/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "class_linker.h" #include <algorithm> #include <deque> #include <iostream> #include <memory> #include <queue> #include <string> #include <tuple> #include <unistd.h> #include <unordered_map> #include <utility> #include <vector> #include "art_field-inl.h" #include "art_method-inl.h" #include "base/arena_allocator.h" #include "base/casts.h" #include "base/logging.h" #include "base/scoped_arena_containers.h" #include "base/scoped_flock.h" #include "base/stl_util.h" #include "base/systrace.h" #include "base/time_utils.h" #include "base/unix_file/fd_file.h" #include "base/value_object.h" #include "class_linker-inl.h" #include "class_table-inl.h" #include "compiler_callbacks.h" #include "debugger.h" #include "dex_file-inl.h" #include "entrypoints/entrypoint_utils.h" #include "entrypoints/runtime_asm_entrypoints.h" #include "experimental_flags.h" #include "gc_root-inl.h" #include "gc/accounting/card_table-inl.h" #include "gc/accounting/heap_bitmap-inl.h" #include "gc/heap.h" #include "gc/scoped_gc_critical_section.h" #include "gc/space/image_space.h" #include "handle_scope-inl.h" #include "image-inl.h" #include "intern_table.h" #include "interpreter/interpreter.h" #include "jit/jit.h" #include "jit/jit_code_cache.h" #include "jit/offline_profiling_info.h" #include "leb128.h" #include "linear_alloc.h" #include "mirror/class.h" #include "mirror/class-inl.h" #include "mirror/class_loader.h" #include "mirror/dex_cache-inl.h" #include "mirror/field.h" #include "mirror/iftable-inl.h" #include "mirror/method.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "mirror/proxy.h" #include "mirror/reference-inl.h" #include "mirror/stack_trace_element.h" #include "mirror/string-inl.h" #include "native/dalvik_system_DexFile.h" #include "oat.h" #include "oat_file.h" #include "oat_file-inl.h" #include "oat_file_assistant.h" #include "oat_file_manager.h" #include "object_lock.h" #include "os.h" #include "runtime.h" #include "ScopedLocalRef.h" #include "scoped_thread_state_change.h" #include "thread-inl.h" #include "trace.h" #include "utils.h" #include "utils/dex_cache_arrays_layout-inl.h" #include "verifier/method_verifier.h" #include "well_known_classes.h" namespace art { static constexpr bool kSanityCheckObjects = kIsDebugBuild; static constexpr bool kVerifyArtMethodDeclaringClasses = kIsDebugBuild; static void ThrowNoClassDefFoundError(const char* fmt, ...) __attribute__((__format__(__printf__, 1, 2))) SHARED_REQUIRES(Locks::mutator_lock_); static void ThrowNoClassDefFoundError(const char* fmt, ...) { va_list args; va_start(args, fmt); Thread* self = Thread::Current(); self->ThrowNewExceptionV("Ljava/lang/NoClassDefFoundError;", fmt, args); va_end(args); } static bool HasInitWithString(Thread* self, ClassLinker* class_linker, const char* descriptor) SHARED_REQUIRES(Locks::mutator_lock_) { ArtMethod* method = self->GetCurrentMethod(nullptr); StackHandleScope<1> hs(self); Handle<mirror::ClassLoader> class_loader(hs.NewHandle(method != nullptr ? method->GetDeclaringClass()->GetClassLoader() : nullptr)); mirror::Class* exception_class = class_linker->FindClass(self, descriptor, class_loader); if (exception_class == nullptr) { // No exc class ~ no <init>-with-string. CHECK(self->IsExceptionPending()); self->ClearException(); return false; } ArtMethod* exception_init_method = exception_class->FindDeclaredDirectMethod( "<init>", "(Ljava/lang/String;)V", class_linker->GetImagePointerSize()); return exception_init_method != nullptr; } // Helper for ThrowEarlierClassFailure. Throws the stored error. static void HandleEarlierVerifyError(Thread* self, ClassLinker* class_linker, mirror::Class* c) SHARED_REQUIRES(Locks::mutator_lock_) { mirror::Object* obj = c->GetVerifyError(); DCHECK(obj != nullptr); self->AssertNoPendingException(); if (obj->IsClass()) { // Previous error has been stored as class. Create a new exception of that type. // It's possible the exception doesn't have a <init>(String). std::string temp; const char* descriptor = obj->AsClass()->GetDescriptor(&temp); if (HasInitWithString(self, class_linker, descriptor)) { self->ThrowNewException(descriptor, PrettyDescriptor(c).c_str()); } else { self->ThrowNewException(descriptor, nullptr); } } else { // Previous error has been stored as an instance. Just rethrow. mirror::Class* throwable_class = self->DecodeJObject(WellKnownClasses::java_lang_Throwable)->AsClass(); mirror::Class* error_class = obj->GetClass(); CHECK(throwable_class->IsAssignableFrom(error_class)); self->SetException(obj->AsThrowable()); } self->AssertPendingException(); } void ClassLinker::ThrowEarlierClassFailure(mirror::Class* c, bool wrap_in_no_class_def) { // The class failed to initialize on a previous attempt, so we want to throw // a NoClassDefFoundError (v2 2.17.5). The exception to this rule is if we // failed in verification, in which case v2 5.4.1 says we need to re-throw // the previous error. Runtime* const runtime = Runtime::Current(); if (!runtime->IsAotCompiler()) { // Give info if this occurs at runtime. std::string extra; if (c->GetVerifyError() != nullptr) { mirror::Object* verify_error = c->GetVerifyError(); if (verify_error->IsClass()) { extra = PrettyDescriptor(verify_error->AsClass()); } else { extra = verify_error->AsThrowable()->Dump(); } } LOG(INFO) << "Rejecting re-init on previously-failed class " << PrettyClass(c) << ": " << extra; } CHECK(c->IsErroneous()) << PrettyClass(c) << " " << c->GetStatus(); Thread* self = Thread::Current(); if (runtime->IsAotCompiler()) { // At compile time, accurate errors and NCDFE are disabled to speed compilation. mirror::Throwable* pre_allocated = runtime->GetPreAllocatedNoClassDefFoundError(); self->SetException(pre_allocated); } else { if (c->GetVerifyError() != nullptr) { // Rethrow stored error. HandleEarlierVerifyError(self, this, c); } if (c->GetVerifyError() == nullptr || wrap_in_no_class_def) { // If there isn't a recorded earlier error, or this is a repeat throw from initialization, // the top-level exception must be a NoClassDefFoundError. The potentially already pending // exception will be a cause. self->ThrowNewWrappedException("Ljava/lang/NoClassDefFoundError;", PrettyDescriptor(c).c_str()); } } } static void VlogClassInitializationFailure(Handle<mirror::Class> klass) SHARED_REQUIRES(Locks::mutator_lock_) { if (VLOG_IS_ON(class_linker)) { std::string temp; LOG(INFO) << "Failed to initialize class " << klass->GetDescriptor(&temp) << " from " << klass->GetLocation() << "\n" << Thread::Current()->GetException()->Dump(); } } static void WrapExceptionInInitializer(Handle<mirror::Class> klass) SHARED_REQUIRES(Locks::mutator_lock_) { Thread* self = Thread::Current(); JNIEnv* env = self->GetJniEnv(); ScopedLocalRef<jthrowable> cause(env, env->ExceptionOccurred()); CHECK(cause.get() != nullptr); env->ExceptionClear(); bool is_error = env->IsInstanceOf(cause.get(), WellKnownClasses::java_lang_Error); env->Throw(cause.get()); // We only wrap non-Error exceptions; an Error can just be used as-is. if (!is_error) { self->ThrowNewWrappedException("Ljava/lang/ExceptionInInitializerError;", nullptr); } VlogClassInitializationFailure(klass); } // Gap between two fields in object layout. struct FieldGap { uint32_t start_offset; // The offset from the start of the object. uint32_t size; // The gap size of 1, 2, or 4 bytes. }; struct FieldGapsComparator { explicit FieldGapsComparator() { } bool operator() (const FieldGap& lhs, const FieldGap& rhs) NO_THREAD_SAFETY_ANALYSIS { // Sort by gap size, largest first. Secondary sort by starting offset. // Note that the priority queue returns the largest element, so operator() // should return true if lhs is less than rhs. return lhs.size < rhs.size || (lhs.size == rhs.size && lhs.start_offset > rhs.start_offset); } }; typedef std::priority_queue<FieldGap, std::vector<FieldGap>, FieldGapsComparator> FieldGaps; // Adds largest aligned gaps to queue of gaps. static void AddFieldGap(uint32_t gap_start, uint32_t gap_end, FieldGaps* gaps) { DCHECK(gaps != nullptr); uint32_t current_offset = gap_start; while (current_offset != gap_end) { size_t remaining = gap_end - current_offset; if (remaining >= sizeof(uint32_t) && IsAligned<4>(current_offset)) { gaps->push(FieldGap {current_offset, sizeof(uint32_t)}); current_offset += sizeof(uint32_t); } else if (remaining >= sizeof(uint16_t) && IsAligned<2>(current_offset)) { gaps->push(FieldGap {current_offset, sizeof(uint16_t)}); current_offset += sizeof(uint16_t); } else { gaps->push(FieldGap {current_offset, sizeof(uint8_t)}); current_offset += sizeof(uint8_t); } DCHECK_LE(current_offset, gap_end) << "Overran gap"; } } // Shuffle fields forward, making use of gaps whenever possible. template<int n> static void ShuffleForward(size_t* current_field_idx, MemberOffset* field_offset, std::deque<ArtField*>* grouped_and_sorted_fields, FieldGaps* gaps) SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(current_field_idx != nullptr); DCHECK(grouped_and_sorted_fields != nullptr); DCHECK(gaps != nullptr); DCHECK(field_offset != nullptr); DCHECK(IsPowerOfTwo(n)); while (!grouped_and_sorted_fields->empty()) { ArtField* field = grouped_and_sorted_fields->front(); Primitive::Type type = field->GetTypeAsPrimitiveType(); if (Primitive::ComponentSize(type) < n) { break; } if (!IsAligned<n>(field_offset->Uint32Value())) { MemberOffset old_offset = *field_offset; *field_offset = MemberOffset(RoundUp(field_offset->Uint32Value(), n)); AddFieldGap(old_offset.Uint32Value(), field_offset->Uint32Value(), gaps); } CHECK(type != Primitive::kPrimNot) << PrettyField(field); // should be primitive types grouped_and_sorted_fields->pop_front(); if (!gaps->empty() && gaps->top().size >= n) { FieldGap gap = gaps->top(); gaps->pop(); DCHECK_ALIGNED(gap.start_offset, n); field->SetOffset(MemberOffset(gap.start_offset)); if (gap.size > n) { AddFieldGap(gap.start_offset + n, gap.start_offset + gap.size, gaps); } } else { DCHECK_ALIGNED(field_offset->Uint32Value(), n); field->SetOffset(*field_offset); *field_offset = MemberOffset(field_offset->Uint32Value() + n); } ++(*current_field_idx); } } ClassLinker::ClassLinker(InternTable* intern_table) // dex_lock_ is recursive as it may be used in stack dumping. : dex_lock_("ClassLinker dex lock", kDefaultMutexLevel), dex_cache_boot_image_class_lookup_required_(false), failed_dex_cache_class_lookups_(0), class_roots_(nullptr), array_iftable_(nullptr), find_array_class_cache_next_victim_(0), init_done_(false), log_new_class_table_roots_(false), intern_table_(intern_table), quick_resolution_trampoline_(nullptr), quick_imt_conflict_trampoline_(nullptr), quick_generic_jni_trampoline_(nullptr), quick_to_interpreter_bridge_trampoline_(nullptr), image_pointer_size_(sizeof(void*)) { CHECK(intern_table_ != nullptr); static_assert(kFindArrayCacheSize == arraysize(find_array_class_cache_), "Array cache size wrong."); std::fill_n(find_array_class_cache_, kFindArrayCacheSize, GcRoot<mirror::Class>(nullptr)); } void ClassLinker::CheckSystemClass(Thread* self, Handle<mirror::Class> c1, const char* descriptor) { mirror::Class* c2 = FindSystemClass(self, descriptor); if (c2 == nullptr) { LOG(FATAL) << "Could not find class " << descriptor; UNREACHABLE(); } if (c1.Get() != c2) { std::ostringstream os1, os2; c1->DumpClass(os1, mirror::Class::kDumpClassFullDetail); c2->DumpClass(os2, mirror::Class::kDumpClassFullDetail); LOG(FATAL) << "InitWithoutImage: Class mismatch for " << descriptor << ". This is most likely the result of a broken build. Make sure that " << "libcore and art projects match.\n\n" << os1.str() << "\n\n" << os2.str(); UNREACHABLE(); } } bool ClassLinker::InitWithoutImage(std::vector<std::unique_ptr<const DexFile>> boot_class_path, std::string* error_msg) { VLOG(startup) << "ClassLinker::Init"; Thread* const self = Thread::Current(); Runtime* const runtime = Runtime::Current(); gc::Heap* const heap = runtime->GetHeap(); CHECK(!heap->HasBootImageSpace()) << "Runtime has image. We should use it."; CHECK(!init_done_); // Use the pointer size from the runtime since we are probably creating the image. image_pointer_size_ = InstructionSetPointerSize(runtime->GetInstructionSet()); if (!ValidPointerSize(image_pointer_size_)) { *error_msg = StringPrintf("Invalid image pointer size: %zu", image_pointer_size_); return false; } // java_lang_Class comes first, it's needed for AllocClass // The GC can't handle an object with a null class since we can't get the size of this object. heap->IncrementDisableMovingGC(self); StackHandleScope<64> hs(self); // 64 is picked arbitrarily. auto class_class_size = mirror::Class::ClassClassSize(image_pointer_size_); Handle<mirror::Class> java_lang_Class(hs.NewHandle(down_cast<mirror::Class*>( heap->AllocNonMovableObject<true>(self, nullptr, class_class_size, VoidFunctor())))); CHECK(java_lang_Class.Get() != nullptr); mirror::Class::SetClassClass(java_lang_Class.Get()); java_lang_Class->SetClass(java_lang_Class.Get()); if (kUseBakerOrBrooksReadBarrier) { java_lang_Class->AssertReadBarrierPointer(); } java_lang_Class->SetClassSize(class_class_size); java_lang_Class->SetPrimitiveType(Primitive::kPrimNot); heap->DecrementDisableMovingGC(self); // AllocClass(mirror::Class*) can now be used // Class[] is used for reflection support. auto class_array_class_size = mirror::ObjectArray<mirror::Class>::ClassSize(image_pointer_size_); Handle<mirror::Class> class_array_class(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), class_array_class_size))); class_array_class->SetComponentType(java_lang_Class.Get()); // java_lang_Object comes next so that object_array_class can be created. Handle<mirror::Class> java_lang_Object(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::Object::ClassSize(image_pointer_size_)))); CHECK(java_lang_Object.Get() != nullptr); // backfill Object as the super class of Class. java_lang_Class->SetSuperClass(java_lang_Object.Get()); mirror::Class::SetStatus(java_lang_Object, mirror::Class::kStatusLoaded, self); java_lang_Object->SetObjectSize(sizeof(mirror::Object)); // Allocate in non-movable so that it's possible to check if a JNI weak global ref has been // cleared without triggering the read barrier and unintentionally mark the sentinel alive. runtime->SetSentinel(heap->AllocNonMovableObject<true>(self, java_lang_Object.Get(), java_lang_Object->GetObjectSize(), VoidFunctor())); // Object[] next to hold class roots. Handle<mirror::Class> object_array_class(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::ObjectArray<mirror::Object>::ClassSize(image_pointer_size_)))); object_array_class->SetComponentType(java_lang_Object.Get()); // Setup the char (primitive) class to be used for char[]. Handle<mirror::Class> char_class(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::Class::PrimitiveClassSize(image_pointer_size_)))); // The primitive char class won't be initialized by // InitializePrimitiveClass until line 459, but strings (and // internal char arrays) will be allocated before that and the // component size, which is computed from the primitive type, needs // to be set here. char_class->SetPrimitiveType(Primitive::kPrimChar); // Setup the char[] class to be used for String. Handle<mirror::Class> char_array_class(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::Array::ClassSize(image_pointer_size_)))); char_array_class->SetComponentType(char_class.Get()); mirror::CharArray::SetArrayClass(char_array_class.Get()); // Setup String. Handle<mirror::Class> java_lang_String(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::String::ClassSize(image_pointer_size_)))); java_lang_String->SetStringClass(); mirror::String::SetClass(java_lang_String.Get()); mirror::Class::SetStatus(java_lang_String, mirror::Class::kStatusResolved, self); // Setup java.lang.ref.Reference. Handle<mirror::Class> java_lang_ref_Reference(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::Reference::ClassSize(image_pointer_size_)))); mirror::Reference::SetClass(java_lang_ref_Reference.Get()); java_lang_ref_Reference->SetObjectSize(mirror::Reference::InstanceSize()); mirror::Class::SetStatus(java_lang_ref_Reference, mirror::Class::kStatusResolved, self); // Create storage for root classes, save away our work so far (requires descriptors). class_roots_ = GcRoot<mirror::ObjectArray<mirror::Class>>( mirror::ObjectArray<mirror::Class>::Alloc(self, object_array_class.Get(), kClassRootsMax)); CHECK(!class_roots_.IsNull()); SetClassRoot(kJavaLangClass, java_lang_Class.Get()); SetClassRoot(kJavaLangObject, java_lang_Object.Get()); SetClassRoot(kClassArrayClass, class_array_class.Get()); SetClassRoot(kObjectArrayClass, object_array_class.Get()); SetClassRoot(kCharArrayClass, char_array_class.Get()); SetClassRoot(kJavaLangString, java_lang_String.Get()); SetClassRoot(kJavaLangRefReference, java_lang_ref_Reference.Get()); // Setup the primitive type classes. SetClassRoot(kPrimitiveBoolean, CreatePrimitiveClass(self, Primitive::kPrimBoolean)); SetClassRoot(kPrimitiveByte, CreatePrimitiveClass(self, Primitive::kPrimByte)); SetClassRoot(kPrimitiveShort, CreatePrimitiveClass(self, Primitive::kPrimShort)); SetClassRoot(kPrimitiveInt, CreatePrimitiveClass(self, Primitive::kPrimInt)); SetClassRoot(kPrimitiveLong, CreatePrimitiveClass(self, Primitive::kPrimLong)); SetClassRoot(kPrimitiveFloat, CreatePrimitiveClass(self, Primitive::kPrimFloat)); SetClassRoot(kPrimitiveDouble, CreatePrimitiveClass(self, Primitive::kPrimDouble)); SetClassRoot(kPrimitiveVoid, CreatePrimitiveClass(self, Primitive::kPrimVoid)); // Create array interface entries to populate once we can load system classes. array_iftable_ = GcRoot<mirror::IfTable>(AllocIfTable(self, 2)); // Create int array type for AllocDexCache (done in AppendToBootClassPath). Handle<mirror::Class> int_array_class(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::Array::ClassSize(image_pointer_size_)))); int_array_class->SetComponentType(GetClassRoot(kPrimitiveInt)); mirror::IntArray::SetArrayClass(int_array_class.Get()); SetClassRoot(kIntArrayClass, int_array_class.Get()); // Create long array type for AllocDexCache (done in AppendToBootClassPath). Handle<mirror::Class> long_array_class(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::Array::ClassSize(image_pointer_size_)))); long_array_class->SetComponentType(GetClassRoot(kPrimitiveLong)); mirror::LongArray::SetArrayClass(long_array_class.Get()); SetClassRoot(kLongArrayClass, long_array_class.Get()); // now that these are registered, we can use AllocClass() and AllocObjectArray // Set up DexCache. This cannot be done later since AppendToBootClassPath calls AllocDexCache. Handle<mirror::Class> java_lang_DexCache(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::DexCache::ClassSize(image_pointer_size_)))); SetClassRoot(kJavaLangDexCache, java_lang_DexCache.Get()); java_lang_DexCache->SetDexCacheClass(); java_lang_DexCache->SetObjectSize(mirror::DexCache::InstanceSize()); mirror::Class::SetStatus(java_lang_DexCache, mirror::Class::kStatusResolved, self); // Set up array classes for string, field, method Handle<mirror::Class> object_array_string(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::ObjectArray<mirror::String>::ClassSize(image_pointer_size_)))); object_array_string->SetComponentType(java_lang_String.Get()); SetClassRoot(kJavaLangStringArrayClass, object_array_string.Get()); LinearAlloc* linear_alloc = runtime->GetLinearAlloc(); // Create runtime resolution and imt conflict methods. runtime->SetResolutionMethod(runtime->CreateResolutionMethod()); runtime->SetImtConflictMethod(runtime->CreateImtConflictMethod(linear_alloc)); runtime->SetImtUnimplementedMethod(runtime->CreateImtConflictMethod(linear_alloc)); // Setup boot_class_path_ and register class_path now that we can use AllocObjectArray to create // DexCache instances. Needs to be after String, Field, Method arrays since AllocDexCache uses // these roots. if (boot_class_path.empty()) { *error_msg = "Boot classpath is empty."; return false; } for (auto& dex_file : boot_class_path) { if (dex_file.get() == nullptr) { *error_msg = "Null dex file."; return false; } AppendToBootClassPath(self, *dex_file); boot_dex_files_.push_back(std::move(dex_file)); } // now we can use FindSystemClass // run char class through InitializePrimitiveClass to finish init InitializePrimitiveClass(char_class.Get(), Primitive::kPrimChar); SetClassRoot(kPrimitiveChar, char_class.Get()); // needs descriptor // Set up GenericJNI entrypoint. That is mainly a hack for common_compiler_test.h so that // we do not need friend classes or a publicly exposed setter. quick_generic_jni_trampoline_ = GetQuickGenericJniStub(); if (!runtime->IsAotCompiler()) { // We need to set up the generic trampolines since we don't have an image. quick_resolution_trampoline_ = GetQuickResolutionStub(); quick_imt_conflict_trampoline_ = GetQuickImtConflictStub(); quick_to_interpreter_bridge_trampoline_ = GetQuickToInterpreterBridge(); } // Object, String and DexCache need to be rerun through FindSystemClass to finish init mirror::Class::SetStatus(java_lang_Object, mirror::Class::kStatusNotReady, self); CheckSystemClass(self, java_lang_Object, "Ljava/lang/Object;"); CHECK_EQ(java_lang_Object->GetObjectSize(), mirror::Object::InstanceSize()); mirror::Class::SetStatus(java_lang_String, mirror::Class::kStatusNotReady, self); CheckSystemClass(self, java_lang_String, "Ljava/lang/String;"); mirror::Class::SetStatus(java_lang_DexCache, mirror::Class::kStatusNotReady, self); CheckSystemClass(self, java_lang_DexCache, "Ljava/lang/DexCache;"); CHECK_EQ(java_lang_DexCache->GetObjectSize(), mirror::DexCache::InstanceSize()); // Setup the primitive array type classes - can't be done until Object has a vtable. SetClassRoot(kBooleanArrayClass, FindSystemClass(self, "[Z")); mirror::BooleanArray::SetArrayClass(GetClassRoot(kBooleanArrayClass)); SetClassRoot(kByteArrayClass, FindSystemClass(self, "[B")); mirror::ByteArray::SetArrayClass(GetClassRoot(kByteArrayClass)); CheckSystemClass(self, char_array_class, "[C"); SetClassRoot(kShortArrayClass, FindSystemClass(self, "[S")); mirror::ShortArray::SetArrayClass(GetClassRoot(kShortArrayClass)); CheckSystemClass(self, int_array_class, "[I"); CheckSystemClass(self, long_array_class, "[J"); SetClassRoot(kFloatArrayClass, FindSystemClass(self, "[F")); mirror::FloatArray::SetArrayClass(GetClassRoot(kFloatArrayClass)); SetClassRoot(kDoubleArrayClass, FindSystemClass(self, "[D")); mirror::DoubleArray::SetArrayClass(GetClassRoot(kDoubleArrayClass)); // Run Class through FindSystemClass. This initializes the dex_cache_ fields and register it // in class_table_. CheckSystemClass(self, java_lang_Class, "Ljava/lang/Class;"); CheckSystemClass(self, class_array_class, "[Ljava/lang/Class;"); CheckSystemClass(self, object_array_class, "[Ljava/lang/Object;"); // Setup the single, global copy of "iftable". auto java_lang_Cloneable = hs.NewHandle(FindSystemClass(self, "Ljava/lang/Cloneable;")); CHECK(java_lang_Cloneable.Get() != nullptr); auto java_io_Serializable = hs.NewHandle(FindSystemClass(self, "Ljava/io/Serializable;")); CHECK(java_io_Serializable.Get() != nullptr); // We assume that Cloneable/Serializable don't have superinterfaces -- normally we'd have to // crawl up and explicitly list all of the supers as well. array_iftable_.Read()->SetInterface(0, java_lang_Cloneable.Get()); array_iftable_.Read()->SetInterface(1, java_io_Serializable.Get()); // Sanity check Class[] and Object[]'s interfaces. GetDirectInterface may cause thread // suspension. CHECK_EQ(java_lang_Cloneable.Get(), mirror::Class::GetDirectInterface(self, class_array_class, 0)); CHECK_EQ(java_io_Serializable.Get(), mirror::Class::GetDirectInterface(self, class_array_class, 1)); CHECK_EQ(java_lang_Cloneable.Get(), mirror::Class::GetDirectInterface(self, object_array_class, 0)); CHECK_EQ(java_io_Serializable.Get(), mirror::Class::GetDirectInterface(self, object_array_class, 1)); CHECK_EQ(object_array_string.Get(), FindSystemClass(self, GetClassRootDescriptor(kJavaLangStringArrayClass))); // End of special init trickery, all subsequent classes may be loaded via FindSystemClass. // Create java.lang.reflect.Proxy root. SetClassRoot(kJavaLangReflectProxy, FindSystemClass(self, "Ljava/lang/reflect/Proxy;")); // Create java.lang.reflect.Field.class root. auto* class_root = FindSystemClass(self, "Ljava/lang/reflect/Field;"); CHECK(class_root != nullptr); SetClassRoot(kJavaLangReflectField, class_root); mirror::Field::SetClass(class_root); // Create java.lang.reflect.Field array root. class_root = FindSystemClass(self, "[Ljava/lang/reflect/Field;"); CHECK(class_root != nullptr); SetClassRoot(kJavaLangReflectFieldArrayClass, class_root); mirror::Field::SetArrayClass(class_root); // Create java.lang.reflect.Constructor.class root and array root. class_root = FindSystemClass(self, "Ljava/lang/reflect/Constructor;"); CHECK(class_root != nullptr); SetClassRoot(kJavaLangReflectConstructor, class_root); mirror::Constructor::SetClass(class_root); class_root = FindSystemClass(self, "[Ljava/lang/reflect/Constructor;"); CHECK(class_root != nullptr); SetClassRoot(kJavaLangReflectConstructorArrayClass, class_root); mirror::Constructor::SetArrayClass(class_root); // Create java.lang.reflect.Method.class root and array root. class_root = FindSystemClass(self, "Ljava/lang/reflect/Method;"); CHECK(class_root != nullptr); SetClassRoot(kJavaLangReflectMethod, class_root); mirror::Method::SetClass(class_root); class_root = FindSystemClass(self, "[Ljava/lang/reflect/Method;"); CHECK(class_root != nullptr); SetClassRoot(kJavaLangReflectMethodArrayClass, class_root); mirror::Method::SetArrayClass(class_root); // java.lang.ref classes need to be specially flagged, but otherwise are normal classes // finish initializing Reference class mirror::Class::SetStatus(java_lang_ref_Reference, mirror::Class::kStatusNotReady, self); CheckSystemClass(self, java_lang_ref_Reference, "Ljava/lang/ref/Reference;"); CHECK_EQ(java_lang_ref_Reference->GetObjectSize(), mirror::Reference::InstanceSize()); CHECK_EQ(java_lang_ref_Reference->GetClassSize(), mirror::Reference::ClassSize(image_pointer_size_)); class_root = FindSystemClass(self, "Ljava/lang/ref/FinalizerReference;"); CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal); class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagFinalizerReference); class_root = FindSystemClass(self, "Ljava/lang/ref/PhantomReference;"); CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal); class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagPhantomReference); class_root = FindSystemClass(self, "Ljava/lang/ref/SoftReference;"); CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal); class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagSoftReference); class_root = FindSystemClass(self, "Ljava/lang/ref/WeakReference;"); CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal); class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagWeakReference); // Setup the ClassLoader, verifying the object_size_. class_root = FindSystemClass(self, "Ljava/lang/ClassLoader;"); class_root->SetClassLoaderClass(); CHECK_EQ(class_root->GetObjectSize(), mirror::ClassLoader::InstanceSize()); SetClassRoot(kJavaLangClassLoader, class_root); // Set up java.lang.Throwable, java.lang.ClassNotFoundException, and // java.lang.StackTraceElement as a convenience. SetClassRoot(kJavaLangThrowable, FindSystemClass(self, "Ljava/lang/Throwable;")); mirror::Throwable::SetClass(GetClassRoot(kJavaLangThrowable)); SetClassRoot(kJavaLangClassNotFoundException, FindSystemClass(self, "Ljava/lang/ClassNotFoundException;")); SetClassRoot(kJavaLangStackTraceElement, FindSystemClass(self, "Ljava/lang/StackTraceElement;")); SetClassRoot(kJavaLangStackTraceElementArrayClass, FindSystemClass(self, "[Ljava/lang/StackTraceElement;")); mirror::StackTraceElement::SetClass(GetClassRoot(kJavaLangStackTraceElement)); // Ensure void type is resolved in the core's dex cache so java.lang.Void is correctly // initialized. { const DexFile& dex_file = java_lang_Object->GetDexFile(); const DexFile::TypeId* void_type_id = dex_file.FindTypeId("V"); CHECK(void_type_id != nullptr); uint16_t void_type_idx = dex_file.GetIndexForTypeId(*void_type_id); // Now we resolve void type so the dex cache contains it. We use java.lang.Object class // as referrer so the used dex cache is core's one. mirror::Class* resolved_type = ResolveType(dex_file, void_type_idx, java_lang_Object.Get()); CHECK_EQ(resolved_type, GetClassRoot(kPrimitiveVoid)); self->AssertNoPendingException(); } // Create conflict tables that depend on the class linker. runtime->FixupConflictTables(); FinishInit(self); VLOG(startup) << "ClassLinker::InitFromCompiler exiting"; return true; } void ClassLinker::FinishInit(Thread* self) { VLOG(startup) << "ClassLinker::FinishInit entering"; // Let the heap know some key offsets into java.lang.ref instances // Note: we hard code the field indexes here rather than using FindInstanceField // as the types of the field can't be resolved prior to the runtime being // fully initialized mirror::Class* java_lang_ref_Reference = GetClassRoot(kJavaLangRefReference); mirror::Class* java_lang_ref_FinalizerReference = FindSystemClass(self, "Ljava/lang/ref/FinalizerReference;"); ArtField* pendingNext = java_lang_ref_Reference->GetInstanceField(0); CHECK_STREQ(pendingNext->GetName(), "pendingNext"); CHECK_STREQ(pendingNext->GetTypeDescriptor(), "Ljava/lang/ref/Reference;"); ArtField* queue = java_lang_ref_Reference->GetInstanceField(1); CHECK_STREQ(queue->GetName(), "queue"); CHECK_STREQ(queue->GetTypeDescriptor(), "Ljava/lang/ref/ReferenceQueue;"); ArtField* queueNext = java_lang_ref_Reference->GetInstanceField(2); CHECK_STREQ(queueNext->GetName(), "queueNext"); CHECK_STREQ(queueNext->GetTypeDescriptor(), "Ljava/lang/ref/Reference;"); ArtField* referent = java_lang_ref_Reference->GetInstanceField(3); CHECK_STREQ(referent->GetName(), "referent"); CHECK_STREQ(referent->GetTypeDescriptor(), "Ljava/lang/Object;"); ArtField* zombie = java_lang_ref_FinalizerReference->GetInstanceField(2); CHECK_STREQ(zombie->GetName(), "zombie"); CHECK_STREQ(zombie->GetTypeDescriptor(), "Ljava/lang/Object;"); // ensure all class_roots_ are initialized for (size_t i = 0; i < kClassRootsMax; i++) { ClassRoot class_root = static_cast<ClassRoot>(i); mirror::Class* klass = GetClassRoot(class_root); CHECK(klass != nullptr); DCHECK(klass->IsArrayClass() || klass->IsPrimitive() || klass->GetDexCache() != nullptr); // note SetClassRoot does additional validation. // if possible add new checks there to catch errors early } CHECK(!array_iftable_.IsNull()); // disable the slow paths in FindClass and CreatePrimitiveClass now // that Object, Class, and Object[] are setup init_done_ = true; VLOG(startup) << "ClassLinker::FinishInit exiting"; } void ClassLinker::RunRootClinits() { Thread* self = Thread::Current(); for (size_t i = 0; i < ClassLinker::kClassRootsMax; ++i) { mirror::Class* c = GetClassRoot(ClassRoot(i)); if (!c->IsArrayClass() && !c->IsPrimitive()) { StackHandleScope<1> hs(self); Handle<mirror::Class> h_class(hs.NewHandle(GetClassRoot(ClassRoot(i)))); EnsureInitialized(self, h_class, true, true); self->AssertNoPendingException(); } } } static void SanityCheckArtMethod(ArtMethod* m, mirror::Class* expected_class, const std::vector<gc::space::ImageSpace*>& spaces) SHARED_REQUIRES(Locks::mutator_lock_) { if (m->IsRuntimeMethod()) { mirror::Class* declaring_class = m->GetDeclaringClassUnchecked(); CHECK(declaring_class == nullptr) << declaring_class << " " << PrettyMethod(m); } else if (m->IsCopied()) { CHECK(m->GetDeclaringClass() != nullptr) << PrettyMethod(m); } else if (expected_class != nullptr) { CHECK_EQ(m->GetDeclaringClassUnchecked(), expected_class) << PrettyMethod(m); } if (!spaces.empty()) { bool contains = false; for (gc::space::ImageSpace* space : spaces) { auto& header = space->GetImageHeader(); size_t offset = reinterpret_cast<uint8_t*>(m) - space->Begin(); const ImageSection& methods = header.GetMethodsSection(); contains = contains || methods.Contains(offset); const ImageSection& runtime_methods = header.GetRuntimeMethodsSection(); contains = contains || runtime_methods.Contains(offset); } CHECK(contains) << m << " not found"; } } static void SanityCheckArtMethodPointerArray(mirror::PointerArray* arr, mirror::Class* expected_class, size_t pointer_size, const std::vector<gc::space::ImageSpace*>& spaces) SHARED_REQUIRES(Locks::mutator_lock_) { CHECK(arr != nullptr); for (int32_t j = 0; j < arr->GetLength(); ++j) { auto* method = arr->GetElementPtrSize<ArtMethod*>(j, pointer_size); // expected_class == null means we are a dex cache. if (expected_class != nullptr) { CHECK(method != nullptr); } if (method != nullptr) { SanityCheckArtMethod(method, expected_class, spaces); } } } static void SanityCheckArtMethodPointerArray(ArtMethod** arr, size_t size, size_t pointer_size, const std::vector<gc::space::ImageSpace*>& spaces) SHARED_REQUIRES(Locks::mutator_lock_) { CHECK_EQ(arr != nullptr, size != 0u); if (arr != nullptr) { bool contains = false; for (auto space : spaces) { auto offset = reinterpret_cast<uint8_t*>(arr) - space->Begin(); if (space->GetImageHeader().GetImageSection( ImageHeader::kSectionDexCacheArrays).Contains(offset)) { contains = true; break; } } CHECK(contains); } for (size_t j = 0; j < size; ++j) { ArtMethod* method = mirror::DexCache::GetElementPtrSize(arr, j, pointer_size); // expected_class == null means we are a dex cache. if (method != nullptr) { SanityCheckArtMethod(method, nullptr, spaces); } } } static void SanityCheckObjectsCallback(mirror::Object* obj, void* arg ATTRIBUTE_UNUSED) SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(obj != nullptr); CHECK(obj->GetClass() != nullptr) << "Null class in object " << obj; CHECK(obj->GetClass()->GetClass() != nullptr) << "Null class class " << obj; if (obj->IsClass()) { auto klass = obj->AsClass(); for (ArtField& field : klass->GetIFields()) { CHECK_EQ(field.GetDeclaringClass(), klass); } for (ArtField& field : klass->GetSFields()) { CHECK_EQ(field.GetDeclaringClass(), klass); } auto* runtime = Runtime::Current(); auto image_spaces = runtime->GetHeap()->GetBootImageSpaces(); auto pointer_size = runtime->GetClassLinker()->GetImagePointerSize(); for (auto& m : klass->GetMethods(pointer_size)) { SanityCheckArtMethod(&m, klass, image_spaces); } auto* vtable = klass->GetVTable(); if (vtable != nullptr) { SanityCheckArtMethodPointerArray(vtable, nullptr, pointer_size, image_spaces); } if (klass->ShouldHaveEmbeddedImtAndVTable()) { for (size_t i = 0; i < mirror::Class::kImtSize; ++i) { SanityCheckArtMethod( klass->GetEmbeddedImTableEntry(i, pointer_size), nullptr, image_spaces); } for (int32_t i = 0; i < klass->GetEmbeddedVTableLength(); ++i) { SanityCheckArtMethod(klass->GetEmbeddedVTableEntry(i, pointer_size), nullptr, image_spaces); } } auto* iftable = klass->GetIfTable(); if (iftable != nullptr) { for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) { if (iftable->GetMethodArrayCount(i) > 0) { SanityCheckArtMethodPointerArray( iftable->GetMethodArray(i), nullptr, pointer_size, image_spaces); } } } } } // Set image methods' entry point to interpreter. class SetInterpreterEntrypointArtMethodVisitor : public ArtMethodVisitor { public: explicit SetInterpreterEntrypointArtMethodVisitor(size_t image_pointer_size) : image_pointer_size_(image_pointer_size) {} void Visit(ArtMethod* method) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { if (kIsDebugBuild && !method->IsRuntimeMethod()) { CHECK(method->GetDeclaringClass() != nullptr); } if (!method->IsNative() && !method->IsRuntimeMethod() && !method->IsResolutionMethod()) { method->SetEntryPointFromQuickCompiledCodePtrSize(GetQuickToInterpreterBridge(), image_pointer_size_); } } private: const size_t image_pointer_size_; DISALLOW_COPY_AND_ASSIGN(SetInterpreterEntrypointArtMethodVisitor); }; struct TrampolineCheckData { const void* quick_resolution_trampoline; const void* quick_imt_conflict_trampoline; const void* quick_generic_jni_trampoline; const void* quick_to_interpreter_bridge_trampoline; size_t pointer_size; ArtMethod* m; bool error; }; static void CheckTrampolines(mirror::Object* obj, void* arg) NO_THREAD_SAFETY_ANALYSIS { if (obj->IsClass()) { mirror::Class* klass = obj->AsClass(); TrampolineCheckData* d = reinterpret_cast<TrampolineCheckData*>(arg); for (ArtMethod& m : klass->GetMethods(d->pointer_size)) { const void* entrypoint = m.GetEntryPointFromQuickCompiledCodePtrSize(d->pointer_size); if (entrypoint == d->quick_resolution_trampoline || entrypoint == d->quick_imt_conflict_trampoline || entrypoint == d->quick_generic_jni_trampoline || entrypoint == d->quick_to_interpreter_bridge_trampoline) { d->m = &m; d->error = true; return; } } } } bool ClassLinker::InitFromBootImage(std::string* error_msg) { VLOG(startup) << __FUNCTION__ << " entering"; CHECK(!init_done_); Runtime* const runtime = Runtime::Current(); Thread* const self = Thread::Current(); gc::Heap* const heap = runtime->GetHeap(); std::vector<gc::space::ImageSpace*> spaces = heap->GetBootImageSpaces(); CHECK(!spaces.empty()); image_pointer_size_ = spaces[0]->GetImageHeader().GetPointerSize(); if (!ValidPointerSize(image_pointer_size_)) { *error_msg = StringPrintf("Invalid image pointer size: %zu", image_pointer_size_); return false; } if (!runtime->IsAotCompiler()) { // Only the Aot compiler supports having an image with a different pointer size than the // runtime. This happens on the host for compiling 32 bit tests since we use a 64 bit libart // compiler. We may also use 32 bit dex2oat on a system with 64 bit apps. if (image_pointer_size_ != sizeof(void*)) { *error_msg = StringPrintf("Runtime must use current image pointer size: %zu vs %zu", image_pointer_size_, sizeof(void*)); return false; } } dex_cache_boot_image_class_lookup_required_ = true; std::vector<const OatFile*> oat_files = runtime->GetOatFileManager().RegisterImageOatFiles(spaces); DCHECK(!oat_files.empty()); const OatHeader& default_oat_header = oat_files[0]->GetOatHeader(); CHECK_EQ(default_oat_header.GetImageFileLocationOatChecksum(), 0U); CHECK_EQ(default_oat_header.GetImageFileLocationOatDataBegin(), 0U); const char* image_file_location = oat_files[0]->GetOatHeader(). GetStoreValueByKey(OatHeader::kImageLocationKey); CHECK(image_file_location == nullptr || *image_file_location == 0); quick_resolution_trampoline_ = default_oat_header.GetQuickResolutionTrampoline(); quick_imt_conflict_trampoline_ = default_oat_header.GetQuickImtConflictTrampoline(); quick_generic_jni_trampoline_ = default_oat_header.GetQuickGenericJniTrampoline(); quick_to_interpreter_bridge_trampoline_ = default_oat_header.GetQuickToInterpreterBridge(); if (kIsDebugBuild) { // Check that the other images use the same trampoline. for (size_t i = 1; i < oat_files.size(); ++i) { const OatHeader& ith_oat_header = oat_files[i]->GetOatHeader(); const void* ith_quick_resolution_trampoline = ith_oat_header.GetQuickResolutionTrampoline(); const void* ith_quick_imt_conflict_trampoline = ith_oat_header.GetQuickImtConflictTrampoline(); const void* ith_quick_generic_jni_trampoline = ith_oat_header.GetQuickGenericJniTrampoline(); const void* ith_quick_to_interpreter_bridge_trampoline = ith_oat_header.GetQuickToInterpreterBridge(); if (ith_quick_resolution_trampoline != quick_resolution_trampoline_ || ith_quick_imt_conflict_trampoline != quick_imt_conflict_trampoline_ || ith_quick_generic_jni_trampoline != quick_generic_jni_trampoline_ || ith_quick_to_interpreter_bridge_trampoline != quick_to_interpreter_bridge_trampoline_) { // Make sure that all methods in this image do not contain those trampolines as // entrypoints. Otherwise the class-linker won't be able to work with a single set. TrampolineCheckData data; data.error = false; data.pointer_size = GetImagePointerSize(); data.quick_resolution_trampoline = ith_quick_resolution_trampoline; data.quick_imt_conflict_trampoline = ith_quick_imt_conflict_trampoline; data.quick_generic_jni_trampoline = ith_quick_generic_jni_trampoline; data.quick_to_interpreter_bridge_trampoline = ith_quick_to_interpreter_bridge_trampoline; ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); spaces[i]->GetLiveBitmap()->Walk(CheckTrampolines, &data); if (data.error) { ArtMethod* m = data.m; LOG(ERROR) << "Found a broken ArtMethod: " << PrettyMethod(m); *error_msg = "Found an ArtMethod with a bad entrypoint"; return false; } } } } class_roots_ = GcRoot<mirror::ObjectArray<mirror::Class>>( down_cast<mirror::ObjectArray<mirror::Class>*>( spaces[0]->GetImageHeader().GetImageRoot(ImageHeader::kClassRoots))); mirror::Class::SetClassClass(class_roots_.Read()->Get(kJavaLangClass)); // Special case of setting up the String class early so that we can test arbitrary objects // as being Strings or not mirror::String::SetClass(GetClassRoot(kJavaLangString)); mirror::Class* java_lang_Object = GetClassRoot(kJavaLangObject); java_lang_Object->SetObjectSize(sizeof(mirror::Object)); // Allocate in non-movable so that it's possible to check if a JNI weak global ref has been // cleared without triggering the read barrier and unintentionally mark the sentinel alive. runtime->SetSentinel(heap->AllocNonMovableObject<true>( self, java_lang_Object, java_lang_Object->GetObjectSize(), VoidFunctor())); // reinit array_iftable_ from any array class instance, they should be == array_iftable_ = GcRoot<mirror::IfTable>(GetClassRoot(kObjectArrayClass)->GetIfTable()); DCHECK_EQ(array_iftable_.Read(), GetClassRoot(kBooleanArrayClass)->GetIfTable()); // String class root was set above mirror::Field::SetClass(GetClassRoot(kJavaLangReflectField)); mirror::Field::SetArrayClass(GetClassRoot(kJavaLangReflectFieldArrayClass)); mirror::Constructor::SetClass(GetClassRoot(kJavaLangReflectConstructor)); mirror::Constructor::SetArrayClass(GetClassRoot(kJavaLangReflectConstructorArrayClass)); mirror::Method::SetClass(GetClassRoot(kJavaLangReflectMethod)); mirror::Method::SetArrayClass(GetClassRoot(kJavaLangReflectMethodArrayClass)); mirror::Reference::SetClass(GetClassRoot(kJavaLangRefReference)); mirror::BooleanArray::SetArrayClass(GetClassRoot(kBooleanArrayClass)); mirror::ByteArray::SetArrayClass(GetClassRoot(kByteArrayClass)); mirror::CharArray::SetArrayClass(GetClassRoot(kCharArrayClass)); mirror::DoubleArray::SetArrayClass(GetClassRoot(kDoubleArrayClass)); mirror::FloatArray::SetArrayClass(GetClassRoot(kFloatArrayClass)); mirror::IntArray::SetArrayClass(GetClassRoot(kIntArrayClass)); mirror::LongArray::SetArrayClass(GetClassRoot(kLongArrayClass)); mirror::ShortArray::SetArrayClass(GetClassRoot(kShortArrayClass)); mirror::Throwable::SetClass(GetClassRoot(kJavaLangThrowable)); mirror::StackTraceElement::SetClass(GetClassRoot(kJavaLangStackTraceElement)); for (gc::space::ImageSpace* image_space : spaces) { // Boot class loader, use a null handle. std::vector<std::unique_ptr<const DexFile>> dex_files; if (!AddImageSpace(image_space, ScopedNullHandle<mirror::ClassLoader>(), /*dex_elements*/nullptr, /*dex_location*/nullptr, /*out*/&dex_files, error_msg)) { return false; } // Append opened dex files at the end. boot_dex_files_.insert(boot_dex_files_.end(), std::make_move_iterator(dex_files.begin()), std::make_move_iterator(dex_files.end())); } FinishInit(self); VLOG(startup) << __FUNCTION__ << " exiting"; return true; } bool ClassLinker::IsBootClassLoader(ScopedObjectAccessAlreadyRunnable& soa, mirror::ClassLoader* class_loader) { return class_loader == nullptr || class_loader->GetClass() == soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_BootClassLoader); } static mirror::String* GetDexPathListElementName(ScopedObjectAccessUnchecked& soa, mirror::Object* element) SHARED_REQUIRES(Locks::mutator_lock_) { ArtField* const dex_file_field = soa.DecodeField(WellKnownClasses::dalvik_system_DexPathList__Element_dexFile); ArtField* const dex_file_name_field = soa.DecodeField(WellKnownClasses::dalvik_system_DexFile_fileName); DCHECK(dex_file_field != nullptr); DCHECK(dex_file_name_field != nullptr); DCHECK(element != nullptr); CHECK_EQ(dex_file_field->GetDeclaringClass(), element->GetClass()) << PrettyTypeOf(element); mirror::Object* dex_file = dex_file_field->GetObject(element); if (dex_file == nullptr) { return nullptr; } mirror::Object* const name_object = dex_file_name_field->GetObject(dex_file); if (name_object != nullptr) { return name_object->AsString(); } return nullptr; } static bool FlattenPathClassLoader(mirror::ClassLoader* class_loader, std::list<mirror::String*>* out_dex_file_names, std::string* error_msg) SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(out_dex_file_names != nullptr); DCHECK(error_msg != nullptr); ScopedObjectAccessUnchecked soa(Thread::Current()); ArtField* const dex_path_list_field = soa.DecodeField(WellKnownClasses::dalvik_system_PathClassLoader_pathList); ArtField* const dex_elements_field = soa.DecodeField(WellKnownClasses::dalvik_system_DexPathList_dexElements); CHECK(dex_path_list_field != nullptr); CHECK(dex_elements_field != nullptr); while (!ClassLinker::IsBootClassLoader(soa, class_loader)) { if (class_loader->GetClass() != soa.Decode<mirror::Class*>(WellKnownClasses::dalvik_system_PathClassLoader)) { *error_msg = StringPrintf("Unknown class loader type %s", PrettyTypeOf(class_loader).c_str()); // Unsupported class loader. return false; } mirror::Object* dex_path_list = dex_path_list_field->GetObject(class_loader); if (dex_path_list != nullptr) { // DexPathList has an array dexElements of Elements[] which each contain a dex file. mirror::Object* dex_elements_obj = dex_elements_field->GetObject(dex_path_list); // Loop through each dalvik.system.DexPathList$Element's dalvik.system.DexFile and look // at the mCookie which is a DexFile vector. if (dex_elements_obj != nullptr) { mirror::ObjectArray<mirror::Object>* dex_elements = dex_elements_obj->AsObjectArray<mirror::Object>(); // Reverse order since we insert the parent at the front. for (int32_t i = dex_elements->GetLength() - 1; i >= 0; --i) { mirror::Object* const element = dex_elements->GetWithoutChecks(i); if (element == nullptr) { *error_msg = StringPrintf("Null dex element at index %d", i); return false; } mirror::String* const name = GetDexPathListElementName(soa, element); if (name == nullptr) { *error_msg = StringPrintf("Null name for dex element at index %d", i); return false; } out_dex_file_names->push_front(name); } } } class_loader = class_loader->GetParent(); } return true; } class FixupArtMethodArrayVisitor : public ArtMethodVisitor { public: explicit FixupArtMethodArrayVisitor(const ImageHeader& header) : header_(header) {} virtual void Visit(ArtMethod* method) SHARED_REQUIRES(Locks::mutator_lock_) { GcRoot<mirror::Class>* resolved_types = method->GetDexCacheResolvedTypes(sizeof(void*)); const bool is_copied = method->IsCopied(); if (resolved_types != nullptr) { bool in_image_space = false; if (kIsDebugBuild || is_copied) { in_image_space = header_.GetImageSection(ImageHeader::kSectionDexCacheArrays).Contains( reinterpret_cast<const uint8_t*>(resolved_types) - header_.GetImageBegin()); } // Must be in image space for non-miranda method. DCHECK(is_copied || in_image_space) << resolved_types << " is not in image starting at " << reinterpret_cast<void*>(header_.GetImageBegin()); if (!is_copied || in_image_space) { // Go through the array so that we don't need to do a slow map lookup. method->SetDexCacheResolvedTypes(*reinterpret_cast<GcRoot<mirror::Class>**>(resolved_types), sizeof(void*)); } } ArtMethod** resolved_methods = method->GetDexCacheResolvedMethods(sizeof(void*)); if (resolved_methods != nullptr) { bool in_image_space = false; if (kIsDebugBuild || is_copied) { in_image_space = header_.GetImageSection(ImageHeader::kSectionDexCacheArrays).Contains( reinterpret_cast<const uint8_t*>(resolved_methods) - header_.GetImageBegin()); } // Must be in image space for non-miranda method. DCHECK(is_copied || in_image_space) << resolved_methods << " is not in image starting at " << reinterpret_cast<void*>(header_.GetImageBegin()); if (!is_copied || in_image_space) { // Go through the array so that we don't need to do a slow map lookup. method->SetDexCacheResolvedMethods(*reinterpret_cast<ArtMethod***>(resolved_methods), sizeof(void*)); } } } private: const ImageHeader& header_; }; class VerifyClassInTableArtMethodVisitor : public ArtMethodVisitor { public: explicit VerifyClassInTableArtMethodVisitor(ClassTable* table) : table_(table) {} virtual void Visit(ArtMethod* method) SHARED_REQUIRES(Locks::mutator_lock_, Locks::classlinker_classes_lock_) { mirror::Class* klass = method->GetDeclaringClass(); if (klass != nullptr && !Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) { CHECK_EQ(table_->LookupByDescriptor(klass), klass) << PrettyClass(klass); } } private: ClassTable* const table_; }; class VerifyDeclaringClassVisitor : public ArtMethodVisitor { public: VerifyDeclaringClassVisitor() SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) : live_bitmap_(Runtime::Current()->GetHeap()->GetLiveBitmap()) {} virtual void Visit(ArtMethod* method) SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { mirror::Class* klass = method->GetDeclaringClassUnchecked(); if (klass != nullptr) { CHECK(live_bitmap_->Test(klass)) << "Image method has unmarked declaring class"; } } private: gc::accounting::HeapBitmap* const live_bitmap_; }; bool ClassLinker::UpdateAppImageClassLoadersAndDexCaches( gc::space::ImageSpace* space, Handle<mirror::ClassLoader> class_loader, Handle<mirror::ObjectArray<mirror::DexCache>> dex_caches, ClassTable::ClassSet* new_class_set, bool* out_forward_dex_cache_array, std::string* out_error_msg) { DCHECK(out_forward_dex_cache_array != nullptr); DCHECK(out_error_msg != nullptr); Thread* const self = Thread::Current(); gc::Heap* const heap = Runtime::Current()->GetHeap(); const ImageHeader& header = space->GetImageHeader(); { // Add image classes into the class table for the class loader, and fixup the dex caches and // class loader fields. WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); ClassTable* table = InsertClassTableForClassLoader(class_loader.Get()); // Dex cache array fixup is all or nothing, we must reject app images that have mixed since we // rely on clobering the dex cache arrays in the image to forward to bss. size_t num_dex_caches_with_bss_arrays = 0; const size_t num_dex_caches = dex_caches->GetLength(); for (size_t i = 0; i < num_dex_caches; i++) { mirror::DexCache* const dex_cache = dex_caches->Get(i); const DexFile* const dex_file = dex_cache->GetDexFile(); const OatFile::OatDexFile* oat_dex_file = dex_file->GetOatDexFile(); if (oat_dex_file != nullptr && oat_dex_file->GetDexCacheArrays() != nullptr) { ++num_dex_caches_with_bss_arrays; } } *out_forward_dex_cache_array = num_dex_caches_with_bss_arrays != 0; if (*out_forward_dex_cache_array) { if (num_dex_caches_with_bss_arrays != num_dex_caches) { // Reject application image since we cannot forward only some of the dex cache arrays. // TODO: We could get around this by having a dedicated forwarding slot. It should be an // uncommon case. *out_error_msg = StringPrintf("Dex caches in bss does not match total: %zu vs %zu", num_dex_caches_with_bss_arrays, num_dex_caches); return false; } } // Only add the classes to the class loader after the points where we can return false. for (size_t i = 0; i < num_dex_caches; i++) { mirror::DexCache* const dex_cache = dex_caches->Get(i); const DexFile* const dex_file = dex_cache->GetDexFile(); const OatFile::OatDexFile* oat_dex_file = dex_file->GetOatDexFile(); if (oat_dex_file != nullptr && oat_dex_file->GetDexCacheArrays() != nullptr) { // If the oat file expects the dex cache arrays to be in the BSS, then allocate there and // copy over the arrays. DCHECK(dex_file != nullptr); const size_t num_strings = dex_file->NumStringIds(); const size_t num_types = dex_file->NumTypeIds(); const size_t num_methods = dex_file->NumMethodIds(); const size_t num_fields = dex_file->NumFieldIds(); CHECK_EQ(num_strings, dex_cache->NumStrings()); CHECK_EQ(num_types, dex_cache->NumResolvedTypes()); CHECK_EQ(num_methods, dex_cache->NumResolvedMethods()); CHECK_EQ(num_fields, dex_cache->NumResolvedFields()); DexCacheArraysLayout layout(image_pointer_size_, dex_file); uint8_t* const raw_arrays = oat_dex_file->GetDexCacheArrays(); // The space is not yet visible to the GC, we can avoid the read barriers and use // std::copy_n. if (num_strings != 0u) { GcRoot<mirror::String>* const image_resolved_strings = dex_cache->GetStrings(); GcRoot<mirror::String>* const strings = reinterpret_cast<GcRoot<mirror::String>*>(raw_arrays + layout.StringsOffset()); for (size_t j = 0; kIsDebugBuild && j < num_strings; ++j) { DCHECK(strings[j].IsNull()); } std::copy_n(image_resolved_strings, num_strings, strings); dex_cache->SetStrings(strings); } if (num_types != 0u) { GcRoot<mirror::Class>* const image_resolved_types = dex_cache->GetResolvedTypes(); GcRoot<mirror::Class>* const types = reinterpret_cast<GcRoot<mirror::Class>*>(raw_arrays + layout.TypesOffset()); for (size_t j = 0; kIsDebugBuild && j < num_types; ++j) { DCHECK(types[j].IsNull()); } std::copy_n(image_resolved_types, num_types, types); // Store a pointer to the new location for fast ArtMethod patching without requiring map. // This leaves random garbage at the start of the dex cache array, but nobody should ever // read from it again. *reinterpret_cast<GcRoot<mirror::Class>**>(image_resolved_types) = types; dex_cache->SetResolvedTypes(types); } if (num_methods != 0u) { ArtMethod** const methods = reinterpret_cast<ArtMethod**>( raw_arrays + layout.MethodsOffset()); ArtMethod** const image_resolved_methods = dex_cache->GetResolvedMethods(); for (size_t j = 0; kIsDebugBuild && j < num_methods; ++j) { DCHECK(methods[j] == nullptr); } std::copy_n(image_resolved_methods, num_methods, methods); // Store a pointer to the new location for fast ArtMethod patching without requiring map. *reinterpret_cast<ArtMethod***>(image_resolved_methods) = methods; dex_cache->SetResolvedMethods(methods); } if (num_fields != 0u) { ArtField** const fields = reinterpret_cast<ArtField**>(raw_arrays + layout.FieldsOffset()); for (size_t j = 0; kIsDebugBuild && j < num_fields; ++j) { DCHECK(fields[j] == nullptr); } std::copy_n(dex_cache->GetResolvedFields(), num_fields, fields); dex_cache->SetResolvedFields(fields); } } { WriterMutexLock mu2(self, dex_lock_); // Make sure to do this after we update the arrays since we store the resolved types array // in DexCacheData in RegisterDexFileLocked. We need the array pointer to be the one in the // BSS. mirror::DexCache* existing_dex_cache = FindDexCacheLocked(self, *dex_file, /*allow_failure*/true); CHECK(existing_dex_cache == nullptr); StackHandleScope<1> hs3(self); RegisterDexFileLocked(*dex_file, hs3.NewHandle(dex_cache)); } GcRoot<mirror::Class>* const types = dex_cache->GetResolvedTypes(); const size_t num_types = dex_cache->NumResolvedTypes(); if (new_class_set == nullptr) { for (int32_t j = 0; j < static_cast<int32_t>(num_types); j++) { // The image space is not yet added to the heap, avoid read barriers. mirror::Class* klass = types[j].Read(); // There may also be boot image classes, if (space->HasAddress(klass)) { DCHECK_NE(klass->GetStatus(), mirror::Class::kStatusError); // Update the class loader from the one in the image class loader to the one that loaded // the app image. klass->SetClassLoader(class_loader.Get()); // The resolved type could be from another dex cache, go through the dex cache just in // case. May be null for array classes. if (klass->GetDexCacheStrings() != nullptr) { DCHECK(!klass->IsArrayClass()); klass->SetDexCacheStrings(klass->GetDexCache()->GetStrings()); } // If there are multiple dex caches, there may be the same class multiple times // in different dex caches. Check for this since inserting will add duplicates // otherwise. if (num_dex_caches > 1) { mirror::Class* existing = table->LookupByDescriptor(klass); if (existing != nullptr) { DCHECK_EQ(existing, klass) << PrettyClass(klass); } else { table->Insert(klass); } } else { table->Insert(klass); } // Double checked VLOG to avoid overhead. if (VLOG_IS_ON(image)) { VLOG(image) << PrettyClass(klass) << " " << klass->GetStatus(); if (!klass->IsArrayClass()) { VLOG(image) << "From " << klass->GetDexCache()->GetDexFile()->GetBaseLocation(); } VLOG(image) << "Direct methods"; for (ArtMethod& m : klass->GetDirectMethods(sizeof(void*))) { VLOG(image) << PrettyMethod(&m); } VLOG(image) << "Virtual methods"; for (ArtMethod& m : klass->GetVirtualMethods(sizeof(void*))) { VLOG(image) << PrettyMethod(&m); } } } else { DCHECK(klass == nullptr || heap->ObjectIsInBootImageSpace(klass)) << klass << " " << PrettyClass(klass); } } } if (kIsDebugBuild) { for (int32_t j = 0; j < static_cast<int32_t>(num_types); j++) { // The image space is not yet added to the heap, avoid read barriers. mirror::Class* klass = types[j].Read(); if (space->HasAddress(klass)) { DCHECK_NE(klass->GetStatus(), mirror::Class::kStatusError); if (kIsDebugBuild) { if (new_class_set != nullptr) { auto it = new_class_set->Find(GcRoot<mirror::Class>(klass)); DCHECK(it != new_class_set->end()); DCHECK_EQ(it->Read(), klass); mirror::Class* super_class = klass->GetSuperClass(); if (super_class != nullptr && !heap->ObjectIsInBootImageSpace(super_class)) { auto it2 = new_class_set->Find(GcRoot<mirror::Class>(super_class)); DCHECK(it2 != new_class_set->end()); DCHECK_EQ(it2->Read(), super_class); } } else { DCHECK_EQ(table->LookupByDescriptor(klass), klass); mirror::Class* super_class = klass->GetSuperClass(); if (super_class != nullptr && !heap->ObjectIsInBootImageSpace(super_class)) { CHECK_EQ(table->LookupByDescriptor(super_class), super_class); } } } if (kIsDebugBuild) { for (ArtMethod& m : klass->GetDirectMethods(sizeof(void*))) { const void* code = m.GetEntryPointFromQuickCompiledCode(); const void* oat_code = m.IsInvokable() ? GetQuickOatCodeFor(&m) : code; if (!IsQuickResolutionStub(code) && !IsQuickGenericJniStub(code) && !IsQuickToInterpreterBridge(code) && !m.IsNative()) { DCHECK_EQ(code, oat_code) << PrettyMethod(&m); } } for (ArtMethod& m : klass->GetVirtualMethods(sizeof(void*))) { const void* code = m.GetEntryPointFromQuickCompiledCode(); const void* oat_code = m.IsInvokable() ? GetQuickOatCodeFor(&m) : code; if (!IsQuickResolutionStub(code) && !IsQuickGenericJniStub(code) && !IsQuickToInterpreterBridge(code) && !m.IsNative()) { DCHECK_EQ(code, oat_code) << PrettyMethod(&m); } } } } } } } } if (*out_forward_dex_cache_array) { ScopedTrace timing("Fixup ArtMethod dex cache arrays"); FixupArtMethodArrayVisitor visitor(header); header.VisitPackedArtMethods(&visitor, space->Begin(), sizeof(void*)); Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader.Get()); } if (kVerifyArtMethodDeclaringClasses) { ScopedTrace timing("Verify declaring classes"); ReaderMutexLock rmu(self, *Locks::heap_bitmap_lock_); VerifyDeclaringClassVisitor visitor; header.VisitPackedArtMethods(&visitor, space->Begin(), sizeof(void*)); } return true; } // Update the class loader and resolved string dex cache array of classes. Should only be used on // classes in the image space. class UpdateClassLoaderAndResolvedStringsVisitor { public: UpdateClassLoaderAndResolvedStringsVisitor(gc::space::ImageSpace* space, mirror::ClassLoader* class_loader, bool forward_strings) : space_(space), class_loader_(class_loader), forward_strings_(forward_strings) {} bool operator()(mirror::Class* klass) const SHARED_REQUIRES(Locks::mutator_lock_) { if (forward_strings_) { GcRoot<mirror::String>* strings = klass->GetDexCacheStrings(); if (strings != nullptr) { DCHECK( space_->GetImageHeader().GetImageSection(ImageHeader::kSectionDexCacheArrays).Contains( reinterpret_cast<uint8_t*>(strings) - space_->Begin())) << "String dex cache array for " << PrettyClass(klass) << " is not in app image"; // Dex caches have already been updated, so take the strings pointer from there. GcRoot<mirror::String>* new_strings = klass->GetDexCache()->GetStrings(); DCHECK_NE(strings, new_strings); klass->SetDexCacheStrings(new_strings); } } // Finally, update class loader. klass->SetClassLoader(class_loader_); return true; } gc::space::ImageSpace* const space_; mirror::ClassLoader* const class_loader_; const bool forward_strings_; }; static std::unique_ptr<const DexFile> OpenOatDexFile(const OatFile* oat_file, const char* location, std::string* error_msg) SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(error_msg != nullptr); std::unique_ptr<const DexFile> dex_file; const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(location, nullptr); if (oat_dex_file == nullptr) { *error_msg = StringPrintf("Failed finding oat dex file for %s %s", oat_file->GetLocation().c_str(), location); return std::unique_ptr<const DexFile>(); } std::string inner_error_msg; dex_file = oat_dex_file->OpenDexFile(&inner_error_msg); if (dex_file == nullptr) { *error_msg = StringPrintf("Failed to open dex file %s from within oat file %s error '%s'", location, oat_file->GetLocation().c_str(), inner_error_msg.c_str()); return std::unique_ptr<const DexFile>(); } if (dex_file->GetLocationChecksum() != oat_dex_file->GetDexFileLocationChecksum()) { *error_msg = StringPrintf("Checksums do not match for %s: %x vs %x", location, dex_file->GetLocationChecksum(), oat_dex_file->GetDexFileLocationChecksum()); return std::unique_ptr<const DexFile>(); } return dex_file; } bool ClassLinker::OpenImageDexFiles(gc::space::ImageSpace* space, std::vector<std::unique_ptr<const DexFile>>* out_dex_files, std::string* error_msg) { ScopedAssertNoThreadSuspension nts(Thread::Current(), __FUNCTION__); const ImageHeader& header = space->GetImageHeader(); mirror::Object* dex_caches_object = header.GetImageRoot(ImageHeader::kDexCaches); DCHECK(dex_caches_object != nullptr); mirror::ObjectArray<mirror::DexCache>* dex_caches = dex_caches_object->AsObjectArray<mirror::DexCache>(); const OatFile* oat_file = space->GetOatFile(); for (int32_t i = 0; i < dex_caches->GetLength(); i++) { mirror::DexCache* dex_cache = dex_caches->Get(i); std::string dex_file_location(dex_cache->GetLocation()->ToModifiedUtf8()); std::unique_ptr<const DexFile> dex_file = OpenOatDexFile(oat_file, dex_file_location.c_str(), error_msg); if (dex_file == nullptr) { return false; } dex_cache->SetDexFile(dex_file.get()); out_dex_files->push_back(std::move(dex_file)); } return true; } bool ClassLinker::AddImageSpace( gc::space::ImageSpace* space, Handle<mirror::ClassLoader> class_loader, jobjectArray dex_elements, const char* dex_location, std::vector<std::unique_ptr<const DexFile>>* out_dex_files, std::string* error_msg) { DCHECK(out_dex_files != nullptr); DCHECK(error_msg != nullptr); const uint64_t start_time = NanoTime(); const bool app_image = class_loader.Get() != nullptr; const ImageHeader& header = space->GetImageHeader(); mirror::Object* dex_caches_object = header.GetImageRoot(ImageHeader::kDexCaches); DCHECK(dex_caches_object != nullptr); Runtime* const runtime = Runtime::Current(); gc::Heap* const heap = runtime->GetHeap(); Thread* const self = Thread::Current(); StackHandleScope<2> hs(self); Handle<mirror::ObjectArray<mirror::DexCache>> dex_caches( hs.NewHandle(dex_caches_object->AsObjectArray<mirror::DexCache>())); Handle<mirror::ObjectArray<mirror::Class>> class_roots(hs.NewHandle( header.GetImageRoot(ImageHeader::kClassRoots)->AsObjectArray<mirror::Class>())); const OatFile* oat_file = space->GetOatFile(); std::unordered_set<mirror::ClassLoader*> image_class_loaders; // Check that the image is what we are expecting. if (image_pointer_size_ != space->GetImageHeader().GetPointerSize()) { *error_msg = StringPrintf("Application image pointer size does not match runtime: %zu vs %zu", static_cast<size_t>(space->GetImageHeader().GetPointerSize()), image_pointer_size_); return false; } DCHECK(class_roots.Get() != nullptr); if (class_roots->GetLength() != static_cast<int32_t>(kClassRootsMax)) { *error_msg = StringPrintf("Expected %d class roots but got %d", class_roots->GetLength(), static_cast<int32_t>(kClassRootsMax)); return false; } // Check against existing class roots to make sure they match the ones in the boot image. for (size_t i = 0; i < kClassRootsMax; i++) { if (class_roots->Get(i) != GetClassRoot(static_cast<ClassRoot>(i))) { *error_msg = "App image class roots must have pointer equality with runtime ones."; return false; } } if (oat_file->GetOatHeader().GetDexFileCount() != static_cast<uint32_t>(dex_caches->GetLength())) { *error_msg = "Dex cache count and dex file count mismatch while trying to initialize from " "image"; return false; } StackHandleScope<1> hs2(self); MutableHandle<mirror::DexCache> h_dex_cache(hs2.NewHandle<mirror::DexCache>(nullptr)); for (int32_t i = 0; i < dex_caches->GetLength(); i++) { h_dex_cache.Assign(dex_caches->Get(i)); std::string dex_file_location(h_dex_cache->GetLocation()->ToModifiedUtf8()); // TODO: Only store qualified paths. // If non qualified, qualify it. if (dex_file_location.find('/') == std::string::npos) { std::string dex_location_path = dex_location; const size_t pos = dex_location_path.find_last_of('/'); CHECK_NE(pos, std::string::npos); dex_location_path = dex_location_path.substr(0, pos + 1); // Keep trailing '/' dex_file_location = dex_location_path + dex_file_location; } std::unique_ptr<const DexFile> dex_file = OpenOatDexFile(oat_file, dex_file_location.c_str(), error_msg); if (dex_file == nullptr) { return false; } if (app_image) { // The current dex file field is bogus, overwrite it so that we can get the dex file in the // loop below. h_dex_cache->SetDexFile(dex_file.get()); // Check that each class loader resolved the same way. // TODO: Store image class loaders as image roots. GcRoot<mirror::Class>* const types = h_dex_cache->GetResolvedTypes(); for (int32_t j = 0, num_types = h_dex_cache->NumResolvedTypes(); j < num_types; j++) { mirror::Class* klass = types[j].Read(); if (klass != nullptr) { DCHECK_NE(klass->GetStatus(), mirror::Class::kStatusError); mirror::ClassLoader* image_class_loader = klass->GetClassLoader(); image_class_loaders.insert(image_class_loader); } } } else { if (kSanityCheckObjects) { SanityCheckArtMethodPointerArray(h_dex_cache->GetResolvedMethods(), h_dex_cache->NumResolvedMethods(), image_pointer_size_, heap->GetBootImageSpaces()); } // Register dex files, keep track of existing ones that are conflicts. AppendToBootClassPath(*dex_file.get(), h_dex_cache); } out_dex_files->push_back(std::move(dex_file)); } if (app_image) { ScopedObjectAccessUnchecked soa(Thread::Current()); // Check that the class loader resolves the same way as the ones in the image. // Image class loader [A][B][C][image dex files] // Class loader = [???][dex_elements][image dex files] // Need to ensure that [???][dex_elements] == [A][B][C]. // For each class loader, PathClassLoader, the laoder checks the parent first. Also the logic // for PathClassLoader does this by looping through the array of dex files. To ensure they // resolve the same way, simply flatten the hierarchy in the way the resolution order would be, // and check that the dex file names are the same. for (mirror::ClassLoader* image_class_loader : image_class_loaders) { if (IsBootClassLoader(soa, image_class_loader)) { // The dex cache can reference types from the boot class loader. continue; } std::list<mirror::String*> image_dex_file_names; std::string temp_error_msg; if (!FlattenPathClassLoader(image_class_loader, &image_dex_file_names, &temp_error_msg)) { *error_msg = StringPrintf("Failed to flatten image class loader hierarchy '%s'", temp_error_msg.c_str()); return false; } std::list<mirror::String*> loader_dex_file_names; if (!FlattenPathClassLoader(class_loader.Get(), &loader_dex_file_names, &temp_error_msg)) { *error_msg = StringPrintf("Failed to flatten class loader hierarchy '%s'", temp_error_msg.c_str()); return false; } // Add the temporary dex path list elements at the end. auto* elements = soa.Decode<mirror::ObjectArray<mirror::Object>*>(dex_elements); for (size_t i = 0, num_elems = elements->GetLength(); i < num_elems; ++i) { mirror::Object* element = elements->GetWithoutChecks(i); if (element != nullptr) { // If we are somewhere in the middle of the array, there may be nulls at the end. loader_dex_file_names.push_back(GetDexPathListElementName(soa, element)); } } // Ignore the number of image dex files since we are adding those to the class loader anyways. CHECK_GE(static_cast<size_t>(image_dex_file_names.size()), static_cast<size_t>(dex_caches->GetLength())); size_t image_count = image_dex_file_names.size() - dex_caches->GetLength(); // Check that the dex file names match. bool equal = image_count == loader_dex_file_names.size(); if (equal) { auto it1 = image_dex_file_names.begin(); auto it2 = loader_dex_file_names.begin(); for (size_t i = 0; equal && i < image_count; ++i, ++it1, ++it2) { equal = equal && (*it1)->Equals(*it2); } } if (!equal) { VLOG(image) << "Image dex files " << image_dex_file_names.size(); for (mirror::String* name : image_dex_file_names) { VLOG(image) << name->ToModifiedUtf8(); } VLOG(image) << "Loader dex files " << loader_dex_file_names.size(); for (mirror::String* name : loader_dex_file_names) { VLOG(image) << name->ToModifiedUtf8(); } *error_msg = "Rejecting application image due to class loader mismatch"; // Ignore class loader mismatch for now since these would just use possibly incorrect // oat code anyways. The structural class check should be done in the parent. } } } if (kSanityCheckObjects) { for (int32_t i = 0; i < dex_caches->GetLength(); i++) { auto* dex_cache = dex_caches->Get(i); for (size_t j = 0; j < dex_cache->NumResolvedFields(); ++j) { auto* field = dex_cache->GetResolvedField(j, image_pointer_size_); if (field != nullptr) { CHECK(field->GetDeclaringClass()->GetClass() != nullptr); } } } if (!app_image) { heap->VisitObjects(SanityCheckObjectsCallback, nullptr); } } // Set entry point to interpreter if in InterpretOnly mode. if (!runtime->IsAotCompiler() && runtime->GetInstrumentation()->InterpretOnly()) { SetInterpreterEntrypointArtMethodVisitor visitor(image_pointer_size_); header.VisitPackedArtMethods(&visitor, space->Begin(), image_pointer_size_); } ClassTable* class_table = nullptr; { WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); class_table = InsertClassTableForClassLoader(class_loader.Get()); } // If we have a class table section, read it and use it for verification in // UpdateAppImageClassLoadersAndDexCaches. ClassTable::ClassSet temp_set; const ImageSection& class_table_section = header.GetImageSection(ImageHeader::kSectionClassTable); const bool added_class_table = class_table_section.Size() > 0u; if (added_class_table) { const uint64_t start_time2 = NanoTime(); size_t read_count = 0; temp_set = ClassTable::ClassSet(space->Begin() + class_table_section.Offset(), /*make copy*/false, &read_count); if (!app_image) { dex_cache_boot_image_class_lookup_required_ = false; } VLOG(image) << "Adding class table classes took " << PrettyDuration(NanoTime() - start_time2); } if (app_image) { bool forward_dex_cache_arrays = false; if (!UpdateAppImageClassLoadersAndDexCaches(space, class_loader, dex_caches, added_class_table ? &temp_set : nullptr, /*out*/&forward_dex_cache_arrays, /*out*/error_msg)) { return false; } // Update class loader and resolved strings. If added_class_table is false, the resolved // strings were forwarded UpdateAppImageClassLoadersAndDexCaches. UpdateClassLoaderAndResolvedStringsVisitor visitor(space, class_loader.Get(), forward_dex_cache_arrays); if (added_class_table) { for (GcRoot<mirror::Class>& root : temp_set) { visitor(root.Read()); } } // forward_dex_cache_arrays is true iff we copied all of the dex cache arrays into the .bss. // In this case, madvise away the dex cache arrays section of the image to reduce RAM usage and // mark as PROT_NONE to catch any invalid accesses. if (forward_dex_cache_arrays) { const ImageSection& dex_cache_section = header.GetImageSection( ImageHeader::kSectionDexCacheArrays); uint8_t* section_begin = AlignUp(space->Begin() + dex_cache_section.Offset(), kPageSize); uint8_t* section_end = AlignDown(space->Begin() + dex_cache_section.End(), kPageSize); if (section_begin < section_end) { madvise(section_begin, section_end - section_begin, MADV_DONTNEED); mprotect(section_begin, section_end - section_begin, PROT_NONE); VLOG(image) << "Released and protected dex cache array image section from " << reinterpret_cast<const void*>(section_begin) << "-" << reinterpret_cast<const void*>(section_end); } } } if (added_class_table) { WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); class_table->AddClassSet(std::move(temp_set)); } if (kIsDebugBuild && app_image) { // This verification needs to happen after the classes have been added to the class loader. // Since it ensures classes are in the class table. VerifyClassInTableArtMethodVisitor visitor2(class_table); header.VisitPackedArtMethods(&visitor2, space->Begin(), sizeof(void*)); } VLOG(class_linker) << "Adding image space took " << PrettyDuration(NanoTime() - start_time); return true; } bool ClassLinker::ClassInClassTable(mirror::Class* klass) { ClassTable* const class_table = ClassTableForClassLoader(klass->GetClassLoader()); return class_table != nullptr && class_table->Contains(klass); } void ClassLinker::VisitClassRoots(RootVisitor* visitor, VisitRootFlags flags) { // Acquire tracing_enabled before locking class linker lock to prevent lock order violation. Since // enabling tracing requires the mutator lock, there are no race conditions here. const bool tracing_enabled = Trace::IsTracingEnabled(); Thread* const self = Thread::Current(); WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor( visitor, RootInfo(kRootStickyClass)); if ((flags & kVisitRootFlagAllRoots) != 0) { // Argument for how root visiting deals with ArtField and ArtMethod roots. // There is 3 GC cases to handle: // Non moving concurrent: // This case is easy to handle since the reference members of ArtMethod and ArtFields are held // live by the class and class roots. // // Moving non-concurrent: // This case needs to call visit VisitNativeRoots in case the classes or dex cache arrays move. // To prevent missing roots, this case needs to ensure that there is no // suspend points between the point which we allocate ArtMethod arrays and place them in a // class which is in the class table. // // Moving concurrent: // Need to make sure to not copy ArtMethods without doing read barriers since the roots are // marked concurrently and we don't hold the classlinker_classes_lock_ when we do the copy. boot_class_table_.VisitRoots(buffered_visitor); // If tracing is enabled, then mark all the class loaders