectRefKind found_kind; if (expected_kind == kLocal) { found_kind = GetIndirectRefKind(obj); if (found_kind == kHandleScopeOrInvalid && self->HandleScopeContains(obj)) { found_kind = kLocal; } } else { found_kind = GetIndirectRefKind(obj); } if (obj != nullptr && found_kind != expected_kind) { AbortF("expected reference of kind %s but found %s: %p", ToStr<IndirectRefKind>(expected_kind).c_str(), ToStr<IndirectRefKind>(GetIndirectRefKind(obj)).c_str(), obj); return false; } return true; } bool CheckInstantiableNonArray(ScopedObjectAccess& soa, jclass jc) SHARED_REQUIRES(Locks::mutator_lock_) { mirror::Class* c = soa.Decode<mirror::Class*>(jc); if (!c->IsInstantiableNonArray()) { AbortF("can't make objects of type %s: %p", PrettyDescriptor(c).c_str(), c); return false; } return true; } bool CheckPrimitiveArrayType(ScopedObjectAccess& soa, jarray array, Primitive::Type type) SHARED_REQUIRES(Locks::mutator_lock_) { if (!CheckArray(soa, array)) { return false; } mirror::Array* a = soa.Decode<mirror::Array*>(array); if (a->GetClass()->GetComponentType()->GetPrimitiveType() != type) { AbortF("incompatible array type %s expected %s[]: %p", PrettyDescriptor(a->GetClass()).c_str(), PrettyDescriptor(type).c_str(), array); return false; } return true; } bool CheckFieldAccess(ScopedObjectAccess& soa, jobject obj, jfieldID fid, bool is_static, Primitive::Type type) SHARED_REQUIRES(Locks::mutator_lock_) { if (is_static && !CheckStaticFieldID(soa, down_cast<jclass>(obj), fid)) { return false; } if (!is_static && !CheckInstanceFieldID(soa, obj, fid)) { return false; } ArtField* field = soa.DecodeField(fid); DCHECK(field != nullptr); // Already checked by Check. if (is_static != field->IsStatic()) { AbortF("attempt to access %s field %s: %p", field->IsStatic() ? "static" : "non-static", PrettyField(field).c_str(), fid); return false; } if (type != field->GetTypeAsPrimitiveType()) { AbortF("attempt to access field %s of type %s with the wrong type %s: %p", PrettyField(field).c_str(), PrettyDescriptor(field->GetTypeDescriptor()).c_str(), PrettyDescriptor(type).c_str(), fid); return false; } if (is_static) { mirror::Object* o = soa.Decode<mirror::Object*>(obj); if (o == nullptr || !o->IsClass()) { AbortF("attempt to access static field %s with a class argument of type %s: %p", PrettyField(field).c_str(), PrettyTypeOf(o).c_str(), fid); return false; } mirror::Class* c = o->AsClass(); if (field->GetDeclaringClass() != c) { AbortF("attempt to access static field %s with an incompatible class argument of %s: %p", PrettyField(field).c_str(), PrettyDescriptor(c).c_str(), fid); return false; } } else { mirror::Object* o = soa.Decode<mirror::Object*>(obj); if (o == nullptr || !field->GetDeclaringClass()->IsAssignableFrom(o->GetClass())) { AbortF("attempt to access field %s from an object argument of type %s: %p", PrettyField(field).c_str(), PrettyTypeOf(o).c_str(), fid); return false; } } return true; } private: enum InstanceKind { kClass, kDirectByteBuffer, kObject, kString, kThrowable, }; /* * Verify that "jobj" is a valid non-null object reference, and points to * an instance of expectedClass. * * Because we're looking at an object on the GC heap, we have to switch * to "running" mode before doing the checks. */ bool CheckInstance(ScopedObjectAccess& soa, InstanceKind kind, jobject java_object, bool null_ok) SHARED_REQUIRES(Locks::mutator_lock_) { const char* what = nullptr; switch (kind) { case kClass: what = "jclass"; break; case kDirectByteBuffer: what = "direct ByteBuffer"; break; case kObject: what = "jobject"; break; case kString: what = "jstring"; break; case kThrowable: what = "jthrowable"; break; default: LOG(FATAL) << "Unknown kind " << static_cast<int>(kind); } if (java_object == nullptr) { if (null_ok) { return true; } else { AbortF("%s received NULL %s", function_name_, what); return false; } } mirror::Object* obj = soa.Decode<mirror::Object*>(java_object); if (obj == nullptr) { // Either java_object is invalid or is a cleared weak. IndirectRef ref = reinterpret_cast<IndirectRef>(java_object); bool okay; if (GetIndirectRefKind(ref) != kWeakGlobal) { okay = false; } else { obj = soa.Vm()->DecodeWeakGlobal(soa.Self(), ref); okay = Runtime::Current()->IsClearedJniWeakGlobal(obj); } if (!okay) { AbortF("%s is an invalid %s: %p (%p)", what, ToStr<IndirectRefKind>(GetIndirectRefKind(java_object)).c_str(), java_object, obj); return false; } } if (!Runtime::Current()->GetHeap()->IsValidObjectAddress(obj)) { Runtime::Current()->GetHeap()->DumpSpaces(LOG(ERROR)); AbortF("%s is an invalid %s: %p (%p)", what, ToStr<IndirectRefKind>(GetIndirectRefKind(java_object)).c_str(), java_object, obj); return false; } bool okay = true; switch (kind) { case kClass: okay = obj->IsClass(); break; case kDirectByteBuffer: UNIMPLEMENTED(FATAL); break; case kString: okay = obj->GetClass()->IsStringClass(); break; case kThrowable: okay = obj->GetClass()->IsThrowableClass(); break; case kObject: break; } if (!okay) { AbortF("%s has wrong type: %s", what, PrettyTypeOf(obj).c_str()); return false; } return true; } /* * Verify that the "mode" argument passed to a primitive array Release * function is one of the valid values. */ bool CheckReleaseMode(jint mode) { if (mode != 0 && mode != JNI_COMMIT && mode != JNI_ABORT) { AbortF("unknown value for release mode: %d", mode); return false; } return true; } bool CheckPossibleHeapValue(ScopedObjectAccess& soa, char fmt, JniValueType arg) SHARED_REQUIRES(Locks::mutator_lock_) { switch (fmt) { case 'a': // jarray return CheckArray(soa, arg.a); case 'c': // jclass return CheckInstance(soa, kClass, arg.c, false); case 'f': // jfieldID return CheckFieldID(soa, arg.f) != nullptr; case 'm': // jmethodID return CheckMethodID(soa, arg.m) != nullptr; case 'r': // release int return CheckReleaseMode(arg.r); case 's': // jstring return CheckInstance(soa, kString, arg.s, false); case 't': // jthrowable return CheckInstance(soa, kThrowable, arg.t, false); case 'E': // JNIEnv* return CheckThread(arg.E); case 'L': // jobject return CheckInstance(soa, kObject, arg.L, true); case '.': // A VarArgs list return CheckVarArgs(soa, arg.va); default: return CheckNonHeapValue(fmt, arg); } } bool CheckVarArgs(ScopedObjectAccess& soa, const VarArgs* args_p) SHARED_REQUIRES(Locks::mutator_lock_) { CHECK(args_p != nullptr); VarArgs args(args_p->Clone()); ArtMethod* m = CheckMethodID(soa, args.GetMethodID()); if (m == nullptr) { return false; } uint32_t len = 0; const char* shorty = m->GetShorty(&len); // Skip the return type CHECK_GE(len, 1u); len--; shorty++; for (uint32_t i = 0; i < len; i++) { if (!CheckPossibleHeapValue(soa, shorty[i], args.GetValue(shorty[i]))) { return false; } } return true; } bool CheckNonHeapValue(char fmt, JniValueType arg) { switch (fmt) { case 'p': // TODO: pointer - null or readable? case 'v': // JavaVM* case 'B': // jbyte case 'C': // jchar case 'D': // jdouble case 'F': // jfloat case 'I': // jint case 'J': // jlong case 'S': // jshort break; // Ignored. case 'b': // jboolean, why two? Fall-through. case 'Z': return CheckBoolean(arg.Z); case 'u': // utf8 if ((flags_ & kFlag_Release) != 0) { return CheckNonNull(arg.u); } else { bool nullable = ((flags_ & kFlag_NullableUtf) != 0); return CheckUtfString(arg.u, nullable); } case 'w': // jobjectRefType switch (arg.w) { case JNIInvalidRefType: case JNILocalRefType: case JNIGlobalRefType: case JNIWeakGlobalRefType: break; default: AbortF("Unknown reference type"); return false; } break; case 'z': // jsize return CheckLengthPositive(arg.z); default: AbortF("unknown format specifier: '%c'", fmt); return false; } return true; } void TracePossibleHeapValue(ScopedObjectAccess& soa, bool entry, char fmt, JniValueType arg, std::string* msg) SHARED_REQUIRES(Locks::mutator_lock_) { switch (fmt) { case 'L': // jobject fall-through. case 'a': // jarray fall-through. case 's': // jstring fall-through. case 't': // jthrowable fall-through. if (arg.L == nullptr) { *msg += "NULL"; } else { StringAppendF(msg, "%p", arg.L); } break; case 'c': { // jclass jclass jc = arg.c; mirror::Class* c = soa.Decode<mirror::Class*>(jc); if (c == nullptr) { *msg += "NULL"; } else if (!Runtime::Current()->GetHeap()->IsValidObjectAddress(c)) { StringAppendF(msg, "INVALID POINTER:%p", jc); } else if (!c->IsClass()) { *msg += "INVALID NON-CLASS OBJECT OF TYPE:" + PrettyTypeOf(c); } else { *msg += PrettyClass(c); if (!entry) { StringAppendF(msg, " (%p)", jc); } } break; } case 'f': { // jfieldID jfieldID fid = arg.f; ArtField* f = soa.DecodeField(fid); *msg += PrettyField(f); if (!entry) { StringAppendF(msg, " (%p)", fid); } break; } case 'm': { // jmethodID jmethodID mid = arg.m; ArtMethod* m = soa.DecodeMethod(mid); *msg += PrettyMethod(m); if (!entry) { StringAppendF(msg, " (%p)", mid); } break; } case '.': { const VarArgs* va = arg.va; VarArgs args(va->Clone()); ArtMethod* m = soa.DecodeMethod(args.GetMethodID()); uint32_t len; const char* shorty = m->GetShorty(&len); CHECK_GE(len, 1u); // Skip past return value. len--; shorty++; // Remove the previous ', ' from the message. msg->erase(msg->length() - 2); for (uint32_t i = 0; i < len; i++) { *msg += ", "; TracePossibleHeapValue(soa, entry, shorty[i], args.GetValue(shorty[i]), msg); } break; } default: TraceNonHeapValue(fmt, arg, msg); break; } } void TraceNonHeapValue(char fmt, JniValueType arg, std::string* msg) { switch (fmt) { case 'B': // jbyte if (arg.B >= 0 && arg.B < 10) { StringAppendF(msg, "%d", arg.B); } else { StringAppendF(msg, "%#x (%d)", arg.B, arg.B); } break; case 'C': // jchar if (arg.C < 0x7f && arg.C >= ' ') { StringAppendF(msg, "U+%x ('%c')", arg.C, arg.C); } else { StringAppendF(msg, "U+%x", arg.C); } break; case 'F': // jfloat StringAppendF(msg, "%g", arg.F); break; case 'D': // jdouble StringAppendF(msg, "%g", arg.D); break; case 'S': // jshort StringAppendF(msg, "%d", arg.S); break; case 'i': // jint - fall-through. case 'I': // jint StringAppendF(msg, "%d", arg.I); break; case 'J': // jlong StringAppendF(msg, "%" PRId64, arg.J); break; case 'Z': // jboolean case 'b': // jboolean (JNI-style) *msg += arg.b == JNI_TRUE ? "true" : "false"; break; case 'V': // void DCHECK(arg.V == nullptr); *msg += "void"; break; case 'v': // JavaVM* StringAppendF(msg, "(JavaVM*)%p", arg.v); break; case 'E': StringAppendF(msg, "(JNIEnv*)%p", arg.E); break; case 'z': // non-negative jsize // You might expect jsize to be size_t, but it's not; it's the same as jint. // We only treat this specially so we can do the non-negative check. // TODO: maybe this wasn't worth it? StringAppendF(msg, "%d", arg.z); break; case 'p': // void* ("pointer") if (arg.p == nullptr) { *msg += "NULL"; } else { StringAppendF(msg, "(void*) %p", arg.p); } break; case 'r': { // jint (release mode) jint releaseMode = arg.r; if (releaseMode == 0) { *msg += "0"; } else if (releaseMode == JNI_ABORT) { *msg += "JNI_ABORT"; } else if (releaseMode == JNI_COMMIT) { *msg += "JNI_COMMIT"; } else { StringAppendF(msg, "invalid release mode %d", releaseMode); } break; } case 'u': // const char* (Modified UTF-8) if (arg.u == nullptr) { *msg += "NULL"; } else { StringAppendF(msg, "\"%s\"", arg.u); } break; case 'w': // jobjectRefType switch (arg.w) { case JNIInvalidRefType: *msg += "invalid reference type"; break; case JNILocalRefType: *msg += "local ref type"; break; case JNIGlobalRefType: *msg += "global ref type"; break; case JNIWeakGlobalRefType: *msg += "weak global ref type"; break; default: *msg += "unknown ref type"; break; } break; default: LOG(FATAL) << function_name_ << ": unknown trace format specifier: '" << fmt << "'"; } } /* * Verify that "array" is non-null and points to an Array object. * * Since we're dealing with objects, switch to "running" mode. */ bool CheckArray(ScopedObjectAccess& soa, jarray java_array) SHARED_REQUIRES(Locks::mutator_lock_) { if (UNLIKELY(java_array == nullptr)) { AbortF("jarray was NULL"); return false; } mirror::Array* a = soa.Decode<mirror::Array*>(java_array); if (UNLIKELY(!Runtime::Current()->GetHeap()->IsValidObjectAddress(a))) { Runtime::Current()->GetHeap()->DumpSpaces(LOG(ERROR)); AbortF("jarray is an invalid %s: %p (%p)", ToStr<IndirectRefKind>(GetIndirectRefKind(java_array)).c_str(), java_array, a); return false; } else if (!a->IsArrayInstance()) { AbortF("jarray argument has non-array type: %s", PrettyTypeOf(a).c_str()); return false; } return true; } bool CheckBoolean(jboolean z) { if (z != JNI_TRUE && z != JNI_FALSE) { AbortF("unexpected jboolean value: %d", z); return false; } return true; } bool CheckLengthPositive(jsize length) { if (length < 0) { AbortF("negative jsize: %d", length); return false; } return true; } ArtField* CheckFieldID(ScopedObjectAccess& soa, jfieldID fid) SHARED_REQUIRES(Locks::mutator_lock_) { if (fid == nullptr) { AbortF("jfieldID was NULL"); return nullptr; } ArtField* f = soa.DecodeField(fid); // TODO: Better check here. if (!Runtime::Current()->GetHeap()->IsValidObjectAddress(f->GetDeclaringClass())) { Runtime::Current()->GetHeap()->DumpSpaces(LOG(ERROR)); AbortF("invalid jfieldID: %p", fid); return nullptr; } return f; } ArtMethod* CheckMethodID(ScopedObjectAccess& soa, jmethodID mid) SHARED_REQUIRES(Locks::mutator_lock_) { if (mid == nullptr) { AbortF("jmethodID was NULL"); return nullptr; } ArtMethod* m = soa.DecodeMethod(mid); // TODO: Better check here. if (!Runtime::Current()->GetHeap()->IsValidObjectAddress(m->GetDeclaringClass())) { Runtime::Current()->GetHeap()->DumpSpaces(LOG(ERROR)); AbortF("invalid jmethodID: %p", mid); return nullptr; } return m; } bool CheckThread(JNIEnv* env) SHARED_REQUIRES(Locks::mutator_lock_) { Thread* self = Thread::Current(); if (self == nullptr) { AbortF("a thread (tid %d) is making JNI calls without being attached", GetTid()); return false; } // Get the *correct* JNIEnv by going through our TLS pointer. JNIEnvExt* threadEnv = self->GetJniEnv(); // Verify that the current thread is (a) attached and (b) associated with // this particular instance of JNIEnv. if (env != threadEnv) { AbortF("thread %s using JNIEnv* from thread %s", ToStr<Thread>(*self).c_str(), ToStr<Thread>(*self).c_str()); return false; } // Verify that, if this thread previously made a critical "get" call, we // do the corresponding "release" call before we try anything else. switch (flags_ & kFlag_CritMask) { case kFlag_CritOkay: // okay to call this method break; case kFlag_CritBad: // not okay to call if (threadEnv->critical) { AbortF("thread %s using JNI after critical get", ToStr<Thread>(*self).c_str()); return false; } break; case kFlag_CritGet: // this is a "get" call // Don't check here; we allow nested gets. threadEnv->critical++; break; case kFlag_CritRelease: // this is a "release" call threadEnv->critical--; if (threadEnv->critical < 0) { AbortF("thread %s called too many critical releases", ToStr<Thread>(*self).c_str()); return false; } break; default: LOG(FATAL) << "Bad flags (internal error): " << flags_; } // Verify that, if an exception has been raised, the native code doesn't // make any JNI calls other than the Exception* methods. if ((flags_ & kFlag_ExcepOkay) == 0 && self->IsExceptionPending()) { mirror::Throwable* exception = self->GetException(); AbortF("JNI %s called with pending exception %s", function_name_, exception->Dump().c_str()); return false; } return true; } // Verifies that "bytes" points to valid Modified UTF-8 data. bool CheckUtfString(const char* bytes, bool nullable) { if (bytes == nullptr) { if (!nullable) { AbortF("non-nullable const char* was NULL"); return false; } return true; } const char* errorKind = nullptr; const uint8_t* utf8 = CheckUtfBytes(bytes, &errorKind); if (errorKind != nullptr) { // This is an expensive loop that will resize often, but this isn't supposed to hit in // practice anyways. std::ostringstream oss; oss << std::hex; const uint8_t* tmp = reinterpret_cast<const uint8_t*>(bytes); while (*tmp != 0) { if (tmp == utf8) { oss << "<"; } oss << "0x" << std::setfill('0') << std::setw(2) << static_cast<uint32_t>(*tmp); if (tmp == utf8) { oss << '>'; } tmp++; if (*tmp != 0) { oss << ' '; } } AbortF("input is not valid Modified UTF-8: illegal %s byte %#x\n" " string: '%s'\n input: '%s'", errorKind, *utf8, bytes, oss.str().c_str()); return false; } return true; } // Checks whether |bytes| is valid modified UTF-8. We also accept 4 byte UTF // sequences in place of encoded surrogate pairs. static const uint8_t* CheckUtfBytes(const char* bytes, const char** errorKind) { while (*bytes != '\0') { const uint8_t* utf8 = reinterpret_cast<const uint8_t*>(bytes++); // Switch on the high four bits. switch (*utf8 >> 4) { case 0x00: case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: case 0x06: case 0x07: // Bit pattern 0xxx. No need for any extra bytes. break; case 0x08: case 0x09: case 0x0a: case 0x0b: // Bit patterns 10xx, which are illegal start bytes. *errorKind = "start"; return utf8; case 0x0f: // Bit pattern 1111, which might be the start of a 4 byte sequence. if ((*utf8 & 0x08) == 0) { // Bit pattern 1111 0xxx, which is the start of a 4 byte sequence. // We consume one continuation byte here, and fall through to consume two more. utf8 = reinterpret_cast<const uint8_t*>(bytes++); if ((*utf8 & 0xc0) != 0x80) { *errorKind = "continuation"; return utf8; } } else { *errorKind = "start"; return utf8; } // Fall through to the cases below to consume two more continuation bytes. FALLTHROUGH_INTENDED; case 0x0e: // Bit pattern 1110, so there are two additional bytes. utf8 = reinterpret_cast<const uint8_t*>(bytes++); if ((*utf8 & 0xc0) != 0x80) { *errorKind = "continuation"; return utf8; } // Fall through to consume one more continuation byte. FALLTHROUGH_INTENDED; case 0x0c: case 0x0d: // Bit pattern 110x, so there is one additional byte. utf8 = reinterpret_cast<const uint8_t*>(bytes++); if ((*utf8 & 0xc0) != 0x80) { *errorKind = "continuation"; return utf8; } break; } } return 0; } void AbortF(const char* fmt, ...) __attribute__((__format__(__printf__, 2, 3))) { va_list args; va_start(args, fmt); Runtime::Current()->GetJavaVM()->JniAbortV(function_name_, fmt, args); va_end(args); } // The name of the JNI function being checked. const char* const function_name_; const int flags_; int indent_; const bool has_method_; DISALLOW_COPY_AND_ASSIGN(ScopedCheck); }; /* * =========================================================================== * Guarded arrays * =========================================================================== */ /* this gets tucked in at the start of the buffer; struct size must be even */ class GuardedCopy { public: /* * Create an over-sized buffer to hold the contents of "buf". Copy it in, * filling in the area around it with guard data. */ static void* Create(void* original_buf, size_t len, bool mod_okay) { const size_t new_len = LengthIncludingRedZones(len); uint8_t* const new_buf = DebugAlloc(new_len); // If modification is not expected, grab a checksum. uLong adler = 0; if (!mod_okay) { adler = adler32(adler32(0L, Z_NULL, 0), reinterpret_cast<const Bytef*>(original_buf), len); } GuardedCopy* copy = new (new_buf) GuardedCopy(original_buf, len, adler); // Fill begin region with canary pattern. const size_t kStartCanaryLength = (GuardedCopy::kRedZoneSize / 2) - sizeof(GuardedCopy); for (size_t i = 0, j = 0; i < kStartCanaryLength; ++i) { const_cast<char*>(copy->StartRedZone())[i] = kCanary[j]; if (kCanary[j] == '\0') { j = 0; } else { j++; } } // Copy the data in; note "len" could be zero. memcpy(const_cast<uint8_t*>(copy->BufferWithinRedZones()), original_buf, len); // Fill end region with canary pattern. for (size_t i = 0, j = 0; i < kEndCanaryLength; ++i) { const_cast<char*>(copy->EndRedZone())[i] = kCanary[j]; if (kCanary[j] == '\0') { j = 0; } else { j++; } } return const_cast<uint8_t*>(copy->BufferWithinRedZones()); } /* * Create a guarded copy of a primitive array. Modifications to the copied * data are allowed. Returns a pointer to the copied data. */ static void* CreateGuardedPACopy(JNIEnv* env, const jarray java_array, jboolean* is_copy, void* original_ptr) { ScopedObjectAccess soa(env); mirror::Array* a = soa.Decode<mirror::Array*>(java_array); size_t component_size = a->GetClass()->GetComponentSize(); size_t byte_count = a->GetLength() * component_size; void* result = Create(original_ptr, byte_count, true); if (is_copy != nullptr) { *is_copy = JNI_TRUE; } return result; } /* * Perform the array "release" operation, which may or may not copy data * back into the managed heap, and may or may not release the underlying storage. */ static void* ReleaseGuardedPACopy(const char* function_name, JNIEnv* env, jarray java_array ATTRIBUTE_UNUSED, void* embedded_buf, int mode) { ScopedObjectAccess soa(env); if (!GuardedCopy::Check(function_name, embedded_buf, true)) { return nullptr; } GuardedCopy* const copy = FromEmbedded(embedded_buf); void* original_ptr = copy->original_ptr_; if (mode != JNI_ABORT) { memcpy(original_ptr, embedded_buf, copy->original_length_); } if (mode != JNI_COMMIT) { Destroy(embedded_buf); } return original_ptr; } /* * Free up the guard buffer, scrub it, and return the original pointer. */ static void* Destroy(void* embedded_buf) { GuardedCopy* copy = FromEmbedded(embedded_buf); void* original_ptr = const_cast<void*>(copy->original_ptr_); size_t len = LengthIncludingRedZones(copy->original_length_); DebugFree(copy, len); return original_ptr; } /* * Verify the guard area and, if "modOkay" is false, that the data itself * has not been altered. * * The caller has already checked that "dataBuf" is non-null. */ static bool Check(const char* function_name, const void* embedded_buf, bool mod_okay) { const GuardedCopy* copy = FromEmbedded(embedded_buf); return copy->CheckHeader(function_name, mod_okay) && copy->CheckRedZones(function_name); } private: GuardedCopy(void* original_buf, size_t len, uLong adler) : magic_(kGuardMagic), adler_(adler), original_ptr_(original_buf), original_length_(len) { } static uint8_t* DebugAlloc(size_t len) { void* result = mmap(nullptr, len, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, 0); if (result == MAP_FAILED) { PLOG(FATAL) << "GuardedCopy::create mmap(" << len << ") failed"; } return reinterpret_cast<uint8_t*>(result); } static void DebugFree(void* buf, size_t len) { if (munmap(buf, len) != 0) { PLOG(FATAL) << "munmap(" << buf << ", " << len << ") failed"; } } static size_t LengthIncludingRedZones(size_t len) { return len + kRedZoneSize; } // Get the GuardedCopy from the interior pointer. static GuardedCopy* FromEmbedded(void* embedded_buf) { return reinterpret_cast<GuardedCopy*>( reinterpret_cast<uint8_t*>(embedded_buf) - (kRedZoneSize / 2)); } static const GuardedCopy* FromEmbedded(const void* embedded_buf) { return reinterpret_cast<const GuardedCopy*>( reinterpret_cast<const uint8_t*>(embedded_buf) - (kRedZoneSize / 2)); } static void AbortF(const char* jni_function_name, const char* fmt, ...) { va_list args; va_start(args, fmt); Runtime::Current()->GetJavaVM()->JniAbortV(jni_function_name, fmt, args); va_end(args); } bool CheckHeader(const char* function_name, bool mod_okay) const { static const uint32_t kMagicCmp = kGuardMagic; // Before we do anything with "pExtra", check the magic number. We // do the check with memcmp rather than "==" in case the pointer is // unaligned. If it points to completely bogus memory we're going // to crash, but there's no easy way around that. if (UNLIKELY(memcmp(&magic_, &kMagicCmp, 4) != 0)) { uint8_t buf[4]; memcpy(buf, &magic_, 4); AbortF(function_name, "guard magic does not match (found 0x%02x%02x%02x%02x) -- incorrect data pointer %p?", buf[3], buf[2], buf[1], buf[0], this); // Assumes little-endian. return false; } // If modification is not expected, verify checksum. Strictly speaking this is wrong: if we // told the client that we made a copy, there's no reason they can't alter the buffer. if (!mod_okay) { uLong computed_adler = adler32(adler32(0L, Z_NULL, 0), BufferWithinRedZones(), original_length_); if (computed_adler != adler_) { AbortF(function_name, "buffer modified (0x%08lx vs 0x%08lx) at address %p", computed_adler, adler_, this); return false; } } return true; } bool CheckRedZones(const char* function_name) const { // Check the begin red zone. const size_t kStartCanaryLength = (GuardedCopy::kRedZoneSize / 2) - sizeof(GuardedCopy); for (size_t i = 0, j = 0; i < kStartCanaryLength; ++i) { if (UNLIKELY(StartRedZone()[i] != kCanary[j])) { AbortF(function_name, "guard pattern before buffer disturbed at %p +%zd", this, i); return false; } if (kCanary[j] == '\0') { j = 0; } else { j++; } } // Check end region. for (size_t i = 0, j = 0; i < kEndCanaryLength; ++i) { if (UNLIKELY(EndRedZone()[i] != kCanary[j])) { size_t offset_from_buffer_start = &(EndRedZone()[i]) - &(StartRedZone()[kStartCanaryLength]); AbortF(function_name, "guard pattern after buffer disturbed at %p +%zd", this, offset_from_buffer_start); return false; } if (kCanary[j] == '\0') { j = 0; } else { j++; } } return true; } // Location that canary value will be written before the guarded region. const char* StartRedZone() const { const uint8_t* buf = reinterpret_cast<const uint8_t*>(this); return reinterpret_cast<const char*>(buf + sizeof(GuardedCopy)); } // Return the interior embedded buffer. const uint8_t* BufferWithinRedZones() const { const uint8_t* embedded_buf = reinterpret_cast<const uint8_t*>(this) + (kRedZoneSize / 2); return embedded_buf; } // Location that canary value will be written after the guarded region. const char* EndRedZone() const { const uint8_t* buf = reinterpret_cast<const uint8_t*>(this); size_t buf_len = LengthIncludingRedZones(original_length_); return reinterpret_cast<const char*>(buf + (buf_len - (kRedZoneSize / 2))); } static constexpr size_t kRedZoneSize = 512; static constexpr size_t kEndCanaryLength = kRedZoneSize / 2; // Value written before and after the guarded array. static const char* const kCanary; static constexpr uint32_t kGuardMagic = 0xffd5aa96; const uint32_t magic_; const uLong adler_; void* const original_ptr_; const size_t original_length_; }; const char* const GuardedCopy::kCanary = "JNI BUFFER RED ZONE"; /* * =========================================================================== * JNI functions * =========================================================================== */ class CheckJNI { public: static jint GetVersion(JNIEnv* env) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); JniValueType args[1] = {{.E = env }}; if (sc.Check(soa, true, "E", args)) { JniValueType result; result.I = baseEnv(env)->GetVersion(env); if (sc.Check(soa, false, "I", &result)) { return result.I; } } return JNI_ERR; } static jint GetJavaVM(JNIEnv *env, JavaVM **vm) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); JniValueType args[2] = {{.E = env }, {.p = vm}}; if (sc.Check(soa, true, "Ep", args)) { JniValueType result; result.i = baseEnv(env)->GetJavaVM(env, vm); if (sc.Check(soa, false, "i", &result)) { return result.i; } } return JNI_ERR; } static jint RegisterNatives(JNIEnv* env, jclass c, const JNINativeMethod* methods, jint nMethods) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); JniValueType args[4] = {{.E = env }, {.c = c}, {.p = methods}, {.I = nMethods}}; if (sc.Check(soa, true, "EcpI", args)) { JniValueType result; result.i = baseEnv(env)->RegisterNatives(env, c, methods, nMethods); if (sc.Check(soa, false, "i", &result)) { return result.i; } } return JNI_ERR; } static jint UnregisterNatives(JNIEnv* env, jclass c) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); JniValueType args[2] = {{.E = env }, {.c = c}}; if (sc.Check(soa, true, "Ec", args)) { JniValueType result; result.i = baseEnv(env)->UnregisterNatives(env, c); if (sc.Check(soa, false, "i", &result)) { return result.i; } } return JNI_ERR; } static jobjectRefType GetObjectRefType(JNIEnv* env, jobject obj) { // Note: we use "EL" here but "Ep" has been used in the past on the basis that we'd like to // know the object is invalid. The spec says that passing invalid objects or even ones that // are deleted isn't supported. ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); JniValueType args[2] = {{.E = env }, {.L = obj}}; if (sc.Check(soa, true, "EL", args)) { JniValueType result; result.w = baseEnv(env)->GetObjectRefType(env, obj); if (sc.Check(soa, false, "w", &result)) { return result.w; } } return JNIInvalidRefType; } static jclass DefineClass(JNIEnv* env, const char* name, jobject loader, const jbyte* buf, jsize bufLen) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); JniValueType args[5] = {{.E = env}, {.u = name}, {.L = loader}, {.p = buf}, {.z = bufLen}}; if (sc.Check(soa, true, "EuLpz", args) && sc.CheckClassName(name)) { JniValueType result; result.c = baseEnv(env)->DefineClass(env, name, loader, buf, bufLen); if (sc.Check(soa, false, "c", &result)) { return result.c; } } return nullptr; } static jclass FindClass(JNIEnv* env, const char* name) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); JniValueType args[2] = {{.E = env}, {.u = name}}; if (sc.Check(soa, true, "Eu", args) && sc.CheckClassName(name)) { JniValueType result; result.c = baseEnv(env)->FindClass(env, name); if (sc.Check(soa, false, "c", &result)) { return result.c; } } return nullptr; } static jclass GetSuperclass(JNIEnv* env, jclass c) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); JniValueType args[2] = {{.E = env}, {.c = c}}; if (sc.Check(soa, true, "Ec", args)) { JniValueType result; result.c = baseEnv(env)->GetSuperclass(env, c); if (sc.Check(soa, false, "c", &result)) { return result.c; } } return nullptr; } static jboolean IsAssignableFrom(JNIEnv* env, jclass c1, jclass c2) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); JniValueType args[3] = {{.E = env}, {.c = c1}, {.c = c2}}; if (sc.Check(soa, true, "Ecc", args)) { JniValueType result; result.b = baseEnv(env)->IsAssignableFrom(env, c1, c2); if (sc.Check(soa, false, "b", &result)) { return result.b; } } return JNI_FALSE; } static jmethodID FromReflectedMethod(JNIEnv* env, jobject method) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); JniValueType args[2] = {{.E = env}, {.L = method}}; if (sc.Check(soa, true, "EL", args) && sc.CheckReflectedMethod(soa, method)) { JniValueType result; result.m = baseEnv(env)->FromReflectedMethod(env, method); if (sc.Check(soa, false, "m", &result)) { return result.m; } } return nullptr; } static jfieldID FromReflectedField(JNIEnv* env, jobject field) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); JniValueType args[2] = {{.E = env}, {.L = field}}; if (sc.Check(soa, true, "EL", args) && sc.CheckReflectedField(soa, field)) { JniValueType result; result.f = baseEnv(env)->FromReflectedField(env, field); if (sc.Check(soa, false, "f", &result)) { return result.f; } } return nullptr; } static jobject ToReflectedMethod(JNIEnv* env, jclass cls, jmethodID mid, jboolean isStatic) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); JniValueType args[4] = {{.E = env}, {.c = cls}, {.m = mid}, {.b = isStatic}}; if (sc.Check(soa, true, "Ecmb", args)) { JniValueType result; result.L = baseEnv(env)->ToReflectedMethod(env, cls, mid, isStatic); if (sc.Check(soa, false, "L", &result) && (result.L != nullptr)) { DCHECK(sc.CheckReflectedMethod(soa, result.L)); return result.L; } } return nullptr; } static jobject ToReflectedField(JNIEnv* env, jclass cls, jfieldID fid, jboolean isStatic) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); JniValueType args[4] = {{.E = env}, {.c = cls}, {.f = fid}, {.b = isStatic}}; if (sc.Check(soa, true, "Ecfb", args)) { JniValueType result; result.L = baseEnv(env)->ToReflectedField(env, cls, fid, isStatic); if (sc.Check(soa, false, "L", &result) && (result.L != nullptr)) { DCHECK(sc.CheckReflectedField(soa, result.L)); return result.L; } } return nullptr; } static jint Throw(JNIEnv* env, jthrowable obj) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); JniValueType args[2] = {{.E = env}, {.t = obj}}; if (sc.Check(soa, true, "Et", args) && sc.CheckThrowable(soa, obj)) { JniValueType result; result.i = baseEnv(env)->Throw(env, obj); if (sc.Check(soa, false, "i", &result)) { return result.i; } } return JNI_ERR; } static jint ThrowNew(JNIEnv* env, jclass c, const char* message) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_NullableUtf, __FUNCTION__); JniValueType args[3] = {{.E = env}, {.c = c}, {.u = message}}; if (sc.Check(soa, true, "Ecu", args) && sc.CheckThrowableClass(soa, c)) { JniValueType result; result.i = baseEnv(env)->ThrowNew(env, c, message); if (sc.Check(soa, false, "i", &result)) { return result.i; } } return JNI_ERR; } static jthrowable ExceptionOccurred(JNIEnv* env) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_ExcepOkay, __FUNCTION__); JniValueType args[1] = {{.E = env}}; if (sc.Check(soa, true, "E", args)) { JniValueType result; result.t = baseEnv(env)->ExceptionOccurred(env); if (sc.Check(soa, false, "t", &result)) { return result.t; } } return nullptr; } static void ExceptionDescribe(JNIEnv* env) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_ExcepOkay, __FUNCTION__); JniValueType args[1] = {{.E = env}}; if (sc.Check(soa, true, "E", args)) { JniValueType result; baseEnv(env)->ExceptionDescribe(env); result.V = nullptr; sc.Check(soa, false, "V", &result); } } static void ExceptionClear(JNIEnv* env) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_ExcepOkay, __FUNCTION__); JniValueType args[1] = {{.E = env}}; if (sc.Check(soa, true, "E", args)) { JniValueType result; baseEnv(env)->ExceptionClear(env); result.V = nullptr; sc.Check(soa, false, "V", &result); } } static jboolean ExceptionCheck(JNIEnv* env) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_CritOkay | kFlag_ExcepOkay, __FUNCTION__); JniValueType args[1] = {{.E = env}}; if (sc.Check(soa, true, "E", args)) { JniValueType result; result.b = baseEnv(env)->ExceptionCheck(env); if (sc.Check(soa, false, "b", &result)) { return result.b; } } return JNI_FALSE; } static void FatalError(JNIEnv* env, const char* msg) { // The JNI specification doesn't say it's okay to call FatalError with a pending exception, // but you're about to abort anyway, and it's quite likely that you have a pending exception, // and it's not unimaginable that you don't know that you do. So we allow it. ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_ExcepOkay | kFlag_NullableUtf, __FUNCTION__); JniValueType args[2] = {{.E = env}, {.u = msg}}; if (sc.Check(soa, true, "Eu", args)) { JniValueType result; baseEnv(env)->FatalError(env, msg); // Unreachable. result.V = nullptr; sc.Check(soa, false, "V", &result); } } static jint PushLocalFrame(JNIEnv* env, jint capacity) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_ExcepOkay, __FUNCTION__); JniValueType args[2] = {{.E = env}, {.I = capacity}}; if (sc.Check(soa, true, "EI", args)) { JniValueType result; result.i = baseEnv(env)->PushLocalFrame(env, capacity); if (sc.Check(soa, false, "i", &result)) { return result.i; } } return JNI_ERR; } static jobject PopLocalFrame(JNIEnv* env, jobject res) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_ExcepOkay, __FUNCTION__); JniValueType args[2] = {{.E = env}, {.L = res}}; if (sc.Check(soa, true, "EL", args)) { JniValueType result; result.L = baseEnv(env)->PopLocalFrame(env, res); sc.Check(soa, false, "L", &result); return result.L; } return nullptr; } static jobject NewGlobalRef(JNIEnv* env, jobject obj) { return NewRef(__FUNCTION__, env, obj, kGlobal); } static jobject NewLocalRef(JNIEnv* env, jobject obj) { return NewRef(__FUNCTION__, env, obj, kLocal); } static jweak NewWeakGlobalRef(JNIEnv* env, jobject obj) { return NewRef(__FUNCTION__, env, obj, kWeakGlobal); } static void DeleteGlobalRef(JNIEnv* env, jobject obj) { DeleteRef(__FUNCTION__, env, obj, kGlobal); } static void DeleteWeakGlobalRef(JNIEnv* env, jweak obj) { DeleteRef(__FUNCTION__, env, obj, kWeakGlobal); } static void DeleteLocalRef(JNIEnv* env, jobject obj) { DeleteRef(__FUNCTION__, env, obj, kLocal); } static jint EnsureLocalCapacity(JNIEnv *env, jint capacity) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); JniValueType args[2] = {{.E = env}, {.I = capacity}}; if (sc.Check(soa, true, "EI", args)) { JniValueType result; result.i = baseEnv(env)->EnsureLocalCapacity(env, capacity); if (sc.Check(soa, false, "i", &result)) { return result.i; } } return JNI_ERR; } static jboolean IsSameObject(JNIEnv* env, jobject ref1, jobject ref2) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); JniValueType args[3] = {{.E = env}, {.L = ref1}, {.L = ref2}}; if (sc.Check(soa, true, "ELL", args)) { JniValueType result; result.b = baseEnv(env)->IsSameObject(env, ref1, ref2); if (sc.Check(soa, false, "b", &result)) { return result.b; } } return JNI_FALSE; } static jobject AllocObject(JNIEnv* env, jclass c) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); JniValueType args[2] = {{.E = env}, {.c = c}}; if (sc.Check(soa, true, "Ec", args) && sc.CheckInstantiableNonArray(soa, c)) { JniValueType result; result.L = baseEnv(env)->AllocObject(env, c); if (sc.Check(soa, false, "L", &result)) { return result.L; } } return nullptr; } static jobject NewObjectV(JNIEnv* env, jclass c, jmethodID mid, va_list vargs) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); VarArgs rest(mid, vargs); JniValueType args[4] = {{.E = env}, {.c = c}, {.m = mid}, {.va = &rest}}; if (sc.Check(soa, true, "Ecm.", args) && sc.CheckInstantiableNonArray(soa, c) && sc.CheckConstructor(soa, mid)) { JniValueType result; result.L = baseEnv(env)->NewObjectV(env, c, mid, vargs); if (sc.Check(soa, false, "L", &result)) { return result.L; } } return nullptr; } static jobject NewObject(JNIEnv* env, jclass c, jmethodID mid, ...) { va_list args; va_start(args, mid); jobject result = NewObjectV(env, c, mid, args); va_end(args); return result; } static jobject NewObjectA(JNIEnv* env, jclass c, jmethodID mid, jvalue* vargs) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); VarArgs rest(mid, vargs); JniValueType args[4] = {{.E = env}, {.c = c}, {.m = mid}, {.va = &rest}}; if (sc.Check(soa, true, "Ecm.", args) && sc.CheckInstantiableNonArray(soa, c) && sc.CheckConstructor(soa, mid)) { JniValueType result; result.L = baseEnv(env)->NewObjectA(env, c, mid, vargs); if (sc.Check(soa, false, "L", &result)) { return result.L; } } return nullptr; } static jclass GetObjectClass(JNIEnv* env, jobject obj) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); JniValueType args[2] = {{.E = env}, {.L = obj}}; if (sc.Check(soa, true, "EL", args)) { JniValueType result; result.c = baseEnv(env)->GetObjectClass(env, obj); if (sc.Check(soa, false, "c", &result)) { return result.c; } } return nullptr; } static jboolean IsInstanceOf(JNIEnv* env, jobject obj, jclass c) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); JniValueType args[3] = {{.E = env}, {.L = obj}, {.c = c}}; if (sc.Check(soa, true, "ELc", args)) { JniValueType result; result.b = baseEnv(env)->IsInstanceOf(env, obj, c); if (sc.Check(soa, false, "b", &result)) { return result.b; } } return JNI_FALSE; } static jmethodID GetMethodID(JNIEnv* env, jclass c, const char* name, const char* sig) { return GetMethodIDInternal(__FUNCTION__, env, c, name, sig, false); } static jmethodID GetStaticMethodID(JNIEnv* env, jclass c, const char* name, const char* sig) { return GetMethodIDInternal(__FUNCTION__, env, c, name, sig, true); } static jfieldID GetFieldID(JNIEnv* env, jclass c, const char* name, const char* sig) { return GetFieldIDInternal(__FUNCTION__, env, c, name, sig, false); } static jfieldID GetStaticFieldID(JNIEnv* env, jclass c, const char* name, const char* sig) { return GetFieldIDInternal(__FUNCTION__, env, c, name, sig, true); } #define FIELD_ACCESSORS(jtype, name, ptype, shorty) \ static jtype GetStatic##name##Field(JNIEnv* env, jclass c, jfieldID fid) { \ return GetField(__FUNCTION__, env, c, fid, true, ptype).shorty; \ } \ \ static jtype Get##name##Field(JNIEnv* env, jobject obj, jfieldID fid) { \ return GetField(__FUNCTION__, env, obj, fid, false, ptype).shorty; \ } \ \ static void SetStatic##name##Field(JNIEnv* env, jclass c, jfieldID fid, jtype v) { \ JniValueType value; \ value.shorty = v; \ SetField(__FUNCTION__, env, c, fid, true, ptype, value); \ } \ \ static void Set##name##Field(JNIEnv* env, jobject obj, jfieldID fid, jtype v) { \ JniValueType value; \ value.shorty = v; \ SetField(__FUNCTION__, env, obj, fid, false, ptype, value); \ } FIELD_ACCESSORS(jobject, Object, Primitive::kPrimNot, L) FIELD_ACCESSORS(jboolean, Boolean, Primitive::kPrimBoolean, Z) FIELD_ACCESSORS(jbyte, Byte, Primitive::kPrimByte, B) FIELD_ACCESSORS(jchar, Char, Primitive::kPrimChar, C) FIELD_ACCESSORS(jshort, Short, Primitive::kPrimShort, S) FIELD_ACCESSORS(jint, Int, Primitive::kPrimInt, I) FIELD_ACCESSORS(jlong, Long, Primitive::kPrimLong, J) FIELD_ACCESSORS(jfloat, Float, Primitive::kPrimFloat, F) FIELD_ACCESSORS(jdouble, Double, Primitive::kPrimDouble, D) #undef FIELD_ACCESSORS static void CallVoidMethodA(JNIEnv* env, jobject obj, jmethodID mid, jvalue* vargs) { CallMethodA(__FUNCTION__, env, obj, nullptr, mid, vargs, Primitive::kPrimVoid, kVirtual); } static void CallNonvirtualVoidMethodA(JNIEnv* env, jobject obj, jclass c, jmethodID mid, jvalue* vargs) { CallMethodA(__FUNCTION__, env, obj, c, mid, vargs, Primitive::kPrimVoid, kDirect); } static void CallStaticVoidMethodA(JNIEnv* env, jclass c, jmethodID mid, jvalue* vargs) { CallMethodA(__FUNCTION__, env, nullptr, c, mid, vargs, Primitive::kPrimVoid, kStatic); } static void CallVoidMethodV(JNIEnv* env, jobject obj, jmethodID mid, va_list vargs) { CallMethodV(__FUNCTION__, env, obj, nullptr, mid, vargs, Primitive::kPrimVoid, kVirtual); } static void CallNonvirtualVoidMethodV(JNIEnv* env, jobject obj, jclass c, jmethodID mid, va_list vargs) { CallMethodV(__FUNCTION__, env, obj, c, mid, vargs, Primitive::kPrimVoid, kDirect); } static void CallStaticVoidMethodV(JNIEnv* env, jclass c, jmethodID mid, va_list vargs) { CallMethodV(__FUNCTION__, env, nullptr, c, mid, vargs, Primitive::kPrimVoid, kStatic); } static void CallVoidMethod(JNIEnv* env, jobject obj, jmethodID mid, ...) { va_list vargs; va_start(vargs, mid); CallMethodV(__FUNCTION__, env, obj, nullptr, mid, vargs, Primitive::kPrimVoid, kVirtual); va_end(vargs); } static void CallNonvirtualVoidMethod(JNIEnv* env, jobject obj, jclass c, jmethodID mid, ...) { va_list vargs; va_start(vargs, mid); CallMethodV(__FUNCTION__, env, obj, c, mid, vargs, Primitive::kPrimVoid, kDirect); va_end(vargs); } static void CallStaticVoidMethod(JNIEnv* env, jclass c, jmethodID mid, ...) { va_list vargs; va_start(vargs, mid); CallMethodV(__FUNCTION__, env, nullptr, c, mid, vargs, Primitive::kPrimVoid, kStatic); va_end(vargs); } #define CALL(rtype, name, ptype, shorty) \ static rtype Call##name##MethodA(JNIEnv* env, jobject obj, jmethodID mid, jvalue* vargs) { \ return CallMethodA(__FUNCTION__, env, obj, nullptr, mid, vargs, ptype, kVirtual).shorty; \ } \ \ static rtype CallNonvirtual##name##MethodA(JNIEnv* env, jobject obj, jclass c, jmethodID mid, \ jvalue* vargs) { \ return CallMethodA(__FUNCTION__, env, obj, c, mid, vargs, ptype, kDirect).shorty; \ } \ \ static rtype CallStatic##name##MethodA(JNIEnv* env, jclass c, jmethodID mid, jvalue* vargs) { \ return CallMethodA(__FUNCTION__, env, nullptr, c, mid, vargs, ptype, kStatic).shorty; \ } \ \ static rtype Call##name##MethodV(JNIEnv* env, jobject obj, jmethodID mid, va_list vargs) { \ return CallMethodV(__FUNCTION__, env, obj, nullptr, mid, vargs, ptype, kVirtual).shorty; \ } \ \ static rtype CallNonvirtual##name##MethodV(JNIEnv* env, jobject obj, jclass c, jmethodID mid, \ va_list vargs) { \ return CallMethodV(__FUNCTION__, env, obj, c, mid, vargs, ptype, kDirect).shorty; \ } \ \ static rtype CallStatic##name##MethodV(JNIEnv* env, jclass c, jmethodID mid, va_list vargs) { \ return CallMethodV(__FUNCTION__, env, nullptr, c, mid, vargs, ptype, kStatic).shorty; \ } \ \ static rtype Call##name##Method(JNIEnv* env, jobject obj, jmethodID mid, ...) { \ va_list vargs; \ va_start(vargs, mid); \ rtype result = \ CallMethodV(__FUNCTION__, env, obj, nullptr, mid, vargs, ptype, kVirtual).shorty; \ va_end(vargs); \ return result; \ } \ \ static rtype CallNonvirtual##name##Method(JNIEnv* env, jobject obj, jclass c, jmethodID mid, \ ...) { \ va_list vargs; \ va_start(vargs, mid); \ rtype result = \ CallMethodV(__FUNCTION__, env, obj, c, mid, vargs, ptype, kDirect).shorty; \ va_end(vargs); \ return result; \ } \ \ static rtype CallStatic##name##Method(JNIEnv* env, jclass c, jmethodID mid, ...) { \ va_list vargs; \ va_start(vargs, mid); \ rtype result = \ CallMethodV(__FUNCTION__, env, nullptr, c, mid, vargs, ptype, kStatic).shorty; \ va_end(vargs); \ return result; \ } CALL(jobject, Object, Primitive::kPrimNot, L) CALL(jboolean, Boolean, Primitive::kPrimBoolean, Z) CALL(jbyte, Byte, Primitive::kPrimByte, B) CALL(jchar, Char, Primitive::kPrimChar, C) CALL(jshort, Short, Primitive::kPrimShort, S) CALL(jint, Int, Primitive::kPrimInt, I) CALL(jlong, Long, Primitive::kPrimLong, J) CALL(jfloat, Float, Primitive::kPrimFloat, F) CALL(jdouble, Double, Primitive::kPrimDouble, D) #undef CALL static jstring NewString(JNIEnv* env, const jchar* unicode_chars, jsize len) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); JniValueType args[3] = {{.E = env}, {.p = unicode_chars}, {.z = len}}; if (sc.Check(soa, true, "Epz", args)) { JniValueType result; result.s = baseEnv(env)->NewString(env, unicode_chars, len); if (sc.Check(soa, false, "s", &result)) { return result.s; } } return nullptr; } static jstring NewStringUTF(JNIEnv* env, const char* chars) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_NullableUtf, __FUNCTION__); JniValueType args[2] = {{.E = env}, {.u = chars}}; if (sc.Check(soa, true, "Eu", args)) { JniValueType result; // TODO: stale? show pointer and truncate string. result.s = baseEnv(env)->NewStringUTF(env, chars); if (sc.Check(soa, false, "s", &result)) { return result.s; } } return nullptr; } static jsize GetStringLength(JNIEnv* env, jstring string) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_CritOkay, __FUNCTION__); JniValueType args[2] = {{.E = env}, {.s = string}}; if (sc.Check(soa, true, "Es", args)) { JniValueType result; result.z = baseEnv(env)->GetStringLength(env, string); if (sc.Check(soa, false, "z", &result)) { return result.z; } } return JNI_ERR; } static jsize GetStringUTFLength(JNIEnv* env, jstring string) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_CritOkay, __FUNCTION__); JniValueType args[2] = {{.E = env}, {.s = string}}; if (sc.Check(soa, true, "Es", args)) { JniValueType result; result.z = baseEnv(env)->GetStringUTFLength(env, string); if (sc.Check(soa, false, "z", &result)) { return result.z; } } return JNI_ERR; } static const jchar* GetStringChars(JNIEnv* env, jstring string, jboolean* is_copy) { return reinterpret_cast<const jchar*>(GetStringCharsInternal(__FUNCTION__, env, string, is_copy, false, false)); } static const char* GetStringUTFChars(JNIEnv* env, jstring string, jboolean* is_copy) { return reinterpret_cast<const char*>(GetStringCharsInternal(__FUNCTION__, env, string, is_copy, true, false)); } static const jchar* GetStringCritical(JNIEnv* env, jstring string, jboolean* is_copy) { return reinterpret_cast<const jchar*>(GetStringCharsInternal(__FUNCTION__, env, string, is_copy, false, true)); } static void ReleaseStringChars(JNIEnv* env, jstring string, const jchar* chars) { ReleaseStringCharsInternal(__FUNCTION__, env, string, chars, false, false); } static void ReleaseStringUTFChars(JNIEnv* env, jstring string, const char* utf) { ReleaseStringCharsInternal(__FUNCTION__, env, string, utf, true, false); } static void ReleaseStringCritical(JNIEnv* env, jstring string, const jchar* chars) { ReleaseStringCharsInternal(__FUNCTION__, env, string, chars, false, true); } static void GetStringRegion(JNIEnv* env, jstring string, jsize start, jsize