to prevent unloading. if (tracing_enabled) { for (const ClassLoaderData& data : class_loaders_) { GcRoot<mirror::Object> root(GcRoot<mirror::Object>(self->DecodeJObject(data.weak_root))); root.VisitRoot(visitor, RootInfo(kRootVMInternal)); } } } else if ((flags & kVisitRootFlagNewRoots) != 0) { for (auto& root : new_class_roots_) { mirror::Class* old_ref = root.Read<kWithoutReadBarrier>(); root.VisitRoot(visitor, RootInfo(kRootStickyClass)); mirror::Class* new_ref = root.Read<kWithoutReadBarrier>(); // Concurrent moving GC marked new roots through the to-space invariant. CHECK_EQ(new_ref, old_ref); } } buffered_visitor.Flush(); // Flush before clearing new_class_roots_. if ((flags & kVisitRootFlagClearRootLog) != 0) { new_class_roots_.clear(); } if ((flags & kVisitRootFlagStartLoggingNewRoots) != 0) { log_new_class_table_roots_ = true; } else if ((flags & kVisitRootFlagStopLoggingNewRoots) != 0) { log_new_class_table_roots_ = false; } // We deliberately ignore the class roots in the image since we // handle image roots by using the MS/CMS rescanning of dirty cards. } // Keep in sync with InitCallback. Anything we visit, we need to // reinit references to when reinitializing a ClassLinker from a // mapped image. void ClassLinker::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) { class_roots_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal)); VisitClassRoots(visitor, flags); array_iftable_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal)); // Instead of visiting the find_array_class_cache_ drop it so that it doesn't prevent class // unloading if we are marking roots. DropFindArrayClassCache(); } class VisitClassLoaderClassesVisitor : public ClassLoaderVisitor { public: explicit VisitClassLoaderClassesVisitor(ClassVisitor* visitor) : visitor_(visitor), done_(false) {} void Visit(mirror::ClassLoader* class_loader) SHARED_REQUIRES(Locks::classlinker_classes_lock_, Locks::mutator_lock_) OVERRIDE { ClassTable* const class_table = class_loader->GetClassTable(); if (!done_ && class_table != nullptr && !class_table->Visit(*visitor_)) { // If the visitor ClassTable returns false it means that we don't need to continue. done_ = true; } } private: ClassVisitor* const visitor_; // If done is true then we don't need to do any more visiting. bool done_; }; void ClassLinker::VisitClassesInternal(ClassVisitor* visitor) { if (boot_class_table_.Visit(*visitor)) { VisitClassLoaderClassesVisitor loader_visitor(visitor); VisitClassLoaders(&loader_visitor); } } void ClassLinker::VisitClasses(ClassVisitor* visitor) { if (dex_cache_boot_image_class_lookup_required_) { AddBootImageClassesToClassTable(); } Thread* const self = Thread::Current(); ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_); // Not safe to have thread suspension when we are holding a lock. if (self != nullptr) { ScopedAssertNoThreadSuspension nts(self, __FUNCTION__); VisitClassesInternal(visitor); } else { VisitClassesInternal(visitor); } } class GetClassesInToVector : public ClassVisitor { public: bool operator()(mirror::Class* klass) OVERRIDE { classes_.push_back(klass); return true; } std::vector<mirror::Class*> classes_; }; class GetClassInToObjectArray : public ClassVisitor { public: explicit GetClassInToObjectArray(mirror::ObjectArray<mirror::Class>* arr) : arr_(arr), index_(0) {} bool operator()(mirror::Class* klass) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { ++index_; if (index_ <= arr_->GetLength()) { arr_->Set(index_ - 1, klass); return true; } return false; } bool Succeeded() const SHARED_REQUIRES(Locks::mutator_lock_) { return index_ <= arr_->GetLength(); } private: mirror::ObjectArray<mirror::Class>* const arr_; int32_t index_; }; void ClassLinker::VisitClassesWithoutClassesLock(ClassVisitor* visitor) { // TODO: it may be possible to avoid secondary storage if we iterate over dex caches. The problem // is avoiding duplicates. Thread* const self = Thread::Current(); if (!kMovingClasses) { ScopedAssertNoThreadSuspension nts(self, __FUNCTION__); GetClassesInToVector accumulator; VisitClasses(&accumulator); for (mirror::Class* klass : accumulator.classes_) { if (!visitor->operator()(klass)) { return; } } } else { StackHandleScope<1> hs(self); auto classes = hs.NewHandle<mirror::ObjectArray<mirror::Class>>(nullptr); // We size the array assuming classes won't be added to the class table during the visit. // If this assumption fails we iterate again. while (true) { size_t class_table_size; { ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_); // Add 100 in case new classes get loaded when we are filling in the object array. class_table_size = NumZygoteClasses() + NumNonZygoteClasses() + 100; } mirror::Class* class_type = mirror::Class::GetJavaLangClass(); mirror::Class* array_of_class = FindArrayClass(self, &class_type); classes.Assign( mirror::ObjectArray<mirror::Class>::Alloc(self, array_of_class, class_table_size)); CHECK(classes.Get() != nullptr); // OOME. GetClassInToObjectArray accumulator(classes.Get()); VisitClasses(&accumulator); if (accumulator.Succeeded()) { break; } } for (int32_t i = 0; i < classes->GetLength(); ++i) { // If the class table shrank during creation of the clases array we expect null elements. If // the class table grew then the loop repeats. If classes are created after the loop has // finished then we don't visit. mirror::Class* klass = classes->Get(i); if (klass != nullptr && !visitor->operator()(klass)) { return; } } } } ClassLinker::~ClassLinker() { mirror::Class::ResetClass(); mirror::Constructor::ResetClass(); mirror::Field::ResetClass(); mirror::Method::ResetClass(); mirror::Reference::ResetClass(); mirror::StackTraceElement::ResetClass(); mirror::String::ResetClass(); mirror::Throwable::ResetClass(); mirror::BooleanArray::ResetArrayClass(); mirror::ByteArray::ResetArrayClass(); mirror::CharArray::ResetArrayClass(); mirror::Constructor::ResetArrayClass(); mirror::DoubleArray::ResetArrayClass(); mirror::Field::ResetArrayClass(); mirror::FloatArray::ResetArrayClass(); mirror::Method::ResetArrayClass(); mirror::IntArray::ResetArrayClass(); mirror::LongArray::ResetArrayClass(); mirror::ShortArray::ResetArrayClass(); Thread* const self = Thread::Current(); for (const ClassLoaderData& data : class_loaders_) { DeleteClassLoader(self, data); } class_loaders_.clear(); } void ClassLinker::DeleteClassLoader(Thread* self, const ClassLoaderData& data) { Runtime* const runtime = Runtime::Current(); JavaVMExt* const vm = runtime->GetJavaVM(); vm->DeleteWeakGlobalRef(self, data.weak_root); // Notify the JIT that we need to remove the methods and/or profiling info. if (runtime->GetJit() != nullptr) { jit::JitCodeCache* code_cache = runtime->GetJit()->GetCodeCache(); if (code_cache != nullptr) { code_cache->RemoveMethodsIn(self, *data.allocator); } } delete data.allocator; delete data.class_table; } mirror::PointerArray* ClassLinker::AllocPointerArray(Thread* self, size_t length) { return down_cast<mirror::PointerArray*>(image_pointer_size_ == 8u ? static_cast<mirror::Array*>(mirror::LongArray::Alloc(self, length)) : static_cast<mirror::Array*>(mirror::IntArray::Alloc(self, length))); } mirror::DexCache* ClassLinker::AllocDexCache(Thread* self, const DexFile& dex_file, LinearAlloc* linear_alloc) { StackHandleScope<6> hs(self); auto dex_cache(hs.NewHandle(down_cast<mirror::DexCache*>( GetClassRoot(kJavaLangDexCache)->AllocObject(self)))); if (dex_cache.Get() == nullptr) { self->AssertPendingOOMException(); return nullptr; } auto location(hs.NewHandle(intern_table_->InternStrong(dex_file.GetLocation().c_str()))); if (location.Get() == nullptr) { self->AssertPendingOOMException(); return nullptr; } DexCacheArraysLayout layout(image_pointer_size_, &dex_file); uint8_t* raw_arrays = nullptr; if (dex_file.GetOatDexFile() != nullptr && dex_file.GetOatDexFile()->GetDexCacheArrays() != nullptr) { raw_arrays = dex_file.GetOatDexFile()->GetDexCacheArrays(); } else if (dex_file.NumStringIds() != 0u || dex_file.NumTypeIds() != 0u || dex_file.NumMethodIds() != 0u || dex_file.NumFieldIds() != 0u) { // NOTE: We "leak" the raw_arrays because we never destroy the dex cache. DCHECK(image_pointer_size_ == 4u || image_pointer_size_ == 8u); // Zero-initialized. raw_arrays = reinterpret_cast<uint8_t*>(linear_alloc->Alloc(self, layout.Size())); } GcRoot<mirror::String>* strings = (dex_file.NumStringIds() == 0u) ? nullptr : reinterpret_cast<GcRoot<mirror::String>*>(raw_arrays + layout.StringsOffset()); GcRoot<mirror::Class>* types = (dex_file.NumTypeIds() == 0u) ? nullptr : reinterpret_cast<GcRoot<mirror::Class>*>(raw_arrays + layout.TypesOffset()); ArtMethod** methods = (dex_file.NumMethodIds() == 0u) ? nullptr : reinterpret_cast<ArtMethod**>(raw_arrays + layout.MethodsOffset()); ArtField** fields = (dex_file.NumFieldIds() == 0u) ? nullptr : reinterpret_cast<ArtField**>(raw_arrays + layout.FieldsOffset()); if (kIsDebugBuild) { // Sanity check to make sure all the dex cache arrays are empty. b/28992179 for (size_t i = 0; i < dex_file.NumStringIds(); ++i) { CHECK(strings[i].Read<kWithoutReadBarrier>() == nullptr); } for (size_t i = 0; i < dex_file.NumTypeIds(); ++i) { CHECK(types[i].Read<kWithoutReadBarrier>() == nullptr); } for (size_t i = 0; i < dex_file.NumMethodIds(); ++i) { CHECK(mirror::DexCache::GetElementPtrSize(methods, i, image_pointer_size_) == nullptr); } for (size_t i = 0; i < dex_file.NumFieldIds(); ++i) { CHECK(mirror::DexCache::GetElementPtrSize(fields, i, image_pointer_size_) == nullptr); } } dex_cache->Init(&dex_file, location.Get(), strings, dex_file.NumStringIds(), types, dex_file.NumTypeIds(), methods, dex_file.NumMethodIds(), fields, dex_file.NumFieldIds(), image_pointer_size_); return dex_cache.Get(); } mirror::Class* ClassLinker::AllocClass(Thread* self, mirror::Class* java_lang_Class, uint32_t class_size) { DCHECK_GE(class_size, sizeof(mirror::Class)); gc::Heap* heap = Runtime::Current()->GetHeap(); mirror::Class::InitializeClassVisitor visitor(class_size); mirror::Object* k = kMovingClasses ? heap->AllocObject<true>(self, java_lang_Class, class_size, visitor) : heap->AllocNonMovableObject<true>(self, java_lang_Class, class_size, visitor); if (UNLIKELY(k == nullptr)) { self->AssertPendingOOMException(); return nullptr; } return k->AsClass(); } mirror::Class* ClassLinker::AllocClass(Thread* self, uint32_t class_size) { return AllocClass(self, GetClassRoot(kJavaLangClass), class_size); } mirror::ObjectArray<mirror::StackTraceElement>* ClassLinker::AllocStackTraceElementArray( Thread* self, size_t length) { return mirror::ObjectArray<mirror::StackTraceElement>::Alloc( self, GetClassRoot(kJavaLangStackTraceElementArrayClass), length); } mirror::Class* ClassLinker::EnsureResolved(Thread* self, const char* descriptor, mirror::Class* klass) { DCHECK(klass != nullptr); // For temporary classes we must wait for them to be retired. if (init_done_ && klass->IsTemp()) { CHECK(!klass->IsResolved()); if (klass->IsErroneous()) { ThrowEarlierClassFailure(klass); return nullptr; } StackHandleScope<1> hs(self); Handle<mirror::Class> h_class(hs.NewHandle(klass)); ObjectLock<mirror::Class> lock(self, h_class); // Loop and wait for the resolving thread to retire this class. while (!h_class->IsRetired() && !h_class->IsErroneous()) { lock.WaitIgnoringInterrupts(); } if (h_class->IsErroneous()) { ThrowEarlierClassFailure(h_class.Get()); return nullptr; } CHECK(h_class->IsRetired()); // Get the updated class from class table. klass = LookupClass(self, descriptor, ComputeModifiedUtf8Hash(descriptor), h_class.Get()->GetClassLoader()); } // Wait for the class if it has not already been linked. if (!klass->IsResolved() && !klass->IsErroneous()) { StackHandleScope<1> hs(self); HandleWrapper<mirror::Class> h_class(hs.NewHandleWrapper(&klass)); ObjectLock<mirror::Class> lock(self, h_class); // Check for circular dependencies between classes. if (!h_class->IsResolved() && h_class->GetClinitThreadId() == self->GetTid()) { ThrowClassCircularityError(h_class.Get()); mirror::Class::SetStatus(h_class, mirror::Class::kStatusError, self); return nullptr; } // Wait for the pending initialization to complete. while (!h_class->IsResolved() && !h_class->IsErroneous()) { lock.WaitIgnoringInterrupts(); } } if (klass->IsErroneous()) { ThrowEarlierClassFailure(klass); return nullptr; } // Return the loaded class. No exceptions should be pending. CHECK(klass->IsResolved()) << PrettyClass(klass); self->AssertNoPendingException(); return klass; } typedef std::pair<const DexFile*, const DexFile::ClassDef*> ClassPathEntry; // Search a collection of DexFiles for a descriptor ClassPathEntry FindInClassPath(const char* descriptor, size_t hash, const std::vector<const DexFile*>& class_path) { for (const DexFile* dex_file : class_path) { const DexFile::ClassDef* dex_class_def = dex_file->FindClassDef(descriptor, hash); if (dex_class_def != nullptr) { return ClassPathEntry(dex_file, dex_class_def); } } return ClassPathEntry(nullptr, nullptr); } bool ClassLinker::FindClassInPathClassLoader(ScopedObjectAccessAlreadyRunnable& soa, Thread* self, const char* descriptor, size_t hash, Handle<mirror::ClassLoader> class_loader, mirror::Class** result) { // Termination case: boot class-loader. if (IsBootClassLoader(soa, class_loader.Get())) { // The boot class loader, search the boot class path. ClassPathEntry pair = FindInClassPath(descriptor, hash, boot_class_path_); if (pair.second != nullptr) { mirror::Class* klass = LookupClass(self, descriptor, hash, nullptr); if (klass != nullptr) { *result = EnsureResolved(self, descriptor, klass); } else { *result = DefineClass(self, descriptor, hash, ScopedNullHandle<mirror::ClassLoader>(), *pair.first, *pair.second); } if (*result == nullptr) { CHECK(self->IsExceptionPending()) << descriptor; self->ClearException(); } } else { *result = nullptr; } return true; } // Unsupported class-loader? if (class_loader->GetClass() != soa.Decode<mirror::Class*>(WellKnownClasses::dalvik_system_PathClassLoader)) { *result = nullptr; return false; } // Handles as RegisterDexFile may allocate dex caches (and cause thread suspension). StackHandleScope<4> hs(self); Handle<mirror::ClassLoader> h_parent(hs.NewHandle(class_loader->GetParent())); bool recursive_result = FindClassInPathClassLoader(soa, self, descriptor, hash, h_parent, result); if (!recursive_result) { // Something wrong up the chain. return false; } if (*result != nullptr) { // Found the class up the chain. return true; } // Handle this step. // Handle as if this is the child PathClassLoader. // The class loader is a PathClassLoader which inherits from BaseDexClassLoader. // We need to get the DexPathList and loop through it. ArtField* const cookie_field = soa.DecodeField(WellKnownClasses::dalvik_system_DexFile_cookie); ArtField* const dex_file_field = soa.DecodeField(WellKnownClasses::dalvik_system_DexPathList__Element_dexFile); mirror::Object* dex_path_list = soa.DecodeField(WellKnownClasses::dalvik_system_PathClassLoader_pathList)-> GetObject(class_loader.Get()); if (dex_path_list != nullptr && dex_file_field != nullptr && cookie_field != nullptr) { // DexPathList has an array dexElements of Elements[] which each contain a dex file. mirror::Object* dex_elements_obj = soa.DecodeField(WellKnownClasses::dalvik_system_DexPathList_dexElements)-> GetObject(dex_path_list); // Loop through each dalvik.system.DexPathList$Element's dalvik.system.DexFile and look // at the mCookie which is a DexFile vector. if (dex_elements_obj != nullptr) { Handle<mirror::ObjectArray<mirror::Object>> dex_elements = hs.NewHandle(dex_elements_obj->AsObjectArray<mirror::Object>()); for (int32_t i = 0; i < dex_elements->GetLength(); ++i) { mirror::Object* element = dex_elements->GetWithoutChecks(i); if (element == nullptr) { // Should never happen, fall back to java code to throw a NPE. break; } mirror::Object* dex_file = dex_file_field->GetObject(element); if (dex_file != nullptr) { mirror::LongArray* long_array = cookie_field->GetObject(dex_file)->AsLongArray(); if (long_array == nullptr) { // This should never happen so log a warning. LOG(WARNING) << "Null DexFile::mCookie for " << descriptor; break; } int32_t long_array_size = long_array->GetLength(); // First element is the oat file. for (int32_t j = kDexFileIndexStart; j < long_array_size; ++j) { const DexFile* cp_dex_file = reinterpret_cast<const DexFile*>(static_cast<uintptr_t>( long_array->GetWithoutChecks(j))); const DexFile::ClassDef* dex_class_def = cp_dex_file->FindClassDef(descriptor, hash); if (dex_class_def != nullptr) { mirror::Class* klass = DefineClass(self, descriptor, hash, class_loader, *cp_dex_file, *dex_class_def); if (klass == nullptr) { CHECK(self->IsExceptionPending()) << descriptor; self->ClearException(); // TODO: Is it really right to break here, and not check the other dex files? return true; } *result = klass; return true; } } } } } self->AssertNoPendingException(); } // Result is still null from the parent call, no need to set it again... return true; } mirror::Class* ClassLinker::FindClass(Thread* self, const char* descriptor, Handle<mirror::ClassLoader> class_loader) { DCHECK_NE(*descriptor, '\0') << "descriptor is empty string"; DCHECK(self != nullptr); self->AssertNoPendingException(); if (descriptor[1] == '\0') { // only the descriptors of primitive types should be 1 character long, also avoid class lookup // for primitive classes that aren't backed by dex files. return FindPrimitiveClass(descriptor[0]); } const size_t hash = ComputeModifiedUtf8Hash(descriptor); // Find the class in the loaded classes table. mirror::Class* klass = LookupClass(self, descriptor, hash, class_loader.Get()); if (klass != nullptr) { return EnsureResolved(self, descriptor, klass); } // Class is not yet loaded. if (descriptor[0] == '[') { return CreateArrayClass(self, descriptor, hash, class_loader); } else if (class_loader.Get() == nullptr) { // The boot class loader, search the boot class path. ClassPathEntry pair = FindInClassPath(descriptor, hash, boot_class_path_); if (pair.second != nullptr) { return DefineClass(self, descriptor, hash, ScopedNullHandle<mirror::ClassLoader>(), *pair.first, *pair.second); } else { // The boot class loader is searched ahead of the application class loader, failures are // expected and will be wrapped in a ClassNotFoundException. Use the pre-allocated error to // trigger the chaining with a proper stack trace. mirror::Throwable* pre_allocated = Runtime::Current()->GetPreAllocatedNoClassDefFoundError(); self->SetException(pre_allocated); return nullptr; } } else { ScopedObjectAccessUnchecked soa(self); mirror::Class* cp_klass; if (FindClassInPathClassLoader(soa, self, descriptor, hash, class_loader, &cp_klass)) { // The chain was understood. So the value in cp_klass is either the class we were looking // for, or not found. if (cp_klass != nullptr) { return cp_klass; } // TODO: We handle the boot classpath loader in FindClassInPathClassLoader. Try to unify this // and the branch above. TODO: throw the right exception here. // We'll let the Java-side rediscover all this and throw the exception with the right stack // trace. } if (Runtime::Current()->IsAotCompiler()) { // Oops, compile-time, can't run actual class-loader code. mirror::Throwable* pre_allocated = Runtime::Current()->GetPreAllocatedNoClassDefFoundError(); self->SetException(pre_allocated); return nullptr; } ScopedLocalRef<jobject> class_loader_object(soa.Env(), soa.AddLocalReference<jobject>(class_loader.Get())); std::string class_name_string(DescriptorToDot(descriptor)); ScopedLocalRef<jobject> result(soa.Env(), nullptr); { ScopedThreadStateChange tsc(self, kNative); ScopedLocalRef<jobject> class_name_object(soa.Env(), soa.Env()->NewStringUTF(class_name_string.c_str())); if (class_name_object.get() == nullptr) { DCHECK(self->IsExceptionPending()); // OOME. return nullptr; } CHECK(class_loader_object.get() != nullptr); result.reset(soa.Env()->CallObjectMethod(class_loader_object.get(), WellKnownClasses::java_lang_ClassLoader_loadClass, class_name_object.get())); } if (self->IsExceptionPending()) { // If the ClassLoader threw, pass that exception up. return nullptr; } else if (result.get() == nullptr) { // broken loader - throw NPE to be compatible with Dalvik ThrowNullPointerException(StringPrintf("ClassLoader.loadClass returned null for %s", class_name_string.c_str()).c_str()); return nullptr; } else { // success, return mirror::Class* return soa.Decode<mirror::Class*>(result.get()); } } UNREACHABLE(); } mirror::Class* ClassLinker::DefineClass(Thread* self, const char* descriptor, size_t hash, Handle<mirror::ClassLoader> class_loader, const DexFile& dex_file, const DexFile::ClassDef& dex_class_def) { StackHandleScope<3> hs(self); auto klass = hs.NewHandle<mirror::Class>(nullptr); // Load the class from the dex file. if (UNLIKELY(!init_done_)) { // finish up init of hand crafted class_roots_ if (strcmp(descriptor, "Ljava/lang/Object;") == 0) { klass.Assign(GetClassRoot(kJavaLangObject)); } else if (strcmp(descriptor, "Ljava/lang/Class;") == 0) { klass.Assign(GetClassRoot(kJavaLangClass)); } else if (strcmp(descriptor, "Ljava/lang/String;") == 0) { klass.Assign(GetClassRoot(kJavaLangString)); } else if (strcmp(descriptor, "Ljava/lang/ref/Reference;") == 0) { klass.Assign(GetClassRoot(kJavaLangRefReference)); } else if (strcmp(descriptor, "Ljava/lang/DexCache;") == 0) { klass.Assign(GetClassRoot(kJavaLangDexCache)); } } if (klass.Get() == nullptr) { // Allocate a class with the status of not ready. // Interface object should get the right size here. Regular class will // figure out the right size later and be replaced with one of the right // size when the class becomes resolved. klass.Assign(AllocClass(self, SizeOfClassWithoutEmbeddedTables(dex_file, dex_class_def))); } if (UNLIKELY(klass.Get() == nullptr)) { self->AssertPendingOOMException(); return nullptr; } mirror::DexCache* dex_cache = RegisterDexFile(dex_file, class_loader.Get()); if (dex_cache == nullptr) { self->AssertPendingOOMException(); return nullptr; } klass->SetDexCache(dex_cache); SetupClass(dex_file, dex_class_def, klass, class_loader.Get()); // Mark the string class by setting its access flag. if (UNLIKELY(!init_done_)) { if (strcmp(descriptor, "Ljava/lang/String;") == 0) { klass->SetStringClass(); } } ObjectLock<mirror::Class> lock(self, klass); klass->SetClinitThreadId(self->GetTid()); // Add the newly loaded class to the loaded classes table. mirror::Class* existing = InsertClass(descriptor, klass.Get(), hash); if (existing != nullptr) { // We failed to insert because we raced with another thread. Calling EnsureResolved may cause // this thread to block. return EnsureResolved(self, descriptor, existing); } // Load the fields and other things after we are inserted in the table. This is so that we don't // end up allocating unfree-able linear alloc resources and then lose the race condition. The // other reason is that the field roots are only visited from the class table. So we need to be // inserted before we allocate / fill in these fields. LoadClass(self, dex_file, dex_class_def, klass); if (self->IsExceptionPending()) { VLOG(class_linker) << self->GetException()->Dump(); // An exception occured during load, set status to erroneous while holding klass' lock in case // notification is necessary. if (!klass->IsErroneous()) { mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self); } return nullptr; } // Finish loading (if necessary) by finding parents CHECK(!klass->IsLoaded()); if (!LoadSuperAndInterfaces(klass, dex_file)) { // Loading failed. if (!klass->IsErroneous()) { mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self); } return nullptr; } CHECK(klass->IsLoaded()); // Link the class (if necessary) CHECK(!klass->IsResolved()); // TODO: Use fast jobjects? auto interfaces = hs.NewHandle<mirror::ObjectArray<mirror::Class>>(nullptr); MutableHandle<mirror::Class> h_new_class = hs.NewHandle<mirror::Class>(nullptr); if (!LinkClass(self, descriptor, klass, interfaces, &h_new_class)) { // Linking failed. if (!klass->IsErroneous()) { mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self); } return nullptr; } self->AssertNoPendingException(); CHECK(h_new_class.Get() != nullptr) << descriptor; CHECK(h_new_class->IsResolved()) << descriptor; // Instrumentation may have updated entrypoints for all methods of all // classes. However it could not update methods of this class while we // were loading it. Now the class is resolved, we can update entrypoints // as required by instrumentation. if (Runtime::Current()->GetInstrumentation()->AreExitStubsInstalled()) { // We must be in the kRunnable state to prevent instrumentation from // suspending all threads to update entrypoints while we are doing it // for this class. DCHECK_EQ(self->GetState(), kRunnable); Runtime::Current()->GetInstrumentation()->InstallStubsForClass(h_new_class.Get()); } /* * We send CLASS_PREPARE events to the debugger from here. The * definition of "preparation" is creating the static fields for a * class and initializing them to the standard default values, but not * executing any code (that comes later, during "initialization"). * * We did the static preparation in LinkClass. * * The class has been prepared and resolved but possibly not yet verified * at this point. */ Dbg::PostClassPrepare(h_new_class.Get()); // Notify native debugger of the new class and its layout. jit::Jit::NewTypeLoadedIfUsingJit(h_new_class.Get()); return h_new_class.Get(); } uint32_t ClassLinker::SizeOfClassWithoutEmbeddedTables(const DexFile& dex_file, const DexFile::ClassDef& dex_class_def) { const uint8_t* class_data = dex_file.GetClassData(dex_class_def); size_t num_ref = 0; size_t num_8 = 0; size_t num_16 = 0; size_t num_32 = 0; size_t num_64 = 0; if (class_data != nullptr) { // We allow duplicate definitions of the same field in a class_data_item // but ignore the repeated indexes here, b/21868015. uint32_t last_field_idx = DexFile::kDexNoIndex; for (ClassDataItemIterator it(dex_file, class_data); it.HasNextStaticField(); it.Next()) { uint32_t field_idx = it.GetMemberIndex(); // Ordering enforced by DexFileVerifier. DCHECK(last_field_idx == DexFile::kDexNoIndex || last_field_idx <= field_idx); if (UNLIKELY(field_idx == last_field_idx)) { continue; } last_field_idx = field_idx; const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx); const char* descriptor = dex_file.GetFieldTypeDescriptor(field_id); char c = descriptor[0]; switch (c) { case 'L': case '[': num_ref++; break; case 'J': case 'D': num_64++; break; case 'I': case 'F': num_32++; break; case 'S': case 'C': num_16++; break; case 'B': case 'Z': num_8++; break; default: LOG(FATAL) << "Unknown descriptor: " << c; UNREACHABLE(); } } } return mirror::Class::ComputeClassSize(false, 0, num_8, num_16, num_32, num_64, num_ref, image_pointer_size_); } OatFile::OatClass ClassLinker::FindOatClass(const DexFile& dex_file, uint16_t class_def_idx, bool* found) { DCHECK_NE(class_def_idx, DexFile::kDexNoIndex16); const OatFile::OatDexFile* oat_dex_file = dex_file.GetOatDexFile(); if (oat_dex_file == nullptr) { *found = false; return OatFile::OatClass::Invalid(); } *found = true; return oat_dex_file->GetOatClass(class_def_idx); } static uint32_t GetOatMethodIndexFromMethodIndex(const DexFile& dex_file, uint16_t class_def_idx, uint32_t method_idx) { const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_idx); const uint8_t* class_data = dex_file.GetClassData(class_def); CHECK(class_data != nullptr); ClassDataItemIterator it(dex_file, class_data); // Skip fields while (it.HasNextStaticField()) { it.Next(); } while (it.HasNextInstanceField()) { it.Next(); } // Process methods size_t class_def_method_index = 0; while (it.HasNextDirectMethod()) { if (it.GetMemberIndex() == method_idx) { return class_def_method_index; } class_def_method_index++; it.Next(); } while (it.HasNextVirtualMethod()) { if (it.GetMemberIndex() == method_idx) { return class_def_method_index; } class_def_method_index++; it.Next(); } DCHECK(!it.HasNext()); LOG(FATAL) << "Failed to find method index " << method_idx << " in " << dex_file.GetLocation(); UNREACHABLE(); } const OatFile::OatMethod ClassLinker::FindOatMethodFor(ArtMethod* method, bool* found) { // Although we overwrite the trampoline of non-static methods, we may get here via the resolution // method for direct methods (or virtual methods made direct). mirror::Class* declaring_class = method->GetDeclaringClass(); size_t oat_method_index; if (method->IsStatic() || method->IsDirect()) { // Simple case where the oat method index was stashed at load time. oat_method_index = method->GetMethodIndex(); } else { // We're invoking a virtual method directly (thanks to sharpening), compute the oat_method_index // by search for its position in the declared virtual methods. oat_method_index = declaring_class->NumDirectMethods(); bool found_virtual = false; for (ArtMethod& art_method : declaring_class->GetVirtualMethods(image_pointer_size_)) { // Check method index instead of identity in case of duplicate method definitions. if (method->GetDexMethodIndex() == art_method.GetDexMethodIndex()) { found_virtual = true; break; } oat_method_index++; } CHECK(found_virtual) << "Didn't find oat method index for virtual method: " << PrettyMethod(method); } DCHECK_EQ(oat_method_index, GetOatMethodIndexFromMethodIndex(*declaring_class->GetDexCache()->GetDexFile(), method->GetDeclaringClass()->GetDexClassDefIndex(), method->GetDexMethodIndex())); OatFile::OatClass oat_class = FindOatClass(*declaring_class->GetDexCache()->GetDexFile(), declaring_class->GetDexClassDefIndex(), found); if (!(*found)) { return OatFile::OatMethod::Invalid(); } return oat_class.GetOatMethod(oat_method_index); } // Special case to get oat code without overwriting a trampoline. const void* ClassLinker::GetQuickOatCodeFor(ArtMethod* method) { CHECK(method->IsInvokable()) << PrettyMethod(method); if (method->IsProxyMethod()) { return GetQuickProxyInvokeHandler(); } bool found; OatFile::OatMethod oat_method = FindOatMethodFor(method, &found); if (found) { auto* code = oat_method.GetQuickCode(); if (code != nullptr) { return code; } } if (method->IsNative()) { // No code and native? Use generic trampoline. return GetQuickGenericJniStub(); } return GetQuickToInterpreterBridge(); } const void* ClassLinker::GetOatMethodQuickCodeFor(ArtMethod* method) { if (method->IsNative() || !method->IsInvokable() || method->IsProxyMethod()) { return nullptr; } bool found; OatFile::OatMethod oat_method = FindOatMethodFor(method, &found); if (found) { return oat_method.GetQuickCode(); } return nullptr; } bool ClassLinker::ShouldUseInterpreterEntrypoint(ArtMethod* method, const void* quick_code) { if (UNLIKELY(method->IsNative() || method->IsProxyMethod())) { return false; } if (quick_code == nullptr) { return true; } Runtime* runtime = Runtime::Current(); instrumentation::Instrumentation* instr = runtime->GetInstrumentation(); if (instr->InterpretOnly()) { return true; } if (runtime->GetClassLinker()->IsQuickToInterpreterBridge(quick_code)) { // Doing this check avoids doing compiled/interpreter transitions. return true; } if (Dbg::IsForcedInterpreterNeededForCalling(Thread::Current(), method)) { // Force the use of interpreter when it is required by the debugger. return true; } if (runtime->IsNativeDebuggable()) { DCHECK(runtime->UseJitCompilation() && runtime->GetJit()->JitAtFirstUse()); // If we are doing native debugging, ignore application's AOT code, // since we want to JIT it with extra stackmaps for native debugging. // On the other hand, keep all AOT code from the boot image, since the // blocking JIT would results in non-negligible performance impact. return !runtime->GetHeap()->IsInBootImageOatFile(quick_code); } if (Dbg::IsDebuggerActive()) { // Boot image classes may be AOT-compiled as non-debuggable. // This is not suitable for the Java debugger, so ignore the AOT code. return runtime->GetHeap()->IsInBootImageOatFile(quick_code); } return false; } void ClassLinker::FixupStaticTrampolines(mirror::Class* klass) { DCHECK(klass->IsInitialized()) << PrettyDescriptor(klass); if (klass->NumDirectMethods() == 0) { return; // No direct methods => no static methods. } Runtime* runtime = Runtime::Current(); if (!runtime->IsStarted()) { if (runtime->IsAotCompiler() || runtime->GetHeap()->HasBootImageSpace()) { return; // OAT file unavailable. } } const DexFile& dex_file = klass->GetDexFile(); const DexFile::ClassDef* dex_class_def = klass->GetClassDef(); CHECK(dex_class_def != nullptr); const uint8_t* class_data = dex_file.GetClassData(*dex_class_def); // There should always be class data if there were direct methods. CHECK(class_data != nullptr) << PrettyDescriptor(klass); ClassDataItemIterator it(dex_file, class_data); // Skip fields while (it.HasNextStaticField()) { it.Next(); } while (it.HasNextInstanceField()) { it.Next(); } bool has_oat_class; OatFile::OatClass oat_class = FindOatClass(dex_file, klass->GetDexClassDefIndex(), &has_oat_class); // Link the code of methods skipped by LinkCode. for (size_t method_index = 0; it.HasNextDirectMethod(); ++method_index, it.Next()) { ArtMethod* method = klass->GetDirectMethod(method_index, image_pointer_size_); if (!method->IsStatic()) { // Only update static methods. continue; } const void* quick_code = nullptr; if (has_oat_class) { OatFile::OatMethod oat_method = oat_class.GetOatMethod(method_index); quick_code = oat_method.GetQuickCode(); } // Check whether the method is native, in which case it's generic JNI. if (quick_code == nullptr && method->IsNative()) { quick_code = GetQuickGenericJniStub(); } else if (ShouldUseInterpreterEntrypoint(method, quick_code)) { // Use interpreter entry point. quick_code = GetQuickToInterpreterBridge(); } runtime->GetInstrumentation()->UpdateMethodsCode(method, quick_code); } // Ignore virtual methods on the iterator. } void ClassLinker::EnsureThrowsInvocationError(ArtMethod* method) { DCHECK(method != nullptr); DCHECK(!method->IsInvokable()); method->SetEntryPointFromQuickCompiledCodePtrSize(quick_to_interpreter_bridge_trampoline_, image_pointer_size_); } void ClassLinker::LinkCode(ArtMethod* method, const OatFile::OatClass* oat_class, uint32_t class_def_method_index) { Runtime* const runtime = Runtime::Current(); if (runtime->IsAotCompiler()) { // The following code only applies to a non-compiler runtime. return; } // Method shouldn't have already been linked. DCHECK(method->GetEntryPointFromQuickCompiledCode() == nullptr); if (oat_class != nullptr) { // Every kind of method should at least get an invoke stub from the oat_method. // non-abstract methods also get their code pointers. const OatFile::OatMethod oat_method = oat_class->GetOatMethod(class_def_method_index); oat_method.LinkMethod(method); } // Install entry point from interpreter. const void* quick_code = method->GetEntryPointFromQuickCompiledCode(); bool enter_interpreter = ShouldUseInterpreterEntrypoint(method, quick_code); if (!method->IsInvokable()) { EnsureThrowsInvocationError(method); return; } if (method->IsStatic() && !method->IsConstructor()) { // For static methods excluding the class initializer, install the trampoline. // It will be replaced by the proper entry point by ClassLinker::FixupStaticTrampolines // after initializing class (see ClassLinker::InitializeClass method). method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub()); } else if (quick_code == nullptr && method->IsNative()) { method->SetEntryPointFromQuickCompiledCode(GetQuickGenericJniStub()); } else if (enter_interpreter) { // Set entry point from compiled code if there's no code or in interpreter only mode. method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge()); } if (method->IsNative()) { // Unregistering restores the dlsym lookup stub. method->UnregisterNative(); if (enter_interpreter || quick_code == nullptr) { // We have a native method here without code. Then it should have either the generic JNI // trampoline as entrypoint (non-static), or the resolution trampoline (static). // TODO: this doesn't handle all the cases where trampolines may be installed. const void* entry_point = method->GetEntryPointFromQuickCompiledCode(); DCHECK(IsQuickGenericJniStub(entry_point) || IsQuickResolutionStub(entry_point)); } } } void ClassLinker::SetupClass(const DexFile& dex_file, const DexFile::ClassDef& dex_class_def, Handle<mirror::Class> klass, mirror::ClassLoader* class_loader) { CHECK(klass.Get() != nullptr); CHECK(klass->GetDexCache() != nullptr); CHECK_EQ(mirror::Class::kStatusNotReady, klass->GetStatus()); const char* descriptor = dex_file.GetClassDescriptor(dex_class_def); CHECK(descriptor != nullptr); klass->SetClass(GetClassRoot(kJavaLangClass)); uint32_t access_flags = dex_class_def.GetJavaAccessFlags(); CHECK_EQ(access_flags & ~kAccJavaFlagsMask, 0U); klass->SetAccessFlags(access_flags); klass->SetClassLoader(class_loader); DCHECK_EQ(klass->GetPrimitiveType(), Primitive::kPrimNot); mirror::Class::SetStatus(klass, mirror::Class::kStatusIdx, nullptr); klass->SetDexClassDefIndex(dex_file.GetIndexForClassDef(dex_class_def)); klass->SetDexTypeIndex(dex_class_def.class_idx_); CHECK(klass->GetDexCacheStrings() != nullptr); } void ClassLinker::LoadClass(Thread* self, const DexFile& dex_file, const DexFile::ClassDef& dex_class_def, Handle<mirror::Class> klass) { const uint8_t* class_data = dex_file.GetClassData(dex_class_def); if (class_data == nullptr) { return; // no fields or methods - for example a marker interface } bool has_oat_class = false; if (Runtime::Current()->IsStarted() && !Runtime::Current()->IsAotCompiler()) { OatFile::OatClass oat_class = FindOatClass(dex_file, klass->GetDexClassDefIndex(), &has_oat_class); if (has_oat_class) { LoadClassMembers(self, dex_file, class_data, klass, &oat_class); } } if (!has_oat_class) { LoadClassMembers(self, dex_file, class_data, klass, nullptr); } } LengthPrefixedArray<ArtField>* ClassLinker::AllocArtFieldArray(Thread* self, LinearAlloc* allocator, size_t length) { if (length == 0) { return nullptr; } // If the ArtField alignment changes, review all uses of LengthPrefixedArray<ArtField>. static_assert(alignof(ArtField) == 4, "ArtField alignment is expected to be 4."); size_t storage_size = LengthPrefixedArray<ArtField>::ComputeSize(length); void* array_storage = allocator->Alloc(self, storage_size); auto* ret = new(array_storage) LengthPrefixedArray<ArtField>(length); CHECK(ret != nullptr); std::uninitialized_fill_n(&ret->At(0), length, ArtField()); return ret; } LengthPrefixedArray<ArtMethod>* ClassLinker::AllocArtMethodArray(Thread* self, LinearAlloc* allocator, size_t length) { if (length == 0) { return nullptr; } const size_t method_alignment = ArtMethod::Alignment(image_pointer_size_); const size_t method_size = ArtMethod::Size(image_pointer_size_); const size_t storage_size = LengthPrefixedArray<ArtMethod>::ComputeSize(length, method_size, method_alignment); void* array_storage = allocator->Alloc(self, storage_size); auto* ret = new (array_storage) LengthPrefixedArray<ArtMethod>(length); CHECK(ret != nullptr); for (size_t i = 0; i < length; ++i) { new(reinterpret_cast<void*>(&ret->At(i, method_size, method_alignment))) ArtMethod; } return ret; } LinearAlloc* ClassLinker::GetAllocatorForClassLoader(mirror::ClassLoader* class_loader) { if (class_loader == nullptr) { return Runtime::Current()->GetLinearAlloc(); } LinearAlloc* allocator = class_loader->GetAllocator(); DCHECK(allocator != nullptr); return allocator; } LinearAlloc* ClassLinker::GetOrCreateAllocatorForClassLoader(mirror::ClassLoader* class_loader) { if (class_loader == nullptr) { return Runtime::Current()->GetLinearAlloc(); } WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); LinearAlloc* allocator = class_loader->GetAllocator(); if (allocator == nullptr) { RegisterClassLoader(class_loader); allocator = class_loader->GetAllocator(); CHECK(allocator != nullptr); } return allocator; } void ClassLinker::LoadClassMembers(Thread* self, const DexFile& dex_file, const uint8_t* class_data, Handle<mirror::Class> klass, const OatFile::OatClass* oat_class) { { // Note: We cannot have thread suspension until the field and method arrays are setup or else // Class::VisitFieldRoots may miss some fields or methods. ScopedAssertNoThreadSuspension nts(self, __FUNCTION__); // Load static fields. // We allow duplicate definitions of the same field in a class_data_item // but ignore the repeated indexes here, b/21868015. LinearAlloc* const allocator = GetAllocatorForClassLoader(klass->GetClassLoader()); ClassDataItemIterator it(dex_file, class_data); LengthPrefixedArray<ArtField>* sfields = AllocArtFieldArray(self, allocator, it.NumStaticFields()); size_t num_sfields = 0; uint32_t last_field_idx = 0u; for (; it.HasNextStaticField(); it.Next()) { uint32_t field_idx = it.GetMemberIndex(); DCHECK_GE(field_idx, last_field_idx); // Ordering enforced by DexFileVerifier. if (num_sfields == 0 || LIKELY(field_idx > last_field_idx)) { DCHECK_LT(num_sfields, it.NumStaticFields()); LoadField(it, klass, &sfields->At(num_sfields)); ++num_sfields; last_field_idx = field_idx; } } // Load instance fields. LengthPrefixedArray<ArtField>* ifields = AllocArtFieldArray(self, allocator, it.NumInstanceFields()); size_t num_ifields = 0u; last_field_idx = 0u; for (; it.HasNextInstanceField(); it.Next()) { uint32_t field_idx = it.GetMemberIndex(); DCHECK_GE(field_idx, last_field_idx); // Ordering enforced by DexFileVerifier. if (num_ifields == 0 || LIKELY(field_idx > last_field_idx)) { DCHECK_LT(num_ifields, it.NumInstanceFields()); LoadField(it, klass, &ifields->At(num_ifields)); ++num_ifields; last_field_idx = field_idx; } } if (UNLIKELY(num_sfields != it.NumStaticFields()) || UNLIKELY(num_ifields != it.NumInstanceFields())) { LOG(WARNING) << "Duplicate fields in class " << PrettyDescriptor(klass.Get()) << " (unique static fields: " << num_sfields << "/" << it.NumStaticFields() << ", unique instance fields: " << num_ifields << "/" << it.NumInstanceFields() << ")"; // NOTE: Not shrinking the over-allocated sfields/ifields, just setting size. if (sfields != nullptr) { sfields->SetSize(num_sfields); } if (ifields != nullptr) { ifields->SetSize(num_ifields); } } // Set the field arrays. klass->SetSFieldsPtr(sfields); DCHECK_EQ(klass->NumStaticFields(), num_sfields); klass->SetIFieldsPtr(ifields); DCHECK_EQ(klass->NumInstanceFields(), num_ifields); // Load methods. klass->SetMethodsPtr( AllocArtMethodArray(self, allocator, it.NumDirectMethods() + it.NumVirtualMethods()), it.NumDirectMethods(), it.NumVirtualMethods()); size_t class_def_method_index = 0; uint32_t last_dex_method_index = DexFile::kDexNoIndex; size_t last_class_def_method_index = 0; // TODO These should really use the iterators. for (size_t i = 0; it.HasNextDirectMethod(); i++, it.Next()) { ArtMethod* method = klass->GetDirectMethodUnchecked(i, image_pointer_size_); LoadMethod(self, dex_file, it, klass, method); LinkCode(method, oat_class, class_def_method_index); uint32_t it_method_index = it.GetMemberIndex(); if (last_dex_method_index == it_method_index) { // duplicate case method->SetMethodIndex(last_class_def_method_index); } else { method->SetMethodIndex(class_def_method_index); last_dex_method_index = it_method_index; last_class_def_method_index = class_def_method_index; } class_def_method_index++; } for (size_t i = 0; it.HasNextVirtualMethod(); i++, it.Next()) { ArtMethod* method = klass->GetVirtualMethodUnchecked(i, image_pointer_size_); LoadMethod(self, dex_file, it, klass, method); DCHECK_EQ(class_def_method_index, it.NumDirectMethods() + i); LinkCode(method, oat_class, class_def_method_index); class_def_method_index++; } DCHECK(!it.HasNext()); } // Ensure that the card is marked so that remembered sets pick up native roots. Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(klass.Get()); self->AllowThreadSuspension(); } void ClassLinker::LoadField(const ClassDataItemIterator& it, Handle<mirror::Class> klass, ArtField* dst) { const uint32_t field_idx = it.GetMemberIndex(); dst->SetDexFieldIndex(field_idx); dst->SetDeclaringClass(klass.Get()); dst->SetAccessFlags(it.GetFieldAccessFlags()); } void ClassLinker::LoadMethod(Thread* self, const DexFile& dex_file, const ClassDataItemIterator& it, Handle<mirror::Class> klass, ArtMethod* dst) { uint32_t dex_method_idx = it.GetMemberIndex(); const DexFile::MethodId& method_id = dex_file.GetMethodId(dex_method_idx); const char* method_name = dex_file.StringDataByIdx(method_id.name_idx_); ScopedAssertNoThreadSuspension ants(self, "LoadMethod"); dst->SetDexMethodIndex(dex_method_idx); dst->SetDeclaringClass(klass.Get()); dst->SetCodeItemOffset(it.GetMethodCodeItemOffset()); dst->SetDexCacheResolvedMethods(klass->GetDexCache()->GetResolvedMethods(), image_pointer_size_); dst->SetDexCacheResolvedTypes(klass->GetDexCache()->GetResolvedTypes(), image_pointer_size_); uint32_t access_flags = it.GetMethodAccessFlags(); if (UNLIKELY(strcmp("finalize", method_name) == 0)) { // Set finalizable flag on declaring class. if (strcmp("V", dex_file.GetShorty(method_id.proto_idx_)) == 0) { // Void return type. if (klass->GetClassLoader() != nullptr) { // All non-boot finalizer methods are flagged. klass->SetFinalizable(); } else { std::string temp; const char* klass_descriptor = klass->GetDescriptor(&temp); // The Enum class declares a "final" finalize() method to prevent subclasses from // introducing a finalizer. We don't want to set the finalizable flag for Enum or its // subclasses, so we exclude it here. // We also want to avoid setting the flag on Object, where we know that finalize() is // empty. if (strcmp(klass_descriptor, "Ljava/lang/Object;") != 0 && strcmp(klass_descriptor, "Ljava/lang/Enum;") != 0) { klass->SetFinalizable(); } } } } else if (method_name[0] == '<') { // Fix broken access flags for initializers. Bug 11157540. bool is_init = (strcmp("<init>", method_name) == 0); bool is_clinit = !is_init && (strcmp("<clinit>", method_name) == 0); if (UNLIKELY(!is_init && !is_clinit)) { LOG(WARNING) << "Unexpected '<' at start of method name " << method_name; } else { if (UNLIKELY((access_flags & kAccConstructor) == 0)) { LOG(WARNING) << method_name << " didn't have expected constructor access flag in class " << PrettyDescriptor(klass.Get()) << " in dex file " << dex_file.GetLocation(); access_flags |= kAccConstructor; } } } dst->SetAccessFlags(access_flags); } void ClassLinker::AppendToBootClassPath(Thread* self, const DexFile& dex_file) { StackHandleScope<1> hs(self); Handle<mirror::DexCache> dex_cache(hs.NewHandle(AllocDexCache( self, dex_file, Runtime::Current()->GetLinearAlloc()))); CHECK(dex_cache.Get() != nullptr) << "Failed to allocate dex cache for " << dex_file.GetLocation(); AppendToBootClassPath(dex_file, dex_cache); } void ClassLinker::AppendToBootClassPath(const DexFile& dex_file, Handle<mirror::DexCache> dex_cache) { CHECK(dex_cache.Get() != nullptr) << dex_file.GetLocation(); boot_class_path_.push_back(&dex_file); RegisterDexFile(dex_file, dex_cache); } void ClassLinker::RegisterDexFileLocked(const DexFile& dex_file, Handle<mirror::DexCache> dex_cache) { Thread* const self = Thread::Current(); dex_lock_.AssertExclusiveHeld(self); CHECK(dex_cache.Get() != nullptr) << dex_file.GetLocation(); // For app images, the dex cache location may be a suffix of the dex file location since the // dex file location is an absolute path. const std::string dex_cache_location = dex_cache->GetLocation()->ToModifiedUtf8(); const size_t dex_cache_length = dex_cache_location.length(); CHECK_GT(dex_cache_length, 0u) << dex_file.GetLocation(); std::string dex_file_location = dex_file.GetLocation(); CHECK_GE(dex_file_location.length(), dex_cache_length) << dex_cache_location << " " << dex_file.GetLocation(); // Take suffix. const std::string dex_file_suffix = dex_file_location.substr( dex_file_location.length() - dex_cache_length, dex_cache_length); // Example dex_cache location is SettingsProvider.apk and // dex file location is /system/priv-app/SettingsProvider/SettingsProvider.apk CHECK_EQ(dex_cache_location, dex_file_suffix); // Clean up pass to remove null dex caches. // Null dex caches can occur due to class unloading and we are lazily removing null entries. JavaVMExt* const vm = self->GetJniEnv()->vm; for (auto it = dex_caches_.begin(); it != dex_caches_.end(); ) { DexCacheData data = *it; if (self->IsJWeakCleared(data.weak_root)) { vm->DeleteWeakGlobalRef(self, data.weak_root); it = dex_caches_.erase(it); } else { ++it; } } jweak dex_cache_jweak = vm->AddWeakGlobalRef(self, dex_cache.Get()); dex_cache->SetDexFile(&dex_file); DexCacheData data; data.weak_root = dex_cache_jweak; data.dex_file = dex_cache->GetDexFile(); data.resolved_types = dex_cache->GetResolvedTypes(); dex_caches_.push_back(data); } mirror::DexCache* ClassLinker::RegisterDexFile(const DexFile& dex_file, mirror::ClassLoader* class_loader) { Thread* self = Thread::Current(); { ReaderMutexLock mu(self, dex_lock_); mirror::DexCache* dex_cache = FindDexCacheLocked(self, dex_file, true); if (dex_cache != nullptr) { return dex_cache; } } LinearAlloc* const linear_alloc = GetOrCreateAllocatorForClassLoader(class_loader); DCHECK(linear_alloc != nullptr); ClassTable* table; { WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); table = InsertClassTableForClassLoader(class_loader); } // Don't alloc while holding the lock, since allocation may need to // suspend all threads and another thread may need the dex_lock_ to // get to a suspend point. StackHandleScope<1> hs(self); Handle<mirror::DexCache> h_dex_cache(hs.NewHandle(AllocDexCache(self, dex_file, linear_alloc))); { WriterMutexLock mu(self, dex_lock_); mirror::DexCache* dex_cache = FindDexCacheLocked(self, dex_file, true); if (dex_cache != nullptr) { return dex_cache; } if (h_dex_cache.Get() == nullptr) { self->AssertPendingOOMException(); return