len, jchar* buf) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_CritOkay, __FUNCTION__); JniValueType args[5] = {{.E = env}, {.s = string}, {.z = start}, {.z = len}, {.p = buf}}; // Note: the start and len arguments are checked as 'I' rather than 'z' as invalid indices // result in ArrayIndexOutOfBoundsExceptions in the base implementation. if (sc.Check(soa, true, "EsIIp", args)) { baseEnv(env)->GetStringRegion(env, string, start, len, buf); JniValueType result; result.V = nullptr; sc.Check(soa, false, "V", &result); } } static void GetStringUTFRegion(JNIEnv* env, jstring string, jsize start, jsize len, char* buf) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_CritOkay, __FUNCTION__); JniValueType args[5] = {{.E = env}, {.s = string}, {.z = start}, {.z = len}, {.p = buf}}; // Note: the start and len arguments are checked as 'I' rather than 'z' as invalid indices // result in ArrayIndexOutOfBoundsExceptions in the base implementation. if (sc.Check(soa, true, "EsIIp", args)) { baseEnv(env)->GetStringUTFRegion(env, string, start, len, buf); JniValueType result; result.V = nullptr; sc.Check(soa, false, "V", &result); } } static jsize GetArrayLength(JNIEnv* env, jarray array) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_CritOkay, __FUNCTION__); JniValueType args[2] = {{.E = env}, {.a = array}}; if (sc.Check(soa, true, "Ea", args)) { JniValueType result; result.z = baseEnv(env)->GetArrayLength(env, array); if (sc.Check(soa, false, "z", &result)) { return result.z; } } return JNI_ERR; } static jobjectArray NewObjectArray(JNIEnv* env, jsize length, jclass element_class, jobject initial_element) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); JniValueType args[4] = {{.E = env}, {.z = length}, {.c = element_class}, {.L = initial_element}}; if (sc.Check(soa, true, "EzcL", args)) { JniValueType result; // Note: assignability tests of initial_element are done in the base implementation. result.a = baseEnv(env)->NewObjectArray(env, length, element_class, initial_element); if (sc.Check(soa, false, "a", &result)) { return down_cast<jobjectArray>(result.a); } } return nullptr; } static jobject GetObjectArrayElement(JNIEnv* env, jobjectArray array, jsize index) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); JniValueType args[3] = {{.E = env}, {.a = array}, {.z = index}}; if (sc.Check(soa, true, "Eaz", args)) { JniValueType result; result.L = baseEnv(env)->GetObjectArrayElement(env, array, index); if (sc.Check(soa, false, "L", &result)) { return result.L; } } return nullptr; } static void SetObjectArrayElement(JNIEnv* env, jobjectArray array, jsize index, jobject value) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); JniValueType args[4] = {{.E = env}, {.a = array}, {.z = index}, {.L = value}}; // Note: the index arguments is checked as 'I' rather than 'z' as invalid indices result in // ArrayIndexOutOfBoundsExceptions in the base implementation. Similarly invalid stores result // in ArrayStoreExceptions. if (sc.Check(soa, true, "EaIL", args)) { baseEnv(env)->SetObjectArrayElement(env, array, index, value); JniValueType result; result.V = nullptr; sc.Check(soa, false, "V", &result); } } static jbooleanArray NewBooleanArray(JNIEnv* env, jsize length) { return down_cast<jbooleanArray>(NewPrimitiveArray(__FUNCTION__, env, length, Primitive::kPrimBoolean)); } static jbyteArray NewByteArray(JNIEnv* env, jsize length) { return down_cast<jbyteArray>(NewPrimitiveArray(__FUNCTION__, env, length, Primitive::kPrimByte)); } static jcharArray NewCharArray(JNIEnv* env, jsize length) { return down_cast<jcharArray>(NewPrimitiveArray(__FUNCTION__, env, length, Primitive::kPrimChar)); } static jshortArray NewShortArray(JNIEnv* env, jsize length) { return down_cast<jshortArray>(NewPrimitiveArray(__FUNCTION__, env, length, Primitive::kPrimShort)); } static jintArray NewIntArray(JNIEnv* env, jsize length) { return down_cast<jintArray>(NewPrimitiveArray(__FUNCTION__, env, length, Primitive::kPrimInt)); } static jlongArray NewLongArray(JNIEnv* env, jsize length) { return down_cast<jlongArray>(NewPrimitiveArray(__FUNCTION__, env, length, Primitive::kPrimLong)); } static jfloatArray NewFloatArray(JNIEnv* env, jsize length) { return down_cast<jfloatArray>(NewPrimitiveArray(__FUNCTION__, env, length, Primitive::kPrimFloat)); } static jdoubleArray NewDoubleArray(JNIEnv* env, jsize length) { return down_cast<jdoubleArray>(NewPrimitiveArray(__FUNCTION__, env, length, Primitive::kPrimDouble)); } #define PRIMITIVE_ARRAY_FUNCTIONS(ctype, name, ptype) \ static ctype* Get##name##ArrayElements(JNIEnv* env, ctype##Array array, jboolean* is_copy) { \ return reinterpret_cast<ctype*>( \ GetPrimitiveArrayElements(__FUNCTION__, ptype, env, array, is_copy)); \ } \ \ static void Release##name##ArrayElements(JNIEnv* env, ctype##Array array, ctype* elems, \ jint mode) { \ ReleasePrimitiveArrayElements(__FUNCTION__, ptype, env, array, elems, mode); \ } \ \ static void Get##name##ArrayRegion(JNIEnv* env, ctype##Array array, jsize start, jsize len, \ ctype* buf) { \ GetPrimitiveArrayRegion(__FUNCTION__, ptype, env, array, start, len, buf); \ } \ \ static void Set##name##ArrayRegion(JNIEnv* env, ctype##Array array, jsize start, jsize len, \ const ctype* buf) { \ SetPrimitiveArrayRegion(__FUNCTION__, ptype, env, array, start, len, buf); \ } PRIMITIVE_ARRAY_FUNCTIONS(jboolean, Boolean, Primitive::kPrimBoolean) PRIMITIVE_ARRAY_FUNCTIONS(jbyte, Byte, Primitive::kPrimByte) PRIMITIVE_ARRAY_FUNCTIONS(jchar, Char, Primitive::kPrimChar) PRIMITIVE_ARRAY_FUNCTIONS(jshort, Short, Primitive::kPrimShort) PRIMITIVE_ARRAY_FUNCTIONS(jint, Int, Primitive::kPrimInt) PRIMITIVE_ARRAY_FUNCTIONS(jlong, Long, Primitive::kPrimLong) PRIMITIVE_ARRAY_FUNCTIONS(jfloat, Float, Primitive::kPrimFloat) PRIMITIVE_ARRAY_FUNCTIONS(jdouble, Double, Primitive::kPrimDouble) #undef PRIMITIVE_ARRAY_FUNCTIONS static jint MonitorEnter(JNIEnv* env, jobject obj) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); JniValueType args[2] = {{.E = env}, {.L = obj}}; if (sc.Check(soa, true, "EL", args)) { if (obj != nullptr) { down_cast<JNIEnvExt*>(env)->RecordMonitorEnter(obj); } JniValueType result; result.i = baseEnv(env)->MonitorEnter(env, obj); if (sc.Check(soa, false, "i", &result)) { return result.i; } } return JNI_ERR; } static jint MonitorExit(JNIEnv* env, jobject obj) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_ExcepOkay, __FUNCTION__); JniValueType args[2] = {{.E = env}, {.L = obj}}; if (sc.Check(soa, true, "EL", args)) { if (obj != nullptr) { down_cast<JNIEnvExt*>(env)->CheckMonitorRelease(obj); } JniValueType result; result.i = baseEnv(env)->MonitorExit(env, obj); if (sc.Check(soa, false, "i", &result)) { return result.i; } } return JNI_ERR; } static void* GetPrimitiveArrayCritical(JNIEnv* env, jarray array, jboolean* is_copy) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_CritGet, __FUNCTION__); JniValueType args[3] = {{.E = env}, {.a = array}, {.p = is_copy}}; if (sc.Check(soa, true, "Eap", args)) { JniValueType result; void* ptr = baseEnv(env)->GetPrimitiveArrayCritical(env, array, is_copy); if (ptr != nullptr && soa.ForceCopy()) { ptr = GuardedCopy::CreateGuardedPACopy(env, array, is_copy, ptr); } result.p = ptr; if (sc.Check(soa, false, "p", &result)) { return const_cast<void*>(result.p); } } return nullptr; } static void ReleasePrimitiveArrayCritical(JNIEnv* env, jarray array, void* carray, jint mode) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_CritRelease | kFlag_ExcepOkay, __FUNCTION__); sc.CheckNonNull(carray); JniValueType args[4] = {{.E = env}, {.a = array}, {.p = carray}, {.r = mode}}; if (sc.Check(soa, true, "Eapr", args)) { if (soa.ForceCopy()) { carray = GuardedCopy::ReleaseGuardedPACopy(__FUNCTION__, env, array, carray, mode); } baseEnv(env)->ReleasePrimitiveArrayCritical(env, array, carray, mode); JniValueType result; result.V = nullptr; sc.Check(soa, false, "V", &result); } } static jobject NewDirectByteBuffer(JNIEnv* env, void* address, jlong capacity) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); JniValueType args[3] = {{.E = env}, {.p = address}, {.J = capacity}}; if (sc.Check(soa, true, "EpJ", args)) { JniValueType result; // Note: the validity of address and capacity are checked in the base implementation. result.L = baseEnv(env)->NewDirectByteBuffer(env, address, capacity); if (sc.Check(soa, false, "L", &result)) { return result.L; } } return nullptr; } static void* GetDirectBufferAddress(JNIEnv* env, jobject buf) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); JniValueType args[2] = {{.E = env}, {.L = buf}}; if (sc.Check(soa, true, "EL", args)) { JniValueType result; // Note: this is implemented in the base environment by a GetLongField which will sanity // check the type of buf in GetLongField above. result.p = baseEnv(env)->GetDirectBufferAddress(env, buf); if (sc.Check(soa, false, "p", &result)) { return const_cast<void*>(result.p); } } return nullptr; } static jlong GetDirectBufferCapacity(JNIEnv* env, jobject buf) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, __FUNCTION__); JniValueType args[2] = {{.E = env}, {.L = buf}}; if (sc.Check(soa, true, "EL", args)) { JniValueType result; // Note: this is implemented in the base environment by a GetIntField which will sanity // check the type of buf in GetIntField above. result.J = baseEnv(env)->GetDirectBufferCapacity(env, buf); if (sc.Check(soa, false, "J", &result)) { return result.J; } } return JNI_ERR; } private: static JavaVMExt* GetJavaVMExt(JNIEnv* env) { return reinterpret_cast<JNIEnvExt*>(env)->vm; } static const JNINativeInterface* baseEnv(JNIEnv* env) { return reinterpret_cast<JNIEnvExt*>(env)->unchecked_functions; } static jobject NewRef(const char* function_name, JNIEnv* env, jobject obj, IndirectRefKind kind) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, function_name); JniValueType args[2] = {{.E = env}, {.L = obj}}; if (sc.Check(soa, true, "EL", args)) { JniValueType result; switch (kind) { case kGlobal: result.L = baseEnv(env)->NewGlobalRef(env, obj); break; case kLocal: result.L = baseEnv(env)->NewLocalRef(env, obj); break; case kWeakGlobal: result.L = baseEnv(env)->NewWeakGlobalRef(env, obj); break; default: LOG(FATAL) << "Unexpected reference kind: " << kind; } if (sc.Check(soa, false, "L", &result)) { DCHECK_EQ(IsSameObject(env, obj, result.L), JNI_TRUE); DCHECK(sc.CheckReferenceKind(kind, soa.Self(), result.L)); return result.L; } } return nullptr; } static void DeleteRef(const char* function_name, JNIEnv* env, jobject obj, IndirectRefKind kind) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_ExcepOkay, function_name); JniValueType args[2] = {{.E = env}, {.L = obj}}; sc.Check(soa, true, "EL", args); if (sc.CheckReferenceKind(kind, soa.Self(), obj)) { JniValueType result; switch (kind) { case kGlobal: baseEnv(env)->DeleteGlobalRef(env, obj); break; case kLocal: baseEnv(env)->DeleteLocalRef(env, obj); break; case kWeakGlobal: baseEnv(env)->DeleteWeakGlobalRef(env, obj); break; default: LOG(FATAL) << "Unexpected reference kind: " << kind; } result.V = nullptr; sc.Check(soa, false, "V", &result); } } static jmethodID GetMethodIDInternal(const char* function_name, JNIEnv* env, jclass c, const char* name, const char* sig, bool is_static) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, function_name); JniValueType args[4] = {{.E = env}, {.c = c}, {.u = name}, {.u = sig}}; if (sc.Check(soa, true, "Ecuu", args)) { JniValueType result; if (is_static) { result.m = baseEnv(env)->GetStaticMethodID(env, c, name, sig); } else { result.m = baseEnv(env)->GetMethodID(env, c, name, sig); } if (sc.Check(soa, false, "m", &result)) { return result.m; } } return nullptr; } static jfieldID GetFieldIDInternal(const char* function_name, JNIEnv* env, jclass c, const char* name, const char* sig, bool is_static) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, function_name); JniValueType args[4] = {{.E = env}, {.c = c}, {.u = name}, {.u = sig}}; if (sc.Check(soa, true, "Ecuu", args)) { JniValueType result; if (is_static) { result.f = baseEnv(env)->GetStaticFieldID(env, c, name, sig); } else { result.f = baseEnv(env)->GetFieldID(env, c, name, sig); } if (sc.Check(soa, false, "f", &result)) { return result.f; } } return nullptr; } static JniValueType GetField(const char* function_name, JNIEnv* env, jobject obj, jfieldID fid, bool is_static, Primitive::Type type) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, function_name); JniValueType args[3] = {{.E = env}, {.L = obj}, {.f = fid}}; JniValueType result; if (sc.Check(soa, true, is_static ? "Ecf" : "ELf", args) && sc.CheckFieldAccess(soa, obj, fid, is_static, type)) { const char* result_check = nullptr; switch (type) { case Primitive::kPrimNot: if (is_static) { result.L = baseEnv(env)->GetStaticObjectField(env, down_cast<jclass>(obj), fid); } else { result.L = baseEnv(env)->GetObjectField(env, obj, fid); } result_check = "L"; break; case Primitive::kPrimBoolean: if (is_static) { result.Z = baseEnv(env)->GetStaticBooleanField(env, down_cast<jclass>(obj), fid); } else { result.Z = baseEnv(env)->GetBooleanField(env, obj, fid); } result_check = "Z"; break; case Primitive::kPrimByte: if (is_static) { result.B = baseEnv(env)->GetStaticByteField(env, down_cast<jclass>(obj), fid); } else { result.B = baseEnv(env)->GetByteField(env, obj, fid); } result_check = "B"; break; case Primitive::kPrimChar: if (is_static) { result.C = baseEnv(env)->GetStaticCharField(env, down_cast<jclass>(obj), fid); } else { result.C = baseEnv(env)->GetCharField(env, obj, fid); } result_check = "C"; break; case Primitive::kPrimShort: if (is_static) { result.S = baseEnv(env)->GetStaticShortField(env, down_cast<jclass>(obj), fid); } else { result.S = baseEnv(env)->GetShortField(env, obj, fid); } result_check = "S"; break; case Primitive::kPrimInt: if (is_static) { result.I = baseEnv(env)->GetStaticIntField(env, down_cast<jclass>(obj), fid); } else { result.I = baseEnv(env)->GetIntField(env, obj, fid); } result_check = "I"; break; case Primitive::kPrimLong: if (is_static) { result.J = baseEnv(env)->GetStaticLongField(env, down_cast<jclass>(obj), fid); } else { result.J = baseEnv(env)->GetLongField(env, obj, fid); } result_check = "J"; break; case Primitive::kPrimFloat: if (is_static) { result.F = baseEnv(env)->GetStaticFloatField(env, down_cast<jclass>(obj), fid); } else { result.F = baseEnv(env)->GetFloatField(env, obj, fid); } result_check = "F"; break; case Primitive::kPrimDouble: if (is_static) { result.D = baseEnv(env)->GetStaticDoubleField(env, down_cast<jclass>(obj), fid); } else { result.D = baseEnv(env)->GetDoubleField(env, obj, fid); } result_check = "D"; break; case Primitive::kPrimVoid: LOG(FATAL) << "Unexpected type: " << type; break; } if (sc.Check(soa, false, result_check, &result)) { return result; } } result.J = 0; return result; } static void SetField(const char* function_name, JNIEnv* env, jobject obj, jfieldID fid, bool is_static, Primitive::Type type, JniValueType value) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, function_name); JniValueType args[4] = {{.E = env}, {.L = obj}, {.f = fid}, value}; char sig[5] = { 'E', is_static ? 'c' : 'L', 'f', type == Primitive::kPrimNot ? 'L' : Primitive::Descriptor(type)[0], '\0'}; if (sc.Check(soa, true, sig, args) && sc.CheckFieldAccess(soa, obj, fid, is_static, type)) { switch (type) { case Primitive::kPrimNot: if (is_static) { baseEnv(env)->SetStaticObjectField(env, down_cast<jclass>(obj), fid, value.L); } else { baseEnv(env)->SetObjectField(env, obj, fid, value.L); } break; case Primitive::kPrimBoolean: if (is_static) { baseEnv(env)->SetStaticBooleanField(env, down_cast<jclass>(obj), fid, value.Z); } else { baseEnv(env)->SetBooleanField(env, obj, fid, value.Z); } break; case Primitive::kPrimByte: if (is_static) { baseEnv(env)->SetStaticByteField(env, down_cast<jclass>(obj), fid, value.B); } else { baseEnv(env)->SetByteField(env, obj, fid, value.B); } break; case Primitive::kPrimChar: if (is_static) { baseEnv(env)->SetStaticCharField(env, down_cast<jclass>(obj), fid, value.C); } else { baseEnv(env)->SetCharField(env, obj, fid, value.C); } break; case Primitive::kPrimShort: if (is_static) { baseEnv(env)->SetStaticShortField(env, down_cast<jclass>(obj), fid, value.S); } else { baseEnv(env)->SetShortField(env, obj, fid, value.S); } break; case Primitive::kPrimInt: if (is_static) { baseEnv(env)->SetStaticIntField(env, down_cast<jclass>(obj), fid, value.I); } else { baseEnv(env)->SetIntField(env, obj, fid, value.I); } break; case Primitive::kPrimLong: if (is_static) { baseEnv(env)->SetStaticLongField(env, down_cast<jclass>(obj), fid, value.J); } else { baseEnv(env)->SetLongField(env, obj, fid, value.J); } break; case Primitive::kPrimFloat: if (is_static) { baseEnv(env)->SetStaticFloatField(env, down_cast<jclass>(obj), fid, value.F); } else { baseEnv(env)->SetFloatField(env, obj, fid, value.F); } break; case Primitive::kPrimDouble: if (is_static) { baseEnv(env)->SetStaticDoubleField(env, down_cast<jclass>(obj), fid, value.D); } else { baseEnv(env)->SetDoubleField(env, obj, fid, value.D); } break; case Primitive::kPrimVoid: LOG(FATAL) << "Unexpected type: " << type; break; } JniValueType result; result.V = nullptr; sc.Check(soa, false, "V", &result); } } static bool CheckCallArgs(ScopedObjectAccess& soa, ScopedCheck& sc, JNIEnv* env, jobject obj, jclass c, jmethodID mid, InvokeType invoke, const VarArgs* vargs) SHARED_REQUIRES(Locks::mutator_lock_) { bool checked; switch (invoke) { case kVirtual: { DCHECK(c == nullptr); JniValueType args[4] = {{.E = env}, {.L = obj}, {.m = mid}, {.va = vargs}}; checked = sc.Check(soa, true, "ELm.", args); break; } case kDirect: { JniValueType args[5] = {{.E = env}, {.L = obj}, {.c = c}, {.m = mid}, {.va = vargs}}; checked = sc.Check(soa, true, "ELcm.", args); break; } case kStatic: { DCHECK(obj == nullptr); JniValueType args[4] = {{.E = env}, {.c = c}, {.m = mid}, {.va = vargs}}; checked = sc.Check(soa, true, "Ecm.", args); break; } default: LOG(FATAL) << "Unexpected invoke: " << invoke; checked = false; break; } return checked; } static JniValueType CallMethodA(const char* function_name, JNIEnv* env, jobject obj, jclass c, jmethodID mid, jvalue* vargs, Primitive::Type type, InvokeType invoke) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, function_name); JniValueType result; VarArgs rest(mid, vargs); if (CheckCallArgs(soa, sc, env, obj, c, mid, invoke, &rest) && sc.CheckMethodAndSig(soa, obj, c, mid, type, invoke)) { const char* result_check; switch (type) { case Primitive::kPrimNot: result_check = "L"; switch (invoke) { case kVirtual: result.L = baseEnv(env)->CallObjectMethodA(env, obj, mid, vargs); break; case kDirect: result.L = baseEnv(env)->CallNonvirtualObjectMethodA(env, obj, c, mid, vargs); break; case kStatic: result.L = baseEnv(env)->CallStaticObjectMethodA(env, c, mid, vargs); break; default: break; } break; case Primitive::kPrimBoolean: result_check = "Z"; switch (invoke) { case kVirtual: result.Z = baseEnv(env)->CallBooleanMethodA(env, obj, mid, vargs); break; case kDirect: result.Z = baseEnv(env)->CallNonvirtualBooleanMethodA(env, obj, c, mid, vargs); break; case kStatic: result.Z = baseEnv(env)->CallStaticBooleanMethodA(env, c, mid, vargs); break; default: break; } break; case Primitive::kPrimByte: result_check = "B"; switch (invoke) { case kVirtual: result.B = baseEnv(env)->CallByteMethodA(env, obj, mid, vargs); break; case kDirect: result.B = baseEnv(env)->CallNonvirtualByteMethodA(env, obj, c, mid, vargs); break; case kStatic: result.B = baseEnv(env)->CallStaticByteMethodA(env, c, mid, vargs); break; default: break; } break; case Primitive::kPrimChar: result_check = "C"; switch (invoke) { case kVirtual: result.C = baseEnv(env)->CallCharMethodA(env, obj, mid, vargs); break; case kDirect: result.C = baseEnv(env)->CallNonvirtualCharMethodA(env, obj, c, mid, vargs); break; case kStatic: result.C = baseEnv(env)->CallStaticCharMethodA(env, c, mid, vargs); break; default: break; } break; case Primitive::kPrimShort: result_check = "S"; switch (invoke) { case kVirtual: result.S = baseEnv(env)->CallShortMethodA(env, obj, mid, vargs); break; case kDirect: result.S = baseEnv(env)->CallNonvirtualShortMethodA(env, obj, c, mid, vargs); break; case kStatic: result.S = baseEnv(env)->CallStaticShortMethodA(env, c, mid, vargs); break; default: break; } break; case Primitive::kPrimInt: result_check = "I"; switch (invoke) { case kVirtual: result.I = baseEnv(env)->CallIntMethodA(env, obj, mid, vargs); break; case kDirect: result.I = baseEnv(env)->CallNonvirtualIntMethodA(env, obj, c, mid, vargs); break; case kStatic: result.I = baseEnv(env)->CallStaticIntMethodA(env, c, mid, vargs); break; default: break; } break; case Primitive::kPrimLong: result_check = "J"; switch (invoke) { case kVirtual: result.J = baseEnv(env)->CallLongMethodA(env, obj, mid, vargs); break; case kDirect: result.J = baseEnv(env)->CallNonvirtualLongMethodA(env, obj, c, mid, vargs); break; case kStatic: result.J = baseEnv(env)->CallStaticLongMethodA(env, c, mid, vargs); break; default: break; } break; case Primitive::kPrimFloat: result_check = "F"; switch (invoke) { case kVirtual: result.F = baseEnv(env)->CallFloatMethodA(env, obj, mid, vargs); break; case kDirect: result.F = baseEnv(env)->CallNonvirtualFloatMethodA(env, obj, c, mid, vargs); break; case kStatic: result.F = baseEnv(env)->CallStaticFloatMethodA(env, c, mid, vargs); break; default: break; } break; case Primitive::kPrimDouble: result_check = "D"; switch (invoke) { case kVirtual: result.D = baseEnv(env)->CallDoubleMethodA(env, obj, mid, vargs); break; case kDirect: result.D = baseEnv(env)->CallNonvirtualDoubleMethodA(env, obj, c, mid, vargs); break; case kStatic: result.D = baseEnv(env)->CallStaticDoubleMethodA(env, c, mid, vargs); break; default: break; } break; case Primitive::kPrimVoid: result_check = "V"; result.V = nullptr; switch (invoke) { case kVirtual: baseEnv(env)->CallVoidMethodA(env, obj, mid, vargs); break; case kDirect: baseEnv(env)->CallNonvirtualVoidMethodA(env, obj, c, mid, vargs); break; case kStatic: baseEnv(env)->CallStaticVoidMethodA(env, c, mid, vargs); break; default: LOG(FATAL) << "Unexpected invoke: " << invoke; } break; default: LOG(FATAL) << "Unexpected return type: " << type; result_check = nullptr; } if (sc.Check(soa, false, result_check, &result)) { return result; } } result.J = 0; return result; } static JniValueType CallMethodV(const char* function_name, JNIEnv* env, jobject obj, jclass c, jmethodID mid, va_list vargs, Primitive::Type type, InvokeType invoke) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, function_name); JniValueType result; VarArgs rest(mid, vargs); if (CheckCallArgs(soa, sc, env, obj, c, mid, invoke, &rest) && sc.CheckMethodAndSig(soa, obj, c, mid, type, invoke)) { const char* result_check; switch (type) { case Primitive::kPrimNot: result_check = "L"; switch (invoke) { case kVirtual: result.L = baseEnv(env)->CallObjectMethodV(env, obj, mid, vargs); break; case kDirect: result.L = baseEnv(env)->CallNonvirtualObjectMethodV(env, obj, c, mid, vargs); break; case kStatic: result.L = baseEnv(env)->CallStaticObjectMethodV(env, c, mid, vargs); break; default: LOG(FATAL) << "Unexpected invoke: " << invoke; } break; case Primitive::kPrimBoolean: result_check = "Z"; switch (invoke) { case kVirtual: result.Z = baseEnv(env)->CallBooleanMethodV(env, obj, mid, vargs); break; case kDirect: result.Z = baseEnv(env)->CallNonvirtualBooleanMethodV(env, obj, c, mid, vargs); break; case kStatic: result.Z = baseEnv(env)->CallStaticBooleanMethodV(env, c, mid, vargs); break; default: LOG(FATAL) << "Unexpected invoke: " << invoke; } break; case Primitive::kPrimByte: result_check = "B"; switch (invoke) { case kVirtual: result.B = baseEnv(env)->CallByteMethodV(env, obj, mid, vargs); break; case kDirect: result.B = baseEnv(env)->CallNonvirtualByteMethodV(env, obj, c, mid, vargs); break; case kStatic: result.B = baseEnv(env)->CallStaticByteMethodV(env, c, mid, vargs); break; default: LOG(FATAL) << "Unexpected invoke: " << invoke; } break; case Primitive::kPrimChar: result_check = "C"; switch (invoke) { case kVirtual: result.C = baseEnv(env)->CallCharMethodV(env, obj, mid, vargs); break; case kDirect: result.C = baseEnv(env)->CallNonvirtualCharMethodV(env, obj, c, mid, vargs); break; case kStatic: result.C = baseEnv(env)->CallStaticCharMethodV(env, c, mid, vargs); break; default: LOG(FATAL) << "Unexpected invoke: " << invoke; } break; case Primitive::kPrimShort: result_check = "S"; switch (invoke) { case kVirtual: result.S = baseEnv(env)->CallShortMethodV(env, obj, mid, vargs); break; case kDirect: result.S = baseEnv(env)->CallNonvirtualShortMethodV(env, obj, c, mid, vargs); break; case kStatic: result.S = baseEnv(env)->CallStaticShortMethodV(env, c, mid, vargs); break; default: LOG(FATAL) << "Unexpected invoke: " << invoke; } break; case Primitive::kPrimInt: result_check = "I"; switch (invoke) { case kVirtual: result.I = baseEnv(env)->CallIntMethodV(env, obj, mid, vargs); break; case kDirect: result.I = baseEnv(env)->CallNonvirtualIntMethodV(env, obj, c, mid, vargs); break; case kStatic: result.I = baseEnv(env)->CallStaticIntMethodV(env, c, mid, vargs); break; default: LOG(FATAL) << "Unexpected invoke: " << invoke; } break; case Primitive::kPrimLong: result_check = "J"; switch (invoke) { case kVirtual: result.J = baseEnv(env)->CallLongMethodV(env, obj, mid, vargs); break; case kDirect: result.J = baseEnv(env)->CallNonvirtualLongMethodV(env, obj, c, mid, vargs); break; case kStatic: result.J = baseEnv(env)->CallStaticLongMethodV(env, c, mid, vargs); break; default: LOG(FATAL) << "Unexpected invoke: " << invoke; } break; case Primitive::kPrimFloat: result_check = "F"; switch (invoke) { case kVirtual: result.F = baseEnv(env)->CallFloatMethodV(env, obj, mid, vargs); break; case kDirect: result.F = baseEnv(env)->CallNonvirtualFloatMethodV(env, obj, c, mid, vargs); break; case kStatic: result.F = baseEnv(env)->CallStaticFloatMethodV(env, c, mid, vargs); break; default: LOG(FATAL) << "Unexpected invoke: " << invoke; } break; case Primitive::kPrimDouble: result_check = "D"; switch (invoke) { case kVirtual: result.D = baseEnv(env)->CallDoubleMethodV(env, obj, mid, vargs); break; case kDirect: result.D = baseEnv(env)->CallNonvirtualDoubleMethodV(env, obj, c, mid, vargs); break; case kStatic: result.D = baseEnv(env)->CallStaticDoubleMethodV(env, c, mid, vargs); break; default: LOG(FATAL) << "Unexpected invoke: " << invoke; } break; case Primitive::kPrimVoid: result_check = "V"; result.V = nullptr; switch (invoke) { case kVirtual: baseEnv(env)->CallVoidMethodV(env, obj, mid, vargs); break; case kDirect: baseEnv(env)->CallNonvirtualVoidMethodV(env, obj, c, mid, vargs); break; case kStatic: baseEnv(env)->CallStaticVoidMethodV(env, c, mid, vargs); break; default: LOG(FATAL) << "Unexpected invoke: " << invoke; } break; default: LOG(FATAL) << "Unexpected return type: " << type; result_check = nullptr; } if (sc.Check(soa, false, result_check, &result)) { return result; } } result.J = 0; return result; } static const void* GetStringCharsInternal(const char* function_name, JNIEnv* env, jstring string, jboolean* is_copy, bool utf, bool critical) { ScopedObjectAccess soa(env); int flags = critical ? kFlag_CritGet : kFlag_CritOkay; ScopedCheck sc(flags, function_name); JniValueType args[3] = {{.E = env}, {.s = string}, {.p = is_copy}}; if (sc.Check(soa, true, "Esp", args)) { JniValueType result; void* ptr; if (utf) { CHECK(!critical); ptr = const_cast<char*>(baseEnv(env)->GetStringUTFChars(env, string, is_copy)); result.u = reinterpret_cast<char*>(ptr); } else { ptr = const_cast<jchar*>(critical ? baseEnv(env)->GetStringCritical(env, string, is_copy) : baseEnv(env)->GetStringChars(env, string, is_copy)); result.p = ptr; } // TODO: could we be smarter about not copying when local_is_copy? if (ptr != nullptr && soa.ForceCopy()) { if (utf) { size_t length_in_bytes = strlen(result.u) + 1; result.u = reinterpret_cast<const char*>(GuardedCopy::Create(ptr, length_in_bytes, false)); } else { size_t length_in_bytes = baseEnv(env)->GetStringLength(env, string) * 2; result.p = reinterpret_cast<const jchar*>(GuardedCopy::Create(ptr, length_in_bytes, false)); } if (is_copy != nullptr) { *is_copy = JNI_TRUE; } } if (sc.Check(soa, false, utf ? "u" : "p", &result)) { return utf ? result.u : result.p; } } return nullptr; } static void ReleaseStringCharsInternal(const char* function_name, JNIEnv* env, jstring string, const void* chars, bool utf, bool critical) { ScopedObjectAccess soa(env); int flags = kFlag_ExcepOkay | kFlag_Release; if (critical) { flags |= kFlag_CritRelease; } ScopedCheck sc(flags, function_name); sc.CheckNonNull(chars); bool force_copy_ok = !soa.ForceCopy() || GuardedCopy::Check(function_name, chars, false); if (force_copy_ok && soa.ForceCopy()) { chars = reinterpret_cast<const jchar*>(GuardedCopy::Destroy(const_cast<void*>(chars))); } if (force_copy_ok) { JniValueType args[3] = {{.E = env}, {.s = string}, {.p = chars}}; if (sc.Check(soa, true, utf ? "Esu" : "Esp", args)) { if (utf) { CHECK(!critical); baseEnv(env)->ReleaseStringUTFChars(env, string, reinterpret_cast<const char*>(chars)); } else { if (critical) { baseEnv(env)->ReleaseStringCritical(env, string, reinterpret_cast<const jchar*>(chars)); } else { baseEnv(env)->ReleaseStringChars(env, string, reinterpret_cast<const jchar*>(chars)); } } JniValueType result; sc.Check(soa, false, "V", &result); } } } static jarray NewPrimitiveArray(const char* function_name, JNIEnv* env, jsize length, Primitive::Type type) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, function_name); JniValueType args[2] = {{.E = env}, {.z = length}}; if (sc.Check(soa, true, "Ez", args)) { JniValueType result; switch (type) { case Primitive::kPrimBoolean: result.a = baseEnv(env)->NewBooleanArray(env, length); break; case Primitive::kPrimByte: result.a = baseEnv(env)->NewByteArray(env, length); break; case Primitive::kPrimChar: result.a = baseEnv(env)->NewCharArray(env, length); break; case Primitive::kPrimShort: result.a = baseEnv(env)->NewShortArray(env, length); break; case Primitive::kPrimInt: result.a = baseEnv(env)->NewIntArray(env, length); break; case Primitive::kPrimLong: result.a = baseEnv(env)->NewLongArray(env, length); break; case Primitive::kPrimFloat: result.a = baseEnv(env)->NewFloatArray(env, length); break; case Primitive::kPrimDouble: result.a = baseEnv(env)->NewDoubleArray(env, length); break; default: LOG(FATAL) << "Unexpected primitive type: " << type; } if (sc.Check(soa, false, "a", &result)) { return result.a; } } return nullptr; } static void* GetPrimitiveArrayElements(const char* function_name, Primitive::Type type, JNIEnv* env, jarray array, jboolean* is_copy) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, function_name); JniValueType args[3] = {{.E = env}, {.a = array}, {.p = is_copy}}; if (sc.Check(soa, true, "Eap", args) && sc.CheckPrimitiveArrayType(soa, array, type)) { JniValueType result; void* ptr = nullptr; switch (type) { case Primitive::kPrimBoolean: ptr = baseEnv(env)->GetBooleanArrayElements(env, down_cast<jbooleanArray>(array), is_copy); break; case Primitive::kPrimByte: ptr = baseEnv(env)->GetByteArrayElements(env, down_cast<jbyteArray>(array), is_copy); break; case Primitive::kPrimChar: ptr = baseEnv(env)->GetCharArrayElements(env, down_cast<jcharArray>(array), is_copy); break; case Primitive::kPrimShort: ptr = baseEnv(env)->GetShortArrayElements(env, down_cast<jshortArray>(array), is_copy); break; case Primitive::kPrimInt: ptr = baseEnv(env)->GetIntArrayElements(env, down_cast<jintArray>(array), is_copy); break; case Primitive::kPrimLong: ptr = baseEnv(env)->GetLongArrayElements(env, down_cast<jlongArray>(array), is_copy); break; case Primitive::kPrimFloat: ptr = baseEnv(env)->GetFloatArrayElements(env, down_cast<jfloatArray>(array), is_copy); break; case Primitive::kPrimDouble: ptr = baseEnv(env)->GetDoubleArrayElements(env, down_cast<jdoubleArray>(array), is_copy); break; default: LOG(FATAL) << "Unexpected primitive type: " << type; } if (ptr != nullptr && soa.ForceCopy()) { ptr = GuardedCopy::CreateGuardedPACopy(env, array, is_copy, ptr); if (is_copy != nullptr) { *is_copy = JNI_TRUE; } } result.p = ptr; if (sc.Check(soa, false, "p", &result)) { return const_cast<void*>(result.p); } } return nullptr; } static void ReleasePrimitiveArrayElements(const char* function_name, Primitive::Type type, JNIEnv* env, jarray array, void* elems, jint mode) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_ExcepOkay, function_name); if (sc.CheckNonNull(elems) && sc.CheckPrimitiveArrayType(soa, array, type)) { if (soa.ForceCopy()) { elems = GuardedCopy::ReleaseGuardedPACopy(function_name, env, array, elems, mode); } if (!soa.ForceCopy() || elems != nullptr) { JniValueType args[4] = {{.E = env}, {.a = array}, {.p = elems}, {.r = mode}}; if (sc.Check(soa, true, "Eapr", args)) { switch (type) { case Primitive::kPrimBoolean: baseEnv(env)->ReleaseBooleanArrayElements(env, down_cast<jbooleanArray>(array), reinterpret_cast<jboolean*>(elems), mode); break; case Primitive::kPrimByte: baseEnv(env)->ReleaseByteArrayElements(env, down_cast<jbyteArray>(array), reinterpret_cast<jbyte*>(elems), mode); break; case Primitive::kPrimChar: baseEnv(env)->ReleaseCharArrayElements(env, down_cast<jcharArray>(array), reinterpret_cast<jchar*>(elems), mode); break; case Primitive::kPrimShort: baseEnv(env)->ReleaseShortArrayElements(env, down_cast<jshortArray>(array), reinterpret_cast<jshort*>(elems), mode); break; case Primitive::kPrimInt: baseEnv(env)->ReleaseIntArrayElements(env, down_cast<jintArray>(array), reinterpret_cast<jint*>(elems), mode); break; case Primitive::kPrimLong: baseEnv(env)->ReleaseLongArrayElements(env, down_cast<jlongArray>(array), reinterpret_cast<jlong*>(elems), mode); break; case Primitive::kPrimFloat: baseEnv(env)->ReleaseFloatArrayElements(env, down_cast<jfloatArray>(array), reinterpret_cast<jfloat*>(elems), mode); break; case Primitive::kPrimDouble: baseEnv(env)->ReleaseDoubleArrayElements(env, down_cast<jdoubleArray>(array), reinterpret_cast<jdouble*>(elems), mode); break; default: LOG(FATAL) << "Unexpected primitive type: " << type; } JniValueType result; result.V = nullptr; sc.Check(soa, false, "V", &result); } } } } static void GetPrimitiveArrayRegion(const char* function_name, Primitive::Type type, JNIEnv* env, jarray array, jsize start, jsize len, void* buf) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, function_name); JniValueType args[5] = {{.E = env}, {.a = array}, {.z = start}, {.z = len}, {.p = buf}}; // Note: the start and len arguments are checked as 'I' rather than 'z' as invalid indices // result in ArrayIndexOutOfBoundsExceptions in the base implementation. if (sc.Check(soa, true, "EaIIp", args) && sc.CheckPrimitiveArrayType(soa, array, type)) { switch (type) { case Primitive::kPrimBoolean: baseEnv(env)->GetBooleanArrayRegion(env, down_cast<jbooleanArray>(array), start, len, reinterpret_cast<jboolean*>(buf)); break; case Primitive::kPrimByte: baseEnv(env)->GetByteArrayRegion(env, down_cast<jbyteArray>(array), start, len, reinterpret_cast<jbyte*>(buf)); break; case Primitive::kPrimChar: baseEnv(env)->GetCharArrayRegion(env, down_cast<jcharArray>(array), start, len, reinterpret_cast<jchar*>(buf)); break; case Primitive::kPrimShort: baseEnv(env)->GetShortArrayRegion(env, down_cast<jshortArray>(array), start, len, reinterpret_cast<jshort*>(buf)); break; case Primitive::kPrimInt: baseEnv(env)->GetIntArrayRegion(env, down_cast<jintArray>(array), start, len, reinterpret_cast<jint*>(buf)); break; case Primitive::kPrimLong: baseEnv(env)->GetLongArrayRegion(env, down_cast<jlongArray>(array), start, len, reinterpret_cast<jlong*>(buf)); break; case Primitive::kPrimFloat: baseEnv(env)->GetFloatArrayRegion(env, down_cast<jfloatArray>(array), start, len, reinterpret_cast<jfloat*>(buf)); break; case Primitive::kPrimDouble: baseEnv(env)->GetDoubleArrayRegion(env, down_cast<jdoubleArray>(array), start, len, reinterpret_cast<jdouble*>(buf)); break; default: LOG(FATAL) << "Unexpected primitive type: " << type; } JniValueType result; result.V = nullptr; sc.Check(soa, false, "V", &result); } } static void SetPrimitiveArrayRegion(const char* function_name, Primitive::Type type, JNIEnv* env, jarray array, jsize start, jsize len, const void* buf) { ScopedObjectAccess soa(env); ScopedCheck sc(kFlag_Default, function_name); JniValueType args[5] = {{.E = env}, {.a = array}, {.z = start}, {.z = len}, {.p = buf}}; // Note: the start and len arguments are checked as 'I' rather than 'z' as invalid indices // result in ArrayIndexOutOfBoundsExceptions in the base implementation. if (sc.Check(soa, true, "EaIIp", args) && sc.CheckPrimitiveArrayType(soa, array, type)) { switch (type) { case Primitive::kPrimBoolean: baseEnv(env)->SetBooleanArrayRegion(env, down_cast<jbooleanArray>(array), start, len, reinterpret_cast<const jboolean*>(buf)); break; case Primitive::kPrimByte: baseEnv(env)->SetByteArrayRegion(env, down_cast<jbyteArray>(array), start, len, reinterpret_cast<const jbyte*>(buf)); break; case Primitive::kPrimChar: baseEnv(env)->SetCharArrayRegion(env, down_cast<jcharArray>(array), start, len, reinterpret_cast<const jchar*>(buf)); break; case Primitive::kPrimShort: baseEnv(env)->SetShortArrayRegion(env, down_cast<jshortArray>(array), start, len, reinterpret_cast<const jshort*>(buf)); break; case Primitive::kPrimInt: baseEnv(env)->SetIntArrayRegion(env, down_cast<jintArray>(array), start, len, reinterpret_cast<const jint*>(buf)); break; case Primitive::kPrimLong: baseEnv(env)->SetLongArrayRegion(env, down_cast<jlongArray>(array), start, len, reinterpret_cast<const jlong*>(buf)); break; case Primitive::kPrimFloat: baseEnv(env)->SetFloatArrayRegion(env, down_cast<jfloatArray>(array), start, len, reinterpret_cast<const jfloat*>(buf)); break; case Primitive::kPrimDouble: baseEnv(env)->SetDoubleArrayRegion(env, down_cast<jdoubleArray>(array), start, len, reinterpret_cast<const jdouble*>(buf)); break; default: LOG(FATAL) << "Unexpected primitive type: " << type; } JniValueType result; result.V = nullptr; sc.Check(soa, false, "V", &result); } } }; const JNINativeInterface gCheckNativeInterface = { nullptr, // reserved0. nullptr, // reserved1. nullptr, // reserved2. nullptr, // reserved3. CheckJNI::GetVersion, CheckJNI::DefineClass, CheckJNI::FindClass, CheckJNI::FromReflectedMethod, CheckJNI::FromReflectedField, CheckJNI::ToReflectedMethod, CheckJNI::GetSuperclass, CheckJNI::IsAssignableFrom, CheckJNI::ToReflectedField, CheckJNI::Throw, CheckJNI::ThrowNew, CheckJNI::ExceptionOccurred, CheckJNI::ExceptionDescribe, CheckJNI::ExceptionClear, CheckJNI::FatalError, CheckJNI::PushLocalFrame, CheckJNI::PopLocalFrame, CheckJNI::NewGlobalRef, CheckJNI::DeleteGlobalRef, CheckJNI::DeleteLocalRef, CheckJNI::IsSameObject, CheckJNI::NewLocalRef, CheckJNI::EnsureLocalCapacity, CheckJNI::AllocObject, CheckJNI::NewObject, CheckJNI::NewObjectV, CheckJNI::NewObjectA, CheckJNI::GetObjectClass, CheckJNI::IsInstanceOf, CheckJNI::GetMethodID, CheckJNI::CallObjectMethod, CheckJNI::CallObjectMethodV, CheckJNI::CallObjectMethodA, CheckJNI::CallBooleanMethod, CheckJNI::CallBooleanMethodV, CheckJNI::CallBooleanMethodA, CheckJNI::CallByteMethod, CheckJNI::CallByteMethodV, CheckJNI::CallByteMethodA, CheckJNI::CallCharMethod, CheckJNI::CallCharMethodV, CheckJNI::CallCharMethodA, CheckJNI::CallShortMethod, CheckJNI::CallShortMethodV, CheckJNI::CallShortMethodA, CheckJNI::CallIntMethod, CheckJNI::CallIntMethodV, CheckJNI::CallIntMethodA, CheckJNI::CallLongMethod, CheckJNI::CallLongMethodV, CheckJNI::CallLongMethodA, CheckJNI::CallFloatMethod, CheckJNI::CallFloatMethodV, CheckJNI::CallFloatMethodA, CheckJNI::CallDoubleMethod, CheckJNI::CallDoubleMethodV, CheckJNI::CallDoubleMethodA, CheckJNI::CallVoidMethod, CheckJNI::CallVoidMethodV, CheckJNI::CallVoidMethodA, CheckJNI::CallNonvirtualObjectMethod, CheckJNI::CallNonvirtualObjectMethodV, CheckJNI::CallNonvirtualObjectMethodA, CheckJNI::CallNonvirtualBooleanMethod, CheckJNI::CallNonvirtualBooleanMethodV, CheckJNI::CallNonvirtualBooleanMethodA, CheckJNI::CallNonvirtualByteMethod, CheckJNI::CallNonvirtualByteMethodV, CheckJNI::CallNonvirtualByteMethodA, CheckJNI::CallNonvirtualCharMethod, CheckJNI::CallNonvirtualCharMethodV, CheckJNI::CallNonvirtualCharMethodA, CheckJNI::CallNonvirtualShortMethod, CheckJNI::CallNonvirtualShortMethodV, CheckJNI::CallNonvirtualShortMethodA, CheckJNI::CallNonvirtualIntMethod, CheckJNI::CallNonvirtualIntMethodV, CheckJNI::CallNonvirtualIntMethodA, CheckJNI::CallNonvirtualLongMethod, CheckJNI::CallNonvirtualLongMethodV, CheckJNI::CallNonvirtualLongMethodA, CheckJNI::CallNonvirtualFloatMethod, CheckJNI::CallNonvirtualFloatMethodV, CheckJNI::CallNonvirtualFloatMethodA, CheckJNI::CallNonvirtualDoubleMethod, CheckJNI::CallNonvirtualDoubleMethodV, CheckJNI::CallNonvirtualDoubleMethodA, CheckJNI::CallNonvirtualVoidMethod, CheckJNI::CallNonvirtualVoidMethodV, CheckJNI::CallNonvirtualVoidMethodA, CheckJNI::GetFieldID, CheckJNI::GetObjectField, CheckJNI::GetBooleanField, CheckJNI::GetByteField, CheckJNI::GetCharField, CheckJNI::GetShortField, CheckJNI::GetIntField, CheckJNI::GetLongField, CheckJNI::GetFloatField, CheckJNI::GetDoubleField, CheckJNI::SetObjectField, CheckJNI::SetBooleanField, CheckJNI::SetByteField, CheckJNI::SetCharField, CheckJNI::SetShortField, CheckJNI::SetIntField, CheckJNI::SetLongField, CheckJNI::SetFloatField, CheckJNI::SetDoubleField, CheckJNI::GetStaticMethodID, CheckJNI::CallStaticObjectMethod, CheckJNI::CallStaticObjectMethodV, CheckJNI::CallStaticObjectMethodA, CheckJNI::CallStaticBooleanMethod, CheckJNI::CallStaticBooleanMethodV, CheckJNI::CallStaticBooleanMethodA, CheckJNI::CallStaticByteMethod, CheckJNI::CallStaticByteMethodV, CheckJNI::CallStaticByteMethodA, CheckJNI::CallStaticCharMethod, CheckJNI::CallStaticCharMethodV, CheckJNI::CallStaticCharMethodA, CheckJNI::CallStaticShortMethod, CheckJNI::CallStaticShortMethodV, CheckJNI::CallStaticShortMethodA, CheckJNI::CallStaticIntMethod, CheckJNI::CallStaticIntMethodV, CheckJNI::CallStaticIntMethodA, CheckJNI::CallStaticLongMethod, CheckJNI::CallStaticLongMethodV, CheckJNI::CallStaticLongMethodA, CheckJNI::CallStaticFloatMethod, CheckJNI::CallStaticFloatMethodV, CheckJNI::CallStaticFloatMethodA, CheckJNI::CallStaticDoubleMethod, CheckJNI::CallStaticDoubleMethodV, CheckJNI::CallStaticDoubleMethodA, CheckJNI::CallStaticVoidMethod, CheckJNI::CallStaticVoidMethodV, CheckJNI::CallStaticVoidMethodA, CheckJNI::GetStaticFieldID, CheckJNI::GetStaticObjectField, CheckJNI::GetStaticBooleanField, CheckJNI::GetStaticByteField, CheckJNI::GetStaticCharField, CheckJNI::GetStaticShortField, CheckJNI::GetStaticIntField, CheckJNI::GetStaticLongField, CheckJNI::GetStaticFloatField, CheckJNI::GetStaticDoubleField, CheckJNI::SetStaticObjectField, CheckJNI::SetStaticBooleanField, CheckJNI::SetStaticByteField, CheckJNI::SetStaticCharField, CheckJNI::SetStaticShortField, CheckJNI::SetStaticIntField, CheckJNI::SetStaticLongField, CheckJNI::SetStaticFloatField, CheckJNI::SetStaticDoubleField, CheckJNI::NewString, CheckJNI::GetStringLength, CheckJNI::GetStringChars, CheckJNI::ReleaseStringChars, CheckJNI::NewStringUTF, CheckJNI::GetStringUTFLength, CheckJNI::GetStringUTFChars, CheckJNI::ReleaseStringUTFChars, CheckJNI::GetArrayLength, CheckJNI::NewObjectArray, CheckJNI::GetObjectArrayElement, CheckJNI::SetObjectArrayElement, CheckJNI::NewBooleanArray, CheckJNI::NewByteArray, CheckJNI::NewCharArray, CheckJNI::NewShortArray, CheckJNI::NewIntArray, CheckJNI::NewLongArray, CheckJNI::NewFloatArray, CheckJNI::NewDoubleArray, CheckJNI::GetBooleanArrayElements, CheckJNI::GetByteArrayElements, CheckJNI::GetCharArrayElements, CheckJNI::GetShortArrayElements, CheckJNI::GetIntArrayElements, CheckJNI::GetLongArrayElements, CheckJNI::GetFloatArrayElements, CheckJNI::GetDoubleArrayElements, CheckJNI::ReleaseBooleanArrayElements, CheckJNI::ReleaseByteArrayElements, CheckJNI::ReleaseCharArrayElements, CheckJNI::ReleaseShortArrayElements, CheckJNI::ReleaseIntArrayElements, CheckJNI::ReleaseLongArrayElements, CheckJNI::ReleaseFloatArrayElements, CheckJNI::ReleaseDoubleArrayElements, CheckJNI::GetBooleanArrayRegion, CheckJNI::GetByteArrayRegion, CheckJNI::GetCharArrayRegion, CheckJNI::GetShortArrayRegion, CheckJNI::GetIntArrayRegion, CheckJNI::GetLongArrayRegion, CheckJNI::GetFloatArrayRegion, CheckJNI::GetDoubleArrayRegion, CheckJNI::SetBooleanArrayRegion, CheckJNI::SetByteArrayRegion, CheckJNI::SetCharArrayRegion, CheckJNI::SetShortArrayRegion, CheckJNI::SetIntArrayRegion, CheckJNI::SetLongArrayRegion, CheckJNI::SetFloatArrayRegion, CheckJNI::SetDoubleArrayRegion, CheckJNI::RegisterNatives, CheckJNI::UnregisterNatives, CheckJNI::MonitorEnter, CheckJNI::MonitorExit, CheckJNI::GetJavaVM, CheckJNI::GetStringRegion, CheckJNI::GetStringUTFRegion, CheckJNI::GetPrimitiveArrayCritical, CheckJNI::ReleasePrimitiveArrayCritical, CheckJNI::GetStringCritical, CheckJNI::ReleaseStringCritical, CheckJNI::NewWeakGlobalRef, CheckJNI::DeleteWeakGlobalRef, CheckJNI::ExceptionCheck, CheckJNI::NewDirectByteBuffer, CheckJNI::GetDirectBufferAddress, CheckJNI::GetDirectBufferCapacity, CheckJNI::GetObjectRefType, }; const JNINativeInterface* GetCheckJniNativeInterface() { return &gCheckNativeInterface; } class CheckJII { public: static jint DestroyJavaVM(JavaVM* vm) { ScopedCheck sc(kFlag_Invocation, __FUNCTION__, false); JniValueType args[1] = {{.v = vm}}; sc.CheckNonHeap(reinterpret_cast<JavaVMExt*>(vm), true, "v", args); JniValueType result; result.i = BaseVm(vm)->DestroyJavaVM(vm); // Use null to signal that the JavaVM isn't valid anymore. DestroyJavaVM deletes the runtime, // which will delete the JavaVMExt. sc.CheckNonHeap(nullptr, false, "i", &result); return result.i; } static jint AttachCurrentThread(JavaVM* vm, JNIEnv** p_env, void* thr_args) { ScopedCheck sc(kFlag_Invocation, __FUNCTION__); JniValueType args[3] = {{.v = vm}, {.p = p_env}, {.p = thr_args}}; sc.CheckNonHeap(reinterpret_cast<JavaVMExt*>(vm), true, "vpp", args); JniValueType result; result.i = BaseVm(vm)->AttachCurrentThread(vm, p_env, thr_args); sc.CheckNonHeap(reinterpret_cast<JavaVMExt*>(vm), false, "i", &result); return result.i; } static jint AttachCurrentThreadAsDaemon(JavaVM* vm, JNIEnv** p_env, void* thr_args) { ScopedCheck sc(kFlag_Invocation, __FUNCTION__); JniValueType args[3] = {{.v = vm}, {.p = p_env}, {.p = thr_args}}; sc.CheckNonHeap(reinterpret_cast<JavaVMExt*>(vm), true, "vpp", args); JniValueType result; result.i = BaseVm(vm)->AttachCurrentThreadAsDaemon(vm, p_env, thr_args); sc.CheckNonHeap(reinterpret_cast<JavaVMExt*>(vm), false, "i", &result); return result.i; } static jint DetachCurrentThread(JavaVM* vm) { ScopedCheck sc(kFlag_Invocation, __FUNCTION__); JniValueType args[1] = {{.v = vm}}; sc.CheckNonHeap(reinterpret_cast<JavaVMExt*>(vm), true, "v", args); JniValueType result; result.i = BaseVm(vm)->DetachCurrentThread(vm); sc.CheckNonHeap(reinterpret_cast<JavaVMExt*>(vm), false, "i", &result); return result.i; } static jint GetEnv(JavaVM* vm, void** p_env, jint version) { ScopedCheck sc(kFlag_Invocation, __FUNCTION__); JniValueType args[3] = {{.v = vm}, {.p = p_env}, {.I = version}}; sc.CheckNonHeap(reinterpret_cast<JavaVMExt*>(vm), true, "vpI", args); JniValueType result; result.i = BaseVm(vm)->GetEnv(vm, p_env, version); sc.CheckNonHeap(reinterpret_cast<JavaVMExt*>(vm), false, "i", &result); return result.i; } private: static const JNIInvokeInterface* BaseVm(JavaVM* vm) { return reinterpret_cast<JavaVMExt*>(vm)->GetUncheckedFunctions(); } }; const JNIInvokeInterface gCheckInvokeInterface = { nullptr, // reserved0 nullptr, // reserved1 nullptr, // reserved2 CheckJII::DestroyJavaVM, CheckJII::AttachCurrentThread, CheckJII::DetachCurrentThread, CheckJII::GetEnv, CheckJII::AttachCurrentThreadAsDaemon }; const JNIInvokeInterface* GetCheckJniInvokeInterface() { return &gCheckInvokeInterface; } } // namespace art