nullptr; } RegisterDexFileLocked(dex_file, h_dex_cache); } table->InsertStrongRoot(h_dex_cache.Get()); return h_dex_cache.Get(); } void ClassLinker::RegisterDexFile(const DexFile& dex_file, Handle<mirror::DexCache> dex_cache) { WriterMutexLock mu(Thread::Current(), dex_lock_); RegisterDexFileLocked(dex_file, dex_cache); } mirror::DexCache* ClassLinker::FindDexCache(Thread* self, const DexFile& dex_file, bool allow_failure) { ReaderMutexLock mu(self, dex_lock_); return FindDexCacheLocked(self, dex_file, allow_failure); } mirror::DexCache* ClassLinker::FindDexCacheLocked(Thread* self, const DexFile& dex_file, bool allow_failure) { // Search assuming unique-ness of dex file. for (const DexCacheData& data : dex_caches_) { // Avoid decoding (and read barriers) other unrelated dex caches. if (data.dex_file == &dex_file) { mirror::DexCache* dex_cache = down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root)); if (dex_cache != nullptr) { return dex_cache; } else { break; } } } if (allow_failure) { return nullptr; } std::string location(dex_file.GetLocation()); // Failure, dump diagnostic and abort. for (const DexCacheData& data : dex_caches_) { mirror::DexCache* dex_cache = down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root)); if (dex_cache != nullptr) { LOG(ERROR) << "Registered dex file " << dex_cache->GetDexFile()->GetLocation(); } } LOG(FATAL) << "Failed to find DexCache for DexFile " << location; UNREACHABLE(); } void ClassLinker::FixupDexCaches(ArtMethod* resolution_method) { Thread* const self = Thread::Current(); ReaderMutexLock mu(self, dex_lock_); for (const DexCacheData& data : dex_caches_) { if (!self->IsJWeakCleared(data.weak_root)) { mirror::DexCache* dex_cache = down_cast<mirror::DexCache*>( self->DecodeJObject(data.weak_root)); if (dex_cache != nullptr) { dex_cache->Fixup(resolution_method, image_pointer_size_); } } } } mirror::Class* ClassLinker::CreatePrimitiveClass(Thread* self, Primitive::Type type) { mirror::Class* klass = AllocClass(self, mirror::Class::PrimitiveClassSize(image_pointer_size_)); if (UNLIKELY(klass == nullptr)) { self->AssertPendingOOMException(); return nullptr; } return InitializePrimitiveClass(klass, type); } mirror::Class* ClassLinker::InitializePrimitiveClass(mirror::Class* primitive_class, Primitive::Type type) { CHECK(primitive_class != nullptr); // Must hold lock on object when initializing. Thread* self = Thread::Current(); StackHandleScope<1> hs(self); Handle<mirror::Class> h_class(hs.NewHandle(primitive_class)); ObjectLock<mirror::Class> lock(self, h_class); h_class->SetAccessFlags(kAccPublic | kAccFinal | kAccAbstract); h_class->SetPrimitiveType(type); mirror::Class::SetStatus(h_class, mirror::Class::kStatusInitialized, self); const char* descriptor = Primitive::Descriptor(type); mirror::Class* existing = InsertClass(descriptor, h_class.Get(), ComputeModifiedUtf8Hash(descriptor)); CHECK(existing == nullptr) << "InitPrimitiveClass(" << type << ") failed"; return h_class.Get(); } // Create an array class (i.e. the class object for the array, not the // array itself). "descriptor" looks like "[C" or "[[[[B" or // "[Ljava/lang/String;". // // If "descriptor" refers to an array of primitives, look up the // primitive type's internally-generated class object. // // "class_loader" is the class loader of the class that's referring to // us. It's used to ensure that we're looking for the element type in // the right context. It does NOT become the class loader for the // array class; that always comes from the base element class. // // Returns null with an exception raised on failure. mirror::Class* ClassLinker::CreateArrayClass(Thread* self, const char* descriptor, size_t hash, Handle<mirror::ClassLoader> class_loader) { // Identify the underlying component type CHECK_EQ('[', descriptor[0]); StackHandleScope<2> hs(self); MutableHandle<mirror::Class> component_type(hs.NewHandle(FindClass(self, descriptor + 1, class_loader))); if (component_type.Get() == nullptr) { DCHECK(self->IsExceptionPending()); // We need to accept erroneous classes as component types. const size_t component_hash = ComputeModifiedUtf8Hash(descriptor + 1); component_type.Assign(LookupClass(self, descriptor + 1, component_hash, class_loader.Get())); if (component_type.Get() == nullptr) { DCHECK(self->IsExceptionPending()); return nullptr; } else { self->ClearException(); } } if (UNLIKELY(component_type->IsPrimitiveVoid())) { ThrowNoClassDefFoundError("Attempt to create array of void primitive type"); return nullptr; } // See if the component type is already loaded. Array classes are // always associated with the class loader of their underlying // element type -- an array of Strings goes with the loader for // java/lang/String -- so we need to look for it there. (The // caller should have checked for the existence of the class // before calling here, but they did so with *their* class loader, // not the component type's loader.) // // If we find it, the caller adds "loader" to the class' initiating // loader list, which should prevent us from going through this again. // // This call is unnecessary if "loader" and "component_type->GetClassLoader()" // are the same, because our caller (FindClass) just did the // lookup. (Even if we get this wrong we still have correct behavior, // because we effectively do this lookup again when we add the new // class to the hash table --- necessary because of possible races with // other threads.) if (class_loader.Get() != component_type->GetClassLoader()) { mirror::Class* new_class = LookupClass(self, descriptor, hash, component_type->GetClassLoader()); if (new_class != nullptr) { return new_class; } } // Fill out the fields in the Class. // // It is possible to execute some methods against arrays, because // all arrays are subclasses of java_lang_Object_, so we need to set // up a vtable. We can just point at the one in java_lang_Object_. // // Array classes are simple enough that we don't need to do a full // link step. auto new_class = hs.NewHandle<mirror::Class>(nullptr); if (UNLIKELY(!init_done_)) { // Classes that were hand created, ie not by FindSystemClass if (strcmp(descriptor, "[Ljava/lang/Class;") == 0) { new_class.Assign(GetClassRoot(kClassArrayClass)); } else if (strcmp(descriptor, "[Ljava/lang/Object;") == 0) { new_class.Assign(GetClassRoot(kObjectArrayClass)); } else if (strcmp(descriptor, GetClassRootDescriptor(kJavaLangStringArrayClass)) == 0) { new_class.Assign(GetClassRoot(kJavaLangStringArrayClass)); } else if (strcmp(descriptor, "[C") == 0) { new_class.Assign(GetClassRoot(kCharArrayClass)); } else if (strcmp(descriptor, "[I") == 0) { new_class.Assign(GetClassRoot(kIntArrayClass)); } else if (strcmp(descriptor, "[J") == 0) { new_class.Assign(GetClassRoot(kLongArrayClass)); } } if (new_class.Get() == nullptr) { new_class.Assign(AllocClass(self, mirror::Array::ClassSize(image_pointer_size_))); if (new_class.Get() == nullptr) { self->AssertPendingOOMException(); return nullptr; } new_class->SetComponentType(component_type.Get()); } ObjectLock<mirror::Class> lock(self, new_class); // Must hold lock on object when initializing. DCHECK(new_class->GetComponentType() != nullptr); mirror::Class* java_lang_Object = GetClassRoot(kJavaLangObject); new_class->SetSuperClass(java_lang_Object); new_class->SetVTable(java_lang_Object->GetVTable()); new_class->SetPrimitiveType(Primitive::kPrimNot); new_class->SetClassLoader(component_type->GetClassLoader()); if (component_type->IsPrimitive()) { new_class->SetClassFlags(mirror::kClassFlagNoReferenceFields); } else { new_class->SetClassFlags(mirror::kClassFlagObjectArray); } mirror::Class::SetStatus(new_class, mirror::Class::kStatusLoaded, self); { ArtMethod* imt[mirror::Class::kImtSize]; std::fill_n(imt, arraysize(imt), Runtime::Current()->GetImtUnimplementedMethod()); new_class->PopulateEmbeddedImtAndVTable(imt, image_pointer_size_); } mirror::Class::SetStatus(new_class, mirror::Class::kStatusInitialized, self); // don't need to set new_class->SetObjectSize(..) // because Object::SizeOf delegates to Array::SizeOf // All arrays have java/lang/Cloneable and java/io/Serializable as // interfaces. We need to set that up here, so that stuff like // "instanceof" works right. // // Note: The GC could run during the call to FindSystemClass, // so we need to make sure the class object is GC-valid while we're in // there. Do this by clearing the interface list so the GC will just // think that the entries are null. // Use the single, global copies of "interfaces" and "iftable" // (remember not to free them for arrays). { mirror::IfTable* array_iftable = array_iftable_.Read(); CHECK(array_iftable != nullptr); new_class->SetIfTable(array_iftable); } // Inherit access flags from the component type. int access_flags = new_class->GetComponentType()->GetAccessFlags(); // Lose any implementation detail flags; in particular, arrays aren't finalizable. access_flags &= kAccJavaFlagsMask; // Arrays can't be used as a superclass or interface, so we want to add "abstract final" // and remove "interface". access_flags |= kAccAbstract | kAccFinal; access_flags &= ~kAccInterface; new_class->SetAccessFlags(access_flags); mirror::Class* existing = InsertClass(descriptor, new_class.Get(), hash); if (existing == nullptr) { jit::Jit::NewTypeLoadedIfUsingJit(new_class.Get()); return new_class.Get(); } // Another thread must have loaded the class after we // started but before we finished. Abandon what we've // done. // // (Yes, this happens.) return existing; } mirror::Class* ClassLinker::FindPrimitiveClass(char type) { switch (type) { case 'B': return GetClassRoot(kPrimitiveByte); case 'C': return GetClassRoot(kPrimitiveChar); case 'D': return GetClassRoot(kPrimitiveDouble); case 'F': return GetClassRoot(kPrimitiveFloat); case 'I': return GetClassRoot(kPrimitiveInt); case 'J': return GetClassRoot(kPrimitiveLong); case 'S': return GetClassRoot(kPrimitiveShort); case 'Z': return GetClassRoot(kPrimitiveBoolean); case 'V': return GetClassRoot(kPrimitiveVoid); default: break; } std::string printable_type(PrintableChar(type)); ThrowNoClassDefFoundError("Not a primitive type: %s", printable_type.c_str()); return nullptr; } mirror::Class* ClassLinker::InsertClass(const char* descriptor, mirror::Class* klass, size_t hash) { if (VLOG_IS_ON(class_linker)) { mirror::DexCache* dex_cache = klass->GetDexCache(); std::string source; if (dex_cache != nullptr) { source += " from "; source += dex_cache->GetLocation()->ToModifiedUtf8(); } LOG(INFO) << "Loaded class " << descriptor << source; } WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); mirror::ClassLoader* const class_loader = klass->GetClassLoader(); ClassTable* const class_table = InsertClassTableForClassLoader(class_loader); mirror::Class* existing = class_table->Lookup(descriptor, hash); if (existing != nullptr) { return existing; } if (kIsDebugBuild && !klass->IsTemp() && class_loader == nullptr && dex_cache_boot_image_class_lookup_required_) { // Check a class loaded with the system class loader matches one in the image if the class // is in the image. existing = LookupClassFromBootImage(descriptor); if (existing != nullptr) { CHECK_EQ(klass, existing); } } VerifyObject(klass); class_table->InsertWithHash(klass, hash); if (class_loader != nullptr) { // This is necessary because we need to have the card dirtied for remembered sets. Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader); } if (log_new_class_table_roots_) { new_class_roots_.push_back(GcRoot<mirror::Class>(klass)); } return nullptr; } // TODO This should really be in mirror::Class. void ClassLinker::UpdateClassMethods(mirror::Class* klass, LengthPrefixedArray<ArtMethod>* new_methods) { klass->SetMethodsPtrUnchecked(new_methods, klass->NumDirectMethods(), klass->NumDeclaredVirtualMethods()); // Need to mark the card so that the remembered sets and mod union tables get updated. Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(klass); } bool ClassLinker::RemoveClass(const char* descriptor, mirror::ClassLoader* class_loader) { WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); ClassTable* const class_table = ClassTableForClassLoader(class_loader); return class_table != nullptr && class_table->Remove(descriptor); } mirror::Class* ClassLinker::LookupClass(Thread* self, const char* descriptor, size_t hash, mirror::ClassLoader* class_loader) { { ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_); ClassTable* const class_table = ClassTableForClassLoader(class_loader); if (class_table != nullptr) { mirror::Class* result = class_table->Lookup(descriptor, hash); if (result != nullptr) { return result; } } } if (class_loader != nullptr || !dex_cache_boot_image_class_lookup_required_) { return nullptr; } // Lookup failed but need to search dex_caches_. mirror::Class* result = LookupClassFromBootImage(descriptor); if (result != nullptr) { result = InsertClass(descriptor, result, hash); } else { // Searching the image dex files/caches failed, we don't want to get into this situation // often as map searches are faster, so after kMaxFailedDexCacheLookups move all image // classes into the class table. constexpr uint32_t kMaxFailedDexCacheLookups = 1000; if (++failed_dex_cache_class_lookups_ > kMaxFailedDexCacheLookups) { AddBootImageClassesToClassTable(); } } return result; } static std::vector<mirror::ObjectArray<mirror::DexCache>*> GetImageDexCaches( std::vector<gc::space::ImageSpace*> image_spaces) SHARED_REQUIRES(Locks::mutator_lock_) { CHECK(!image_spaces.empty()); std::vector<mirror::ObjectArray<mirror::DexCache>*> dex_caches_vector; for (gc::space::ImageSpace* image_space : image_spaces) { mirror::Object* root = image_space->GetImageHeader().GetImageRoot(ImageHeader::kDexCaches); DCHECK(root != nullptr); dex_caches_vector.push_back(root->AsObjectArray<mirror::DexCache>()); } return dex_caches_vector; } void ClassLinker::AddBootImageClassesToClassTable() { if (dex_cache_boot_image_class_lookup_required_) { AddImageClassesToClassTable(Runtime::Current()->GetHeap()->GetBootImageSpaces(), /*class_loader*/nullptr); dex_cache_boot_image_class_lookup_required_ = false; } } void ClassLinker::AddImageClassesToClassTable(std::vector<gc::space::ImageSpace*> image_spaces, mirror::ClassLoader* class_loader) { Thread* self = Thread::Current(); WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); ScopedAssertNoThreadSuspension ants(self, "Moving image classes to class table"); ClassTable* const class_table = InsertClassTableForClassLoader(class_loader); std::string temp; std::vector<mirror::ObjectArray<mirror::DexCache>*> dex_caches_vector = GetImageDexCaches(image_spaces); for (mirror::ObjectArray<mirror::DexCache>* dex_caches : dex_caches_vector) { for (int32_t i = 0; i < dex_caches->GetLength(); i++) { mirror::DexCache* dex_cache = dex_caches->Get(i); GcRoot<mirror::Class>* types = dex_cache->GetResolvedTypes(); for (int32_t j = 0, num_types = dex_cache->NumResolvedTypes(); j < num_types; j++) { mirror::Class* klass = types[j].Read(); if (klass != nullptr) { DCHECK_EQ(klass->GetClassLoader(), class_loader); const char* descriptor = klass->GetDescriptor(&temp); size_t hash = ComputeModifiedUtf8Hash(descriptor); mirror::Class* existing = class_table->Lookup(descriptor, hash); if (existing != nullptr) { CHECK_EQ(existing, klass) << PrettyClassAndClassLoader(existing) << " != " << PrettyClassAndClassLoader(klass); } else { class_table->Insert(klass); if (log_new_class_table_roots_) { new_class_roots_.push_back(GcRoot<mirror::Class>(klass)); } } } } } } } class MoveClassTableToPreZygoteVisitor : public ClassLoaderVisitor { public: explicit MoveClassTableToPreZygoteVisitor() {} void Visit(mirror::ClassLoader* class_loader) REQUIRES(Locks::classlinker_classes_lock_) SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE { ClassTable* const class_table = class_loader->GetClassTable(); if (class_table != nullptr) { class_table->FreezeSnapshot(); } } }; void ClassLinker::MoveClassTableToPreZygote() { WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); boot_class_table_.FreezeSnapshot(); MoveClassTableToPreZygoteVisitor visitor; VisitClassLoaders(&visitor); } mirror::Class* ClassLinker::LookupClassFromBootImage(const char* descriptor) { ScopedAssertNoThreadSuspension ants(Thread::Current(), "Image class lookup"); std::vector<mirror::ObjectArray<mirror::DexCache>*> dex_caches_vector = GetImageDexCaches(Runtime::Current()->GetHeap()->GetBootImageSpaces()); for (mirror::ObjectArray<mirror::DexCache>* dex_caches : dex_caches_vector) { for (int32_t i = 0; i < dex_caches->GetLength(); ++i) { mirror::DexCache* dex_cache = dex_caches->Get(i); const DexFile* dex_file = dex_cache->GetDexFile(); // Try binary searching the type index by descriptor. const DexFile::TypeId* type_id = dex_file->FindTypeId(descriptor); if (type_id != nullptr) { uint16_t type_idx = dex_file->GetIndexForTypeId(*type_id); mirror::Class* klass = dex_cache->GetResolvedType(type_idx); if (klass != nullptr) { return klass; } } } } return nullptr; } // Look up classes by hash and descriptor and put all matching ones in the result array. class LookupClassesVisitor : public ClassLoaderVisitor { public: LookupClassesVisitor(const char* descriptor, size_t hash, std::vector<mirror::Class*>* result) : descriptor_(descriptor), hash_(hash), result_(result) {} void Visit(mirror::ClassLoader* class_loader) SHARED_REQUIRES(Locks::classlinker_classes_lock_, Locks::mutator_lock_) OVERRIDE { ClassTable* const class_table = class_loader->GetClassTable(); mirror::Class* klass = class_table->Lookup(descriptor_, hash_); if (klass != nullptr) { result_->push_back(klass); } } private: const char* const descriptor_; const size_t hash_; std::vector<mirror::Class*>* const result_; }; void ClassLinker::LookupClasses(const char* descriptor, std::vector<mirror::Class*>& result) { result.clear(); if (dex_cache_boot_image_class_lookup_required_) { AddBootImageClassesToClassTable(); } Thread* const self = Thread::Current(); ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_); const size_t hash = ComputeModifiedUtf8Hash(descriptor); mirror::Class* klass = boot_class_table_.Lookup(descriptor, hash); if (klass != nullptr) { result.push_back(klass); } LookupClassesVisitor visitor(descriptor, hash, &result); VisitClassLoaders(&visitor); } bool ClassLinker::AttemptSupertypeVerification(Thread* self, Handle<mirror::Class> klass, Handle<mirror::Class> supertype) { DCHECK(self != nullptr); DCHECK(klass.Get() != nullptr); DCHECK(supertype.Get() != nullptr); if (!supertype->IsVerified() && !supertype->IsErroneous()) { VerifyClass(self, supertype); } if (supertype->IsCompileTimeVerified()) { // Either we are verified or we soft failed and need to retry at runtime. return true; } // If we got this far then we have a hard failure. std::string error_msg = StringPrintf("Rejecting class %s that attempts to sub-type erroneous class %s", PrettyDescriptor(klass.Get()).c_str(), PrettyDescriptor(supertype.Get()).c_str()); LOG(WARNING) << error_msg << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8(); StackHandleScope<1> hs(self); Handle<mirror::Throwable> cause(hs.NewHandle(self->GetException())); if (cause.Get() != nullptr) { // Set during VerifyClass call (if at all). self->ClearException(); } // Change into a verify error. ThrowVerifyError(klass.Get(), "%s", error_msg.c_str()); if (cause.Get() != nullptr) { self->GetException()->SetCause(cause.Get()); } ClassReference ref(klass->GetDexCache()->GetDexFile(), klass->GetDexClassDefIndex()); if (Runtime::Current()->IsAotCompiler()) { Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref); } // Need to grab the lock to change status. ObjectLock<mirror::Class> super_lock(self, klass); mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self); return false; } void ClassLinker::VerifyClass(Thread* self, Handle<mirror::Class> klass, LogSeverity log_level) { { // TODO: assert that the monitor on the Class is held ObjectLock<mirror::Class> lock(self, klass); // Is somebody verifying this now? mirror::Class::Status old_status = klass->GetStatus(); while (old_status == mirror::Class::kStatusVerifying || old_status == mirror::Class::kStatusVerifyingAtRuntime) { lock.WaitIgnoringInterrupts(); CHECK(klass->IsErroneous() || (klass->GetStatus() > old_status)) << "Class '" << PrettyClass(klass.Get()) << "' performed an illegal verification state " << "transition from " << old_status << " to " << klass->GetStatus(); old_status = klass->GetStatus(); } // The class might already be erroneous, for example at compile time if we attempted to verify // this class as a parent to another. if (klass->IsErroneous()) { ThrowEarlierClassFailure(klass.Get()); return; } // Don't attempt to re-verify if already sufficiently verified. if (klass->IsVerified()) { EnsureSkipAccessChecksMethods(klass); return; } if (klass->IsCompileTimeVerified() && Runtime::Current()->IsAotCompiler()) { return; } if (klass->GetStatus() == mirror::Class::kStatusResolved) { mirror::Class::SetStatus(klass, mirror::Class::kStatusVerifying, self); } else { CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime) << PrettyClass(klass.Get()); CHECK(!Runtime::Current()->IsAotCompiler()); mirror::Class::SetStatus(klass, mirror::Class::kStatusVerifyingAtRuntime, self); } // Skip verification if disabled. if (!Runtime::Current()->IsVerificationEnabled()) { mirror::Class::SetStatus(klass, mirror::Class::kStatusVerified, self); EnsureSkipAccessChecksMethods(klass); return; } } // Verify super class. StackHandleScope<2> hs(self); MutableHandle<mirror::Class> supertype(hs.NewHandle(klass->GetSuperClass())); // If we have a superclass and we get a hard verification failure we can return immediately. if (supertype.Get() != nullptr && !AttemptSupertypeVerification(self, klass, supertype)) { CHECK(self->IsExceptionPending()) << "Verification error should be pending."; return; } // Verify all default super-interfaces. // // (1) Don't bother if the superclass has already had a soft verification failure. // // (2) Interfaces shouldn't bother to do this recursive verification because they cannot cause // recursive initialization by themselves. This is because when an interface is initialized // directly it must not initialize its superinterfaces. We are allowed to verify regardless // but choose not to for an optimization. If the interfaces is being verified due to a class // initialization (which would need all the default interfaces to be verified) the class code // will trigger the recursive verification anyway. if ((supertype.Get() == nullptr || supertype->IsVerified()) // See (1) && !klass->IsInterface()) { // See (2) int32_t iftable_count = klass->GetIfTableCount(); MutableHandle<mirror::Class> iface(hs.NewHandle<mirror::Class>(nullptr)); // Loop through all interfaces this class has defined. It doesn't matter the order. for (int32_t i = 0; i < iftable_count; i++) { iface.Assign(klass->GetIfTable()->GetInterface(i)); DCHECK(iface.Get() != nullptr); // We only care if we have default interfaces and can skip if we are already verified... if (LIKELY(!iface->HasDefaultMethods() || iface->IsVerified())) { continue; } else if (UNLIKELY(!AttemptSupertypeVerification(self, klass, iface))) { // We had a hard failure while verifying this interface. Just return immediately. CHECK(self->IsExceptionPending()) << "Verification error should be pending."; return; } else if (UNLIKELY(!iface->IsVerified())) { // We softly failed to verify the iface. Stop checking and clean up. // Put the iface into the supertype handle so we know what caused us to fail. supertype.Assign(iface.Get()); break; } } } // At this point if verification failed, then supertype is the "first" supertype that failed // verification (without a specific order). If verification succeeded, then supertype is either // null or the original superclass of klass and is verified. DCHECK(supertype.Get() == nullptr || supertype.Get() == klass->GetSuperClass() || !supertype->IsVerified()); // Try to use verification information from the oat file, otherwise do runtime verification. const DexFile& dex_file = *klass->GetDexCache()->GetDexFile(); mirror::Class::Status oat_file_class_status(mirror::Class::kStatusNotReady); bool preverified = VerifyClassUsingOatFile(dex_file, klass.Get(), oat_file_class_status); // If the oat file says the class had an error, re-run the verifier. That way we will get a // precise error message. To ensure a rerun, test: // oat_file_class_status == mirror::Class::kStatusError => !preverified DCHECK(!(oat_file_class_status == mirror::Class::kStatusError) || !preverified); verifier::MethodVerifier::FailureKind verifier_failure = verifier::MethodVerifier::kNoFailure; std::string error_msg; if (!preverified) { Runtime* runtime = Runtime::Current(); verifier_failure = verifier::MethodVerifier::VerifyClass(self, klass.Get(), runtime->GetCompilerCallbacks(), runtime->IsAotCompiler(), log_level, &error_msg); } // Verification is done, grab the lock again. ObjectLock<mirror::Class> lock(self, klass); if (preverified || verifier_failure != verifier::MethodVerifier::kHardFailure) { if (!preverified && verifier_failure != verifier::MethodVerifier::kNoFailure) { VLOG(class_linker) << "Soft verification failure in class " << PrettyDescriptor(klass.Get()) << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8() << " because: " << error_msg; } self->AssertNoPendingException(); // Make sure all classes referenced by catch blocks are resolved. ResolveClassExceptionHandlerTypes(klass); if (verifier_failure == verifier::MethodVerifier::kNoFailure) { // Even though there were no verifier failures we need to respect whether the super-class and // super-default-interfaces were verified or requiring runtime reverification. if (supertype.Get() == nullptr || supertype->IsVerified()) { mirror::Class::SetStatus(klass, mirror::Class::kStatusVerified, self); } else { CHECK_EQ(supertype->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime); mirror::Class::SetStatus(klass, mirror::Class::kStatusRetryVerificationAtRuntime, self); // Pretend a soft failure occurred so that we don't consider the class verified below. verifier_failure = verifier::MethodVerifier::kSoftFailure; } } else { CHECK_EQ(verifier_failure, verifier::MethodVerifier::kSoftFailure); // Soft failures at compile time should be retried at runtime. Soft // failures at runtime will be handled by slow paths in the generated // code. Set status accordingly. if (Runtime::Current()->IsAotCompiler()) { mirror::Class::SetStatus(klass, mirror::Class::kStatusRetryVerificationAtRuntime, self); } else { mirror::Class::SetStatus(klass, mirror::Class::kStatusVerified, self); // As this is a fake verified status, make sure the methods are _not_ marked // kAccSkipAccessChecks later. klass->SetVerificationAttempted(); } } } else { VLOG(verifier) << "Verification failed on class " << PrettyDescriptor(klass.Get()) << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8() << " because: " << error_msg; self->AssertNoPendingException(); ThrowVerifyError(klass.Get(), "%s", error_msg.c_str()); mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self); } if (preverified || verifier_failure == verifier::MethodVerifier::kNoFailure) { // Class is verified so we don't need to do any access check on its methods. // Let the interpreter know it by setting the kAccSkipAccessChecks flag onto each // method. // Note: we're going here during compilation and at runtime. When we set the // kAccSkipAccessChecks flag when compiling image classes, the flag is recorded // in the image and is set when loading the image. if (UNLIKELY(Runtime::Current()->IsVerificationSoftFail())) { // Never skip access checks if the verification soft fail is forced. // Mark the class as having a verification attempt to avoid re-running the verifier. klass->SetVerificationAttempted(); } else { EnsureSkipAccessChecksMethods(klass); } } } void ClassLinker::EnsureSkipAccessChecksMethods(Handle<mirror::Class> klass) { if (!klass->WasVerificationAttempted()) { klass->SetSkipAccessChecksFlagOnAllMethods(image_pointer_size_); klass->SetVerificationAttempted(); } } bool ClassLinker::VerifyClassUsingOatFile(const DexFile& dex_file, mirror::Class* klass, mirror::Class::Status& oat_file_class_status) { // If we're compiling, we can only verify the class using the oat file if // we are not compiling the image or if the class we're verifying is not part of // the app. In other words, we will only check for preverification of bootclasspath // classes. if (Runtime::Current()->IsAotCompiler()) { // Are we compiling the bootclasspath? if (Runtime::Current()->GetCompilerCallbacks()->IsBootImage()) { return false; } // We are compiling an app (not the image). // Is this an app class? (I.e. not a bootclasspath class) if (klass->GetClassLoader() != nullptr) { return false; } } const OatFile::OatDexFile* oat_dex_file = dex_file.GetOatDexFile(); // In case we run without an image there won't be a backing oat file. if (oat_dex_file == nullptr) { return false; } // We may be running with a preopted oat file but without image. In this case, // we don't skip verification of skip_access_checks classes to ensure we initialize // dex caches with all types resolved during verification. // We need to trust image classes, as these might be coming out of a pre-opted, quickened boot // image (that we just failed loading), and the verifier can't be run on quickened opcodes when // the runtime isn't started. On the other hand, app classes can be re-verified even if they are // already pre-opted, as then the runtime is started. if (!Runtime::Current()->IsAotCompiler() && !Runtime::Current()->GetHeap()->HasBootImageSpace() && klass->GetClassLoader() != nullptr) { return false; } uint16_t class_def_index = klass->GetDexClassDefIndex(); oat_file_class_status = oat_dex_file->GetOatClass(class_def_index).GetStatus(); if (oat_file_class_status == mirror::Class::kStatusVerified || oat_file_class_status == mirror::Class::kStatusInitialized) { return true; } // If we only verified a subset of the classes at compile time, we can end up with classes that // were resolved by the verifier. if (oat_file_class_status == mirror::Class::kStatusResolved) { return false; } if (oat_file_class_status == mirror::Class::kStatusRetryVerificationAtRuntime) { // Compile time verification failed with a soft error. Compile time verification can fail // because we have incomplete type information. Consider the following: // class ... { // Foo x; // .... () { // if (...) { // v1 gets assigned a type of resolved class Foo // } else { // v1 gets assigned a type of unresolved class Bar // } // iput x = v1 // } } // when we merge v1 following the if-the-else it results in Conflict // (see verifier::RegType::Merge) as we can't know the type of Bar and we could possibly be // allowing an unsafe assignment to the field x in the iput (javac may have compiled this as // it knew Bar was a sub-class of Foo, but for us this may have been moved into a separate apk // at compile time). return false; } if (oat_file_class_status == mirror::Class::kStatusError) { // Compile time verification failed with a hard error. This is caused by invalid instructions // in the class. These errors are unrecoverable. return false; } if (oat_file_class_status == mirror::Class::kStatusNotReady) { // Status is uninitialized if we couldn't determine the status at compile time, for example, // not loading the class. // TODO: when the verifier doesn't rely on Class-es failing to resolve/load the type hierarchy // isn't a problem and this case shouldn't occur return false; } std::string temp; LOG(FATAL) << "Unexpected class status: " << oat_file_class_status << " " << dex_file.GetLocation() << " " << PrettyClass(klass) << " " << klass->GetDescriptor(&temp); UNREACHABLE(); } void ClassLinker::ResolveClassExceptionHandlerTypes(Handle<mirror::Class> klass) { for (ArtMethod& method : klass->GetMethods(image_pointer_size_)) { ResolveMethodExceptionHandlerTypes(&method); } } void ClassLinker::ResolveMethodExceptionHandlerTypes(ArtMethod* method) { // similar to DexVerifier::ScanTryCatchBlocks and dex2oat's ResolveExceptionsForMethod. const DexFile::CodeItem* code_item = method->GetDexFile()->GetCodeItem(method->GetCodeItemOffset()); if (code_item == nullptr) { return; // native or abstract method } if (code_item->tries_size_ == 0) { return; // nothing to process } const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item, 0); uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr); for (uint32_t idx = 0; idx < handlers_size; idx++) { CatchHandlerIterator iterator(handlers_ptr); for (; iterator.HasNext(); iterator.Next()) { // Ensure exception types are resolved so that they don't need resolution to be delivered, // unresolved exception types will be ignored by exception delivery if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) { mirror::Class* exception_type = ResolveType(iterator.GetHandlerTypeIndex(), method); if (exception_type == nullptr) { DCHECK(Thread::Current()->IsExceptionPending()); Thread::Current()->ClearException(); } } } handlers_ptr = iterator.EndDataPointer(); } } mirror::Class* ClassLinker::CreateProxyClass(ScopedObjectAccessAlreadyRunnable& soa, jstring name, jobjectArray interfaces, jobject loader, jobjectArray methods, jobjectArray throws) { Thread* self = soa.Self(); StackHandleScope<10> hs(self); MutableHandle<mirror::Class> klass(hs.NewHandle( AllocClass(self, GetClassRoot(kJavaLangClass), sizeof(mirror::Class)))); if (klass.Get() == nullptr) { CHECK(self->IsExceptionPending()); // OOME. return nullptr; } DCHECK(klass->GetClass() != nullptr); klass->SetObjectSize(sizeof(mirror::Proxy)); // Set the class access flags incl. VerificationAttempted, so we do not try to set the flag on // the methods. klass->SetAccessFlags(kAccClassIsProxy | kAccPublic | kAccFinal | kAccVerificationAttempted); klass->SetClassLoader(soa.Decode<mirror::ClassLoader*>(loader)); DCHECK_EQ(klass->GetPrimitiveType(), Primitive::kPrimNot); klass->SetName(soa.Decode<mirror::String*>(name)); klass->SetDexCache(GetClassRoot(kJavaLangReflectProxy)->GetDexCache()); mirror::Class::SetStatus(klass, mirror::Class::kStatusIdx, self); std::string descriptor(GetDescriptorForProxy(klass.Get())); const size_t hash = ComputeModifiedUtf8Hash(descriptor.c_str()); // Needs to be before we insert the class so that the allocator field is set. LinearAlloc* const allocator = GetOrCreateAllocatorForClassLoader(klass->GetClassLoader()); // Insert the class before loading the fields as the field roots // (ArtField::declaring_class_) are only visited from the class // table. There can't be any suspend points between inserting the // class and setting the field arrays below. mirror::Class* existing = InsertClass(descriptor.c_str(), klass.Get(), hash); CHECK(existing == nullptr); // Instance fields are inherited, but we add a couple of static fields... const size_t num_fields = 2; LengthPrefixedArray<ArtField>* sfields = AllocArtFieldArray(self, allocator, num_fields); klass->SetSFieldsPtr(sfields); // 1. Create a static field 'interfaces' that holds the _declared_ interfaces implemented by // our proxy, so Class.getInterfaces doesn't return the flattened set. ArtField& interfaces_sfield = sfields->At(0); interfaces_sfield.SetDexFieldIndex(0); interfaces_sfield.SetDeclaringClass(klass.Get()); interfaces_sfield.SetAccessFlags(kAccStatic | kAccPublic | kAccFinal); // 2. Create a static field 'throws' that holds exceptions thrown by our methods. ArtField& throws_sfield = sfields->At(1); throws_sfield.SetDexFieldIndex(1); throws_sfield.SetDeclaringClass(klass.Get()); throws_sfield.SetAccessFlags(kAccStatic | kAccPublic | kAccFinal); // Proxies have 1 direct method, the constructor const size_t num_direct_methods = 1; // They have as many virtual methods as the array auto h_methods = hs.NewHandle(soa.Decode<mirror::ObjectArray<mirror::Method>*>(methods)); DCHECK_EQ(h_methods->GetClass(), mirror::Method::ArrayClass()) << PrettyClass(h_methods->GetClass()); const size_t num_virtual_methods = h_methods->GetLength(); // Create the methods array. LengthPrefixedArray<ArtMethod>* proxy_class_methods = AllocArtMethodArray( self, allocator, num_direct_methods + num_virtual_methods); // Currently AllocArtMethodArray cannot return null, but the OOM logic is left there in case we // want to throw OOM in the future. if (UNLIKELY(proxy_class_methods == nullptr)) { self->AssertPendingOOMException(); return nullptr; } klass->SetMethodsPtr(proxy_class_methods, num_direct_methods, num_virtual_methods); // Create the single direct method. CreateProxyConstructor(klass, klass->GetDirectMethodUnchecked(0, image_pointer_size_)); // Create virtual method using specified prototypes. // TODO These should really use the iterators. for (size_t i = 0; i < num_virtual_methods; ++i) { auto* virtual_method = klass->GetVirtualMethodUnchecked(i, image_pointer_size_); auto* prototype = h_methods->Get(i)->GetArtMethod(); CreateProxyMethod(klass, prototype, virtual_method); DCHECK(virtual_method->GetDeclaringClass() != nullptr); DCHECK(prototype->GetDeclaringClass() != nullptr); } // The super class is java.lang.reflect.Proxy klass->SetSuperClass(GetClassRoot(kJavaLangReflectProxy)); // Now effectively in the loaded state. mirror::Class::SetStatus(klass, mirror::Class::kStatusLoaded, self); self->AssertNoPendingException(); MutableHandle<mirror::Class> new_class = hs.NewHandle<mirror::Class>(nullptr); { // Must hold lock on object when resolved. ObjectLock<mirror::Class> resolution_lock(self, klass); // Link the fields and virtual methods, creating vtable and iftables. // The new class will replace the old one in the class table. Handle<mirror::ObjectArray<mirror::Class>> h_interfaces( hs.NewHandle(soa.Decode<mirror::ObjectArray<mirror::Class>*>(interfaces))); if (!LinkClass(self, descriptor.c_str(), klass, h_interfaces, &new_class)) { mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self); return nullptr; } } CHECK(klass->IsRetired()); CHECK_NE(klass.Get(), new_class.Get()); klass.Assign(new_class.Get()); CHECK_EQ(interfaces_sfield.GetDeclaringClass(), klass.Get()); interfaces_sfield.SetObject<false>(klass.Get(), soa.Decode<mirror::ObjectArray<mirror::Class>*>(interfaces)); CHECK_EQ(throws_sfield.GetDeclaringClass(), klass.Get()); throws_sfield.SetObject<false>( klass.Get(), soa.Decode<mirror::ObjectArray<mirror::ObjectArray<mirror::Class> >*>(throws)); { // Lock on klass is released. Lock new class object. ObjectLock<mirror::Class> initialization_lock(self, klass); mirror::Class::SetStatus(klass, mirror::Class::kStatusInitialized, self); } // sanity checks if (kIsDebugBuild) { CHECK(klass->GetIFieldsPtr() == nullptr); CheckProxyConstructor(klass->GetDirectMethod(0, image_pointer_size_)); for (size_t i = 0; i < num_virtual_methods; ++i) { auto* virtual_method = klass->GetVirtualMethodUnchecked(i, image_pointer_size_); auto* prototype = h_methods->Get(i++)->GetArtMethod(); CheckProxyMethod(virtual_method, prototype); } StackHandleScope<1> hs2(self); Handle<mirror::String> decoded_name = hs2.NewHandle(soa.Decode<mirror::String*>(name)); std::string interfaces_field_name(StringPrintf("java.lang.Class[] %s.interfaces", decoded_name->ToModifiedUtf8().c_str())); CHECK_EQ(PrettyField(klass->GetStaticField(0)), interfaces_field_name); std::string throws_field_name(StringPrintf("java.lang.Class[][] %s.throws", decoded_name->ToModifiedUtf8().c_str())); CHECK_EQ(PrettyField(klass->GetStaticField(1)), throws_field_name); CHECK_EQ(klass.Get()->GetInterfaces(), soa.Decode<mirror::ObjectArray<mirror::Class>*>(interfaces)); CHECK_EQ(klass.Get()->GetThrows(), soa.Decode<mirror::ObjectArray<mirror::ObjectArray<mirror::Class>>*>(throws)); } return klass.Get(); } std::string ClassLinker::GetDescriptorForProxy(mirror::Class* proxy_class) { DCHECK(proxy_class->IsProxyClass()); mirror::String* name = proxy_class->GetName(); DCHECK(name != nullptr); return DotToDescriptor(name->ToModifiedUtf8().c_str()); } ArtMethod* ClassLinker::FindMethodForProxy(mirror::Class* proxy_class, ArtMethod* proxy_method) { DCHECK(proxy_class->IsProxyClass()); DCHECK(proxy_method->IsProxyMethod()); { Thread* const self = Thread::Current(); ReaderMutexLock mu(self, dex_lock_); // Locate the dex cache of the original interface/Object for (const DexCacheData& data : dex_caches_) { if (!self->IsJWeakCleared(data.weak_root) && proxy_method->HasSameDexCacheResolvedTypes(data.resolved_types, image_pointer_size_)) { mirror::DexCache* dex_cache = down_cast<mirror::DexCache*>( self->DecodeJObject(data.weak_root)); if (dex_cache != nullptr) { ArtMethod* resolved_method = dex_cache->GetResolvedMethod( proxy_method->GetDexMethodIndex(), image_pointer_size_); CHECK(resolved_method != nullptr); return resolved_method; } } } } LOG(FATAL) << "Didn't find dex cache for " << PrettyClass(proxy_class) << " " << PrettyMethod(proxy_method); UNREACHABLE(); } void ClassLinker::CreateProxyConstructor(Handle<mirror::Class> klass, ArtMethod* out) { // Create constructor for Proxy that must initialize the method. CHECK_EQ(GetClassRoot(kJavaLangReflectProxy)->NumDirectMethods(), 18u); ArtMethod* proxy_constructor = GetClassRoot(kJavaLangReflectProxy)->GetDirectMethodUnchecked( 2, image_pointer_size_); DCHECK_EQ(std::string(proxy_constructor->GetName()), "<init>"); // Ensure constructor is in dex cache so that we can use the dex cache to look up the overridden // constructor method. GetClassRoot(kJavaLangReflectProxy)->GetDexCache()->SetResolvedMethod( proxy_constructor->GetDexMethodIndex(), proxy_constructor, image_pointer_size_); // Clone the existing constructor of Proxy (our constructor would just invoke it so steal its // code_ too) DCHECK(out != nullptr); out->CopyFrom(proxy_constructor, image_pointer_size_); // Make this constructor public and fix the class to be our Proxy version out->SetAccessFlags((out->GetAccessFlags() & ~kAccProtected) | kAccPublic); out->SetDeclaringClass(klass.Get()); } void ClassLinker::CheckProxyConstructor(ArtMethod* constructor) const { CHECK(constructor->IsConstructor()); auto* np = constructor->GetInterfaceMethodIfProxy(image_pointer_size_); CHECK_STREQ(np->GetName(), "<init>"); CHECK_STREQ(np->GetSignature().ToString().c_str(), "(Ljava/lang/reflect/InvocationHandler;)V"); DCHECK(constructor->IsPublic()); } void ClassLinker::CreateProxyMethod(Handle<mirror::Class> klass, ArtMethod* prototype, ArtMethod* out) { // Ensure prototype is in dex cache so that we can use the dex cache to look up the overridden // prototype method auto* dex_cache = prototype->GetDeclaringClass()->GetDexCache(); // Avoid dirtying the dex cache unless we need to. if (dex_cache->GetResolvedMethod(prototype->GetDexMethodIndex(), image_pointer_size_) != prototype) { dex_cache->SetResolvedMethod( prototype->GetDexMethodIndex(), prototype, image_pointer_size_); } // We steal everything from the prototype (such as DexCache, invoke stub, etc.) then specialize // as necessary DCHECK(out != nullptr); out->CopyFrom(prototype, image_pointer_size_); // Set class to be the concrete proxy class. out->SetDeclaringClass(klass.Get()); // Clear the abstract, default and conflict flags to ensure that defaults aren't picked in // preference to the invocation handler. const uint32_t kRemoveFlags = kAccAbstract | kAccDefault | kAccDefaultConflict; // Make the method final. const uint32_t kAddFlags = kAccFinal; out->SetAccessFlags((out->GetAccessFlags() & ~kRemoveFlags) | kAddFlags); // Clear the dex_code_item_offset_. It needs to be 0 since proxy methods have no CodeItems but the // method they copy might (if it's a default method). out->SetCodeItemOffset(0); // At runtime the method looks like a reference and argument saving method, clone the code // related parameters from this method. out->SetEntryPointFromQuickCompiledCode(GetQuickProxyInvokeHandler()); } void ClassLinker::CheckProxyMethod(ArtMethod* method, ArtMethod* prototype) const { // Basic sanity CHECK(!prototype->IsFinal()); CHECK(method->IsFinal()); CHECK(method->IsInvokable()); // The proxy method doesn't have its own dex cache or dex file and so it steals those of its // interface prototype. The exception to this are Constructors and the Class of the Proxy itself. CHECK(prototype->HasSameDexCacheResolvedMethods(method, image_pointer_size_)); CHECK(prototype->HasSameDexCacheResolvedTypes(method, image_pointer_size_)); auto* np = method->GetInterfaceMethodIfProxy(image_pointer_size_); CHECK_EQ(prototype->GetDeclaringClass()->GetDexCache(), np->GetDexCache()); CHECK_EQ(prototype->GetDexMethodIndex(), method->GetDexMethodIndex()); CHECK_STREQ(np->GetName(), prototype->GetName()); CHECK_STREQ(np->GetShorty(), prototype->GetShorty()); // More complex sanity - via dex cache CHECK_EQ(np->GetReturnType(true /* resolve */, image_pointer_size_), prototype->GetReturnType(true /* resolve */, image_pointer_size_)); } bool ClassLinker::CanWeInitializeClass(mirror::Class* klass, bool can_init_statics, bool can_init_parents) { if (can_init_statics && can_init_parents) { return true; } if (!can_init_statics) { // Check if there's a class initializer. ArtMethod* clinit = klass->FindClassInitializer(image_pointer_size_); if (clinit != nullptr) { return false; } // Check if there are encoded static values needing initialization. if (klass->NumStaticFields() != 0) { const DexFile::ClassDef* dex_class_def = klass->GetClassDef(); DCHECK(dex_class_def != nullptr); if (dex_class_def->static_values_off_ != 0) { return false; } } // If we are a class we need to initialize all interfaces with default methods when we are // initialized. Check all of them. if (!klass->IsInterface()) { size_t num_interfaces = klass->GetIfTableCount(); for (size_t i = 0; i < num_interfaces; i++) { mirror::Class* iface = klass->GetIfTable()->GetInterface(i); if (iface->HasDefaultMethods() && !CanWeInitializeClass(iface, can_init_statics, can_init_parents)) { return false; } } } } if (klass->IsInterface() || !klass->HasSuperClass()) { return true; } mirror::Class* super_class = klass->GetSuperClass(); if (!can_init_parents && !super_class->IsInitialized()) { return false; } return CanWeInitializeClass(super_class, can_init_statics, can_init_parents); } bool ClassLinker::InitializeClass(Thread* self, Handle<mirror::Class> klass, bool can_init_statics, bool can_init_parents) { // see JLS 3rd edition, 12.4.2 "Detailed Initialization Procedure" for the locking protocol // Are we already initialized and therefore done? // Note: we differ from the JLS here as we don't do this under the lock, this is benign as // an initialized class will never change its state. if (klass->IsInitialized()) { return true; } // Fast fail if initialization requires a full runtime. Not part of the JLS. if (!CanWeInitializeClass(klass.Get(), can_init_statics, can_init_parents)) { return false; } self->AllowThreadSuspension(); uint64_t t0; { ObjectLock<mirror::Class> lock(self, klass); // Re-check under the lock in case another thread initialized ahead of us. if (klass->IsInitialized()) { return true; } // Was the class already found to be erroneous? Done under the lock to match the JLS. if (klass->IsErroneous()) { ThrowEarlierClassFailure(klass.Get(), true); VlogClassInitializationFailure(klass); return false; } CHECK(klass->IsResolved()) << PrettyClass(klass.Get()) << ": state=" << klass->GetStatus(); if (!klass->IsVerified()) { VerifyClass(self, klass); if (!klass->IsVerified()) { // We failed to verify, expect either the klass to be erroneous or verification failed at // compile time. if (klass->IsErroneous()) { // The class is erroneous. This may be a verifier error, or another thread attempted // verification and/or initialization and failed. We can distinguish those cases by // whether an exception is already pending. if (self->IsExceptionPending()) { // Check that it's a VerifyError. DCHECK_EQ("java.lang.Class<java.lang.VerifyError>", PrettyClass(self->GetException()->GetClass())); } else { // Check that another thread attempted initialization. DCHECK_NE(0, klass->GetClinitThreadId()); DCHECK_NE(self->GetTid(), klass->GetClinitThreadId()); // Need to rethrow the previous failure now. ThrowEarlierClassFailure(klass.Get(), true); } VlogClassInitializationFailure(klass); } else { CHECK(Runtime::Current()->IsAotCompiler()); CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime); } return false; } else { self->AssertNoPendingException(); } // A separate thread could have moved us all the way to initialized. A "simple" example // involves a subclass of the current class being initialized at the same time (which // will implicitly initialize the superclass, if scheduled that way). b/28254258 DCHECK_NE(mirror::Class::kStatusError, klass->GetStatus()); if (klass->IsInitialized()) { return true; } } // If the class is kStatusInitializing, either this thread is // initializing higher up the stack or another thread has beat us // to initializing and we need to wait. Either way, this // invocation of InitializeClass will not be responsible for // running <clinit> and will return. if (klass->GetStatus() == mirror::Class::kStatusInitializing) { // Could have got an exception during verification. if (self->IsExceptionPending()) { VlogClassInitializationFailure(klass); return false; } // We caught somebody else in the act; was it us? if (klass->GetClinitThreadId() == self->GetTid()) { // Yes. That's fine. Return so we can continue initializing. return true; } // No. That's fine. Wait for another thread to finish initializing. return WaitForInitializeClass(klass, self, lock); } if (!ValidateSuperClassDescriptors(klass)) { mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self); return false; } self->AllowThreadSuspension(); CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusVerified) << PrettyClass(klass.Get()) << " self.tid=" << self->GetTid() << " clinit.tid=" << klass->GetClinitThreadId(); // From here out other threads may observe that we're initializing and so changes of state // require the a notification. klass->SetClinitThreadId(self->GetTid()); mirror::Class::SetStatus(klass, mirror::Class::kStatusInitializing, self); t0 = NanoTime(); } // Initialize super classes, must be done while initializing for the JLS. if (!klass->IsInterface() && klass->HasSuperClass()) { mirror::Class* super_class = klass->GetSuperClass(); if (!super_class->IsInitialized()) { CHECK(!super_class->IsInterface()); CHECK(can_init_parents); StackHandleScope<1> hs(self); Handle<mirror::Class> handle_scope_super(hs.NewHandle(super_class)); bool super_initialized = InitializeClass(self, handle_scope_super, can_init_statics, true); if (!super_initialized) { // The super class was verified ahead of entering initializing, we should only be here if // the super class became erroneous due to initialization. CHECK(handle_scope_super->IsErroneous() && self->IsExceptionPending()) << "Super class initialization failed for " << PrettyDescriptor(handle_scope_super.Get()) << " that has unexpected status " << handle_scope_super->GetStatus() << "\nPending exception:\n" << (self->GetException() != nullptr ? self->GetException()->Dump() : ""); ObjectLock<mirror::Class> lock(self, klass); // Initialization failed because the super-class is erroneous. mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self); return false; } } } if (!klass->IsInterface()) { // Initialize interfaces with default methods for the JLS. size_t num_direct_interfaces = klass->NumDirectInterfaces(); // Only setup the (expensive) handle scope if we actually need to. if (UNLIKELY(num_direct_interfaces > 0)) { StackHandleScope<1> hs_iface(self); MutableHandle<mirror::Class> handle_scope_iface(hs_iface.NewHandle<mirror::Class>(nullptr)); for (size_t i = 0; i < num_direct_interfaces; i++) { handle_scope_iface.Assign(mirror::Class::GetDirectInterface(self, klass, i)); CHECK(handle_scope_iface.Get() != nullptr); CHECK(handle_scope_iface->IsInterface()); if (handle_scope_iface->HasBeenRecursivelyInitialized()) { // We have already done this for this interface. Skip it. continue; } // We cannot just call initialize class directly because we need to ensure that ALL // interfaces with default methods are initialized. Non-default interface initialization // will not affect other non-default super-interfaces. bool iface_initialized = InitializeDefaultInterfaceRecursive(self, handle_scope_iface, can_init_statics, can_init_parents); if (!iface_initialized) { ObjectLock<mirror::Class> lock(self, klass); // Initialization failed because one of our interfaces with default methods is erroneous. mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self); return false; } } } } const size_t num_static_fields = klass->NumStaticFields(); if (num_static_fields > 0) { const DexFile::ClassDef* dex_class_def = klass->GetClassDef(); CHECK(dex_class_def != nullptr); const DexFile& dex_file = klass->GetDexFile(); StackHandleScope<3> hs(self); Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader())); Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache())); // Eagerly fill in static fields so that the we don't have to do as many expensive // Class::FindStaticField in ResolveField. for (size_t i = 0; i < num_static_fields; ++i) { ArtField* field = klass->GetStaticField(i); const uint32_t field_idx = field->GetDexFieldIndex(); ArtField* resolved_field = dex_cache->GetResolvedField(field_idx, image_pointer_size_); if (resolved_field == nullptr) { dex_cache->SetResolvedField(field_idx, field, image_pointer_size_); } else { DCHECK_EQ(field, resolved_field); } } EncodedStaticFieldValueIterator value_it(dex_file, &dex_cache, &class_loader, this, *dex_class_def); const uint8_t* class_data = dex_file.GetClassData(*dex_class_def); ClassDataItemIterator field_it(dex_file, class_data); if (value_it.HasNext()) { DCHECK(field_it.HasNextStaticField()); CHECK(can_init_statics); for ( ; value_it.HasNext(); value_it.Next(), field_it.Next()) { ArtField* field = ResolveField( dex_file, field_it.GetMemberIndex(), dex_cache, class_loader, true); if (Runtime::Current()->IsActiveTransaction()) { value_it.ReadValueToField<true>(field); } else { value_it.ReadValueToField<false>(field); } DCHECK(!value_it.HasNext() || field_it.HasNextStaticField()); } } } ArtMethod* clinit = klass->FindClassInitializer(image_pointer_size_); if (clinit != nullptr) { CHECK(can_init_statics); JValue result; clinit->Invoke(self, nullptr, 0, &result, "V"); } self->AllowThreadSuspension(); uint64_t t1 = NanoTime(); bool success = true; { ObjectLock<mirror::Class> lock(self, klass); if (self->IsExceptionPending()) { WrapExceptionInInitializer(klass); mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self); success = false; } else if (Runtime::Current()->IsTransactionAborted()) { // The exception thrown when the transaction aborted has been caught and cleared // so we need to throw it again now. VLOG(compiler) << "Return from class initializer of " << PrettyDescriptor(klass.Get()) << " without exception while transaction was aborted: re-throw it now."; Runtime::Current()->ThrowTransactionAbortError(self); mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self); success = false; } else { RuntimeStats* global_stats = Runtime::Current()->GetStats(); RuntimeStats* thread_stats = self->GetStats(); ++global_stats->class_init_count; ++thread_stats->class_init_count; global_stats->class_init_time_ns += (t1 - t0); thread_stats->class_init_time_ns += (t1 - t0); // Set the class as initialized except if failed to initialize static fields. mirror::Class::SetStatus(klass, mirror::Class::kStatusInitialized, self); if (VLOG_IS_ON(class_linker)) { std::string temp; LOG(INFO) << "Initialized class " << klass->GetDescriptor(&temp) << " from " << klass->GetLocation(); } // Opportunistically set static method trampolines to their destination. FixupStaticTrampolines(klass.Get()); } } return success; } // We recursively run down the tree of interfaces. We need to do this in the order they are declared // and perform the initialization only on those interfaces that contain default methods. bool ClassLinker::InitializeDefaultInterfaceRecursive(Thread* self, Handle<mirror::Class> iface, bool can_init_statics, bool can_init_parents) { CHECK(iface->IsInterface()); size_t num_direct_ifaces = iface->NumDirectInterfaces(); // Only create the (expensive) handle scope if we need it. if (UNLIKELY(num_direct_ifaces > 0)) { StackHandleScope<1> hs(self); MutableHandle<mirror::Class> handle_super_iface(hs.NewHandle<mirror::Class>(nullptr)); // First we initialize all of iface's super-interfaces recursively. for (size_t i = 0; i < num_direct_ifaces; i++) { mirror::Class* super_iface = mirror::Class::GetDirectInterface(self, iface, i); if (!super_iface->HasBeenRecursivelyInitialized()) { // Recursive step handle_super_iface.Assign(super_iface); if (!InitializeDefaultInterfaceRecursive(self, handle_super_iface, can_init_statics, can_init_parents)) { return false; } } } } bool result = true; // Then we initialize 'iface' if it has default methods. We do not need to (and in fact must not) // initialize if we don't have default methods. if (iface->HasDefaultMethods()) { result = EnsureInitialized(self, iface, can_init_statics, can_init_parents); } // Mark that this interface has undergone recursive default interface initialization so we know we // can skip it on any later class initializations. We do this even if we are not a default // interface since we can still avoid the traversal. This is purely a performance optimization. if (result) { // TODO This should be done in a better way ObjectLock<mirror::Class> lock(self, iface); iface->SetRecursivelyInitialized(); } return result; } bool ClassLinker::WaitForInitializeClass(Handle<mirror::Class> klass, Thread* self, ObjectLock<mirror::Class>& lock) SHARED_REQUIRES(Locks::mutator_lock_) { while (true) { self->AssertNoPendingException(); CHECK(!klass->IsInitialized()); lock.WaitIgnoringInterrupts(); // When we wake up, repeat the test for init-in-progress. If // there's an exception pending (only possible if // we were not using WaitIgnoringInterrupts), bail out. if (self->IsExceptionPending()) { WrapExceptionInInitializer(klass); mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self); return false; } // Spurious wakeup? Go back to waiting. if (klass->GetStatus() == mirror::Class::kStatusInitializing) { continue; } if (klass->GetStatus() == mirror::Class::kStatusVerified && Runtime::Current()->IsAotCompiler()) { // Compile time initialization failed. return false; } if (klass->IsErroneous()) { // The caller wants an exception, but it was thrown in a // different thread. Synthesize one here. ThrowNoClassDefFoundError("<clinit> failed for class %s; see exception in other thread", PrettyDescriptor(klass.Get()).c_str()); VlogClassInitializationFailure(klass); return false; } if (klass->IsInitialized()) { return true; } LOG(FATAL) << "Unexpected class status. " << PrettyClass(klass.Get()) << " is " << klass->GetStatus(); } UNREACHABLE(); } static void ThrowSignatureCheckResolveReturnTypeException(Handle<mirror::Class> klass, Handle<mirror::Class> super_klass, ArtMethod* method, ArtMethod* m) SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(Thread::Current()->IsExceptionPending()); DCHECK(!m->IsProxyMethod()); const DexFile* dex_file = m->GetDexFile(); const DexFile::MethodId& method_id = dex_file->GetMethodId(m->GetDexMethodIndex()); const DexFile::ProtoId& proto_id = dex_file->GetMethodPrototype(method_id); uint16_t return_type_idx = proto_id.return_type_idx_; std::string return_type = PrettyType(return_type_idx, *dex_file); std::string class_loader = PrettyTypeOf(m->GetDeclaringClass()->GetClassLoader()); ThrowWrappedLinkageError(klass.Get(), "While checking class %s method %s signature against %s %s: " "Failed to resolve return type %s with %s", PrettyDescriptor(klass.Get()).c_str(), PrettyMethod(method).c_str(), super_klass->IsInterface() ? "interface" : "superclass", PrettyDescriptor(super_klass.Get()).c_str(), return_type.c_str(), class_loader.c_str()); } static void ThrowSignatureCheckResolveArgException(Handle<mirror::Class> klass, Handle<mirror::Class> super_klass, ArtMethod* method, ArtMethod* m, uint32_t index, uint32_t arg_type_idx) SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(Thread::Current()->IsExceptionPending()); DCHECK(!m->IsProxyMethod()); const DexFile* dex_file = m->GetDexFile(); std::string arg_type = PrettyType(arg_type_idx, *dex_file); std::string class_loader = PrettyTypeOf(m->GetDeclaringClass()->GetClassLoader()); ThrowWrappedLinkageError(klass.Get(), "While checking class %s method %s signature against %s %s: " "Failed to resolve arg %u type %s with %s", PrettyDescriptor(klass.Get()).c_str(), PrettyMethod(method).c_str(), super_klass->IsInterface() ? "interface" : "superclass", PrettyDescriptor(super_klass.Get()).c_str(), index, arg_type.c_str(), class_loader.c_str()); } static void ThrowSignatureMismatch(Handle<mirror::Class> klass, Handle<mirror::Class> super_klass, ArtMethod* method, const std::string& error_msg) SHARED_REQUIRES(Locks::mutator_lock_) { ThrowLinkageError(klass.Get(), "Class %s method %s resolves differently in %s %s: %s", PrettyDescriptor(klass.Get()).c_str(), PrettyMethod(method).c_str(), super_klass->IsInterface() ? "interface" : "superclass", PrettyDescriptor(super_klass.Get()).c_str(), error_msg.c_str()); } static bool HasSameSignatureWithDifferentClassLoaders(Thread* self, size_t pointer_size, Handle<mirror::Class> klass, Handle<mirror::Class> super_klass, ArtMethod* method1, ArtMethod* method2) SHARED_REQUIRES(Locks::mutator_lock_) { { StackHandleScope<1> hs(self); Handle<mirror::Class> return_type(hs.NewHandle(method1->GetReturnType(true /* resolve */, pointer_size))); if (UNLIKELY(return_type.Get() == nullptr)) { ThrowSignatureCheckResolveReturnTypeException(klass, super_klass, method1, method1); return false; } mirror::Class* other_return_type = method2->GetReturnType(true /* resolve */, pointer_size); if (UNLIKELY(other_return_type == nullptr)) { ThrowSignatureCheckResolveReturnTypeException(klass, super_klass, method1, method2); return false; } if (UNLIKELY(other_return_type != return_type.Get())) { ThrowSignatureMismatch(klass, super_klass, method1, StringPrintf("Return types mismatch: %s(%p) vs %s(%p)", PrettyClassAndClassLoader(return_type.Get()).c_str(), return_type.Get(), PrettyClassAndClassLoader(other_return_type).c_str(), other_return_type)); return false; } } const DexFile::TypeList* types1 = method1->GetParameterTypeList(); const DexFile::TypeList* types2 = method2->GetParameterTypeList(); if (types1 == nullptr) { if (types2 != nullptr && types2->Size() != 0) { ThrowSignatureMismatch(klass, super_klass, method1, StringPrintf("Type list mismatch with %s", PrettyMethod(method2, true).c_str())); return false; } return true; } else if (UNLIKELY(types2 == nullptr)) { if (types1->Size() != 0) { ThrowSignatureMismatch(klass, super_klass, method1, StringPrintf("Type list mismatch with %s", PrettyMethod(method2, true).c_str())); return false; } return true; } uint32_t num_types = types1->Size(); if (UNLIKELY(num_types != types2->Size())) { ThrowSignatureMismatch(klass, super_klass, method1, StringPrintf("Type list mismatch with %s", PrettyMethod(method2, true).c_str())); return false; } for (uint32_t i = 0; i < num_types; ++i) { StackHandleScope<1> hs(self); uint32_t param_type_idx = types1->GetTypeItem(i).type_idx_; Handle<mirror::Class> param_type(hs.NewHandle( method1->GetClassFromTypeIndex(param_type_idx, true /* resolve */, pointer_size))); if (UNLIKELY(param_type.Get() == nullptr)) { ThrowSignatureCheckResolveArgException(klass, super_klass, method1, method1, i, param_type_idx); return false; } uint32_t other_param_type_idx = types2->GetTypeItem(i).type_idx_; mirror::Class* other_param_type = method2->GetClassFromTypeIndex(other_param_type_idx, true /* resolve */, pointer_size); if (UNLIKELY(other_param_type == nullptr)) { ThrowSignatureCheckResolveArgException(klass, super_klass, method1, method2, i, other_param_type_idx); return false; } if (UNLIKELY(param_type.Get() != other_param_type)) { ThrowSignatureMismatch(klass, super_klass, method1, StringPrintf("Parameter %u type mismatch: %s(%p) vs %s(%p)", i, PrettyClassAndClassLoader(param_type.Get()).c_str(), param_type.Get(), PrettyClassAndClassLoader(other_param_type).c_str(), other_param_type)); return false; } } return true; } bool ClassLinker::ValidateSuperClassDescriptors(Handle<mirror::Class> klass) { if (klass->IsInterface()) { return true; } // Begin with the methods local to the superclass. Thread* self = Thread::Current(); StackHandleScope<1> hs(self); MutableHandle<mirror::Class> super_klass(hs.NewHandle<mirror::Class>(nullptr)); if (klass->HasSuperClass() && klass->GetClassLoader() != klass->GetSuperClass()->GetClassLoader()) { super_klass.Assign(klass->GetSuperClass()); for (int i = klass->GetSuperClass()->GetVTableLength() - 1; i >= 0; --i) { auto* m = klass->GetVTableEntry(i, image_pointer_size_); auto* super_m = klass->GetSuperClass()->GetVTableEntry(i, image_pointer_size_); if (m != super_m) { if (UNLIKELY(!HasSameSignatureWithDifferentClassLoaders(self, image_pointer_size_, klass, super_klass, m, super_m))) { self->AssertPendingException(); return false; } } } } for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) { super_klass.Assign(klass->GetIfTable()->GetInterface(i)); if (klass->GetClassLoader() != super_klass->GetClassLoader()) { uint32_t num_methods = super_klass->NumVirtualMethods(); for (uint32_t j = 0; j < num_methods; ++j) { auto* m = klass->GetIfTable()->GetMethodArray(i)->GetElementPtrSize<ArtMethod*>( j, image_pointer_size_); auto* super_m = super_klass->GetVirtualMethod(j, image_pointer_size_); if (m != super_m) { if (UNLIKELY(!HasSameSignatureWithDifferentClassLoaders(self, image_pointer_size_, klass, super_klass, m, super_m))) { self->AssertPendingException(); return false; } } } } } return true; } bool ClassLinker::EnsureInitialized(Thread* self, Handle<mirror::Class> c, bool can_init_fields, bool can_init_parents) { DCHECK(c.Get() != nullptr); if (c->IsInitialized()) { EnsureSkipAccessChecksMethods(c); return true; } const bool success = InitializeClass(self, c, can_init_fields, can_init_parents); if (!success) { if (can_init_fields && can_init_parents) { CHECK(self->IsExceptionPending()) << PrettyClass(c.Get()); } } else { self->AssertNoPendingException(); } return success; } void ClassLinker::FixupTemporaryDeclaringClass(mirror::Class* temp_class, mirror::Class* new_class) { DCHECK_EQ(temp_class->NumInstanceFields(), 0u); for (ArtField& field : new_class->GetIFields()) { if (field.GetDeclaringClass() == temp_class) { field.SetDeclaringClass(new_class); } } DCHECK_EQ(temp_class->NumStaticFields(), 0u); for (ArtField& field : new_class->GetSFields()) { if (field.GetDeclaringClass() == temp_class) { field.SetDeclaringClass(new_class); } } DCHECK_EQ(temp_class->NumDirectMethods(), 0u); DCHECK_EQ(temp_class->NumVirtualMethods(), 0u); for (auto& method : new_class->GetMethods(image_pointer_size_)) { if (method.GetDeclaringClass() == temp_class) { method.SetDeclaringClass(new_class); } } // Make sure the remembered set and mod-union tables know that we updated some of the native // roots. Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(new_class); } void ClassLinker::RegisterClassLoader(mirror::ClassLoader* class_loader) { CHECK(class_loader->GetAllocator() == nullptr); CHECK(class_loader->GetClassTable() == nullptr); Thread* const self = Thread::Current(); ClassLoaderData data; data.weak_root = self->GetJniEnv()->vm->AddWeakGlobalRef(self, class_loader); // Create and set the class table. data.class_table = new ClassTable; class_loader->SetClassTable(data.class_table); // Create and set the linear allocator. data.allocator = Runtime::Current()->CreateLinearAlloc(); class_loader->SetAllocator(data.allocator); // Add to the list so that we know to free the data later. class_loaders_.push_back(data); } ClassTable* ClassLinker::InsertClassTableForClassLoader(mirror::ClassLoader* class_loader) { if (class_loader == nullptr) { return &boot_class_table_; } ClassTable* class_table = class_loader->GetClassTable(); if (class_table == nullptr) { RegisterClassLoader(class_loader); class_table = class_loader->GetClassTable(); DCHECK(class_table != nullptr); } return class_table; } ClassTable* ClassLinker::ClassTableForClassLoader(mirror::ClassLoader* class_loader) { return class_loader == nullptr ? &boot_class_table_ : class_loader->GetClassTable(); } bool ClassLinker::LinkClass(Thread* self, const char* descriptor, Handle<mirror::Class> klass, Handle<mirror::ObjectArray<mirror::Class>> interfaces, MutableHandle<mirror::Class>* h_new_class_out) { CHECK_EQ(mirror::Class::kStatusLoaded, klass->GetStatus()); if (!LinkSuperClass(klass)) { return false; } ArtMethod* imt[mirror::Class::kImtSize]; std::fill_n(imt, arraysize(imt), Runtime::Current()->GetImtUnimplementedMethod()); if (!LinkMethods(self, klass, interfaces, imt)) { return false; } if (!LinkInstanceFields(self, klass)) { return false; } size_t class_size; if (!LinkStaticFields(self, klass, &class_size)) { return false; } CreateReferenceInstanceOffsets(klass); CHECK_EQ(mirror::Class::kStatusLoaded, klass->GetStatus()); if (!klass->IsTemp() || (!init_done_ && klass->GetClassSize() == class_size)) { // We don't need to retire this class as it has no embedded tables or it was created the // correct size during class linker initialization. CHECK_EQ(klass->GetClassSize(), class_size) << PrettyDescriptor(klass.Get()); if (klass->ShouldHaveEmbeddedImtAndVTable()) { klass->PopulateEmbeddedImtAndVTable(imt, image_pointer_size_); } // This will notify waiters on klass that saw the not yet resolved // class in the class_table_ during EnsureResolved. mirror::Class::SetStatus(klass, mirror::Class::kStatusResolved, self); h_new_class_out->Assign(klass.Get()); } else { CHECK(!klass->IsResolved()); // Retire the temporary class and create the correctly sized resolved class. StackHandleScope<1> hs(self); auto h_new_class = hs.NewHandle(klass->CopyOf(self, class_size, imt, image_pointer_size_)); // Set arrays to null since we don't want to have multiple classes with the same ArtField or // ArtMethod array pointers. If this occurs, it causes bugs in remembered sets since the GC // may not see any references to the target space and clean the card for a class if another // class had the same array pointer. klass->SetMethodsPtrUnchecked(nullptr, 0, 0); klass->SetSFieldsPtrUnchecked(nullptr); klass->SetIFieldsPtrUnchecked(nullptr); if (UNLIKELY(h_new_class.Get() == nullptr)) { self->AssertPendingOOMException(); mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self); return false; } CHECK_EQ(h_new_class->GetClassSize(), class_size); ObjectLock<mirror::Class> lock(self, h_new_class); FixupTemporaryDeclaringClass(klass.Get(), h_new_class.Get()); { WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); mirror::ClassLoader* const class_loader = h_new_class.Get()->GetClassLoader(); ClassTable* const table = InsertClassTableForClassLoader(class_loader); mirror::Class* existing = table->UpdateClass(descriptor, h_new_class.Get(), ComputeModifiedUtf8Hash(descriptor)); if (class_loader != nullptr) { // We updated the class in the class table, perform the write barrier so that the GC knows // about the change. Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader); } CHECK_EQ(existing, klass.Get()); if (kIsDebugBuild && class_loader == nullptr && dex_cache_boot_image_class_lookup_required_) { // Check a class loaded with the system class loader matches one in the image if the class // is in the image. mirror::Class* const image_class = LookupClassFromBootImage(descriptor); if (image_class != nullptr) { CHECK_EQ(klass.Get(), existing) << descriptor; } } if (log_new_class_table_roots_) { new_class_roots_.push_back(GcRoot<mirror::Class>(h_new_class.Get())); } } // This will notify waiters on temp class that saw the not yet resolved class in the // class_table_ during EnsureResolved. mirror::Class::SetStatus(klass, mirror::Class::kStatusRetired, self); CHECK_EQ(h_new_class->GetStatus(), mirror::Class::kStatusResolving); // This will notify waiters on new_class that saw the not yet resolved // class in the class_table_ during EnsureResolved. mirror::Class::SetStatus(h_new_class, mirror::Class::kStatusResolved, self); // Return the new class. h_new_class_out->Assign(h_new_class.Get()); } return true; } static void CountMethodsAndFields(ClassDataItemIterator& dex_data, size_t* virtual_methods, size_t* direct_methods, size_t* static_fields, size_t* instance_fields) { *virtual_methods = *direct_methods = *static_fields = *instance_fields = 0; while (dex_data.HasNextStaticField()) { dex_data.Next(); (*static_fields)++; } while (dex_data.HasNextInstanceField()) { dex_data.Next(); (*instance_fields)++; } while (dex_data.HasNextDirectMethod()) { (*direct_methods)++; dex_data.Next(); } while (dex_data.HasNextVirtualMethod()) { (*virtual_methods)++; dex_data.Next(); } DCHECK(!dex_data.HasNext()); } static void DumpClass(std::ostream& os, const DexFile& dex_file, const DexFile::ClassDef& dex_class_def, const char* suffix) { ClassDataItemIterator dex_data(dex_file, dex_file.GetClassData(dex_class_def)); os << dex_file.GetClassDescriptor(dex_class_def) << suffix << ":\n"; os << " Static fields:\n"; while (dex_data.HasNextStaticField()) { const DexFile::FieldId& id = dex_file.GetFieldId(dex_data.GetMemberIndex()); os << " " << dex_file.GetFieldTypeDescriptor(id) << " " << dex_file.GetFieldName(id) << "\n"; dex_data.Next(); } os << " Instance fields:\n"; while (dex_data.HasNextInstanceField()) { const DexFile::FieldId& id = dex_file.GetFieldId(dex_data.GetMemberIndex()); os << " " << dex_file.GetFieldTypeDescriptor(id) << " " << dex_file.GetFieldName(id) << "\n"; dex_data.Next(); } os << " Direct methods:\n"; while (dex_data.HasNextDirectMethod()) { const DexFile::MethodId& id = dex_file.GetMethodId(dex_data.GetMemberIndex()); os << " " << dex_file.GetMethodName(id) << dex_file.GetMethodSignature(id).ToString() << "\n"; dex_data.Next(); } os << " Virtual methods:\n"; while (dex_data.HasNextVirtualMethod()) { const DexFile::MethodId& id = dex_file.GetMethodId(dex_data.GetMemberIndex()); os << " " << dex_file.GetMethodName(id) << dex_file.GetMethodSignature(id).ToString() << "\n"; dex_data.Next(); } } static std::string DumpClasses(const DexFile& dex_file1, const DexFile::ClassDef& dex_class_def1, const DexFile& dex_file2, const DexFile::ClassDef& dex_class_def2) { std::ostringstream os; DumpClass(os, dex_file1, dex_class_def1, " (Compile time)"); DumpClass(os, dex_file2, dex_class_def2, " (Runtime)"); return os.str(); } // Very simple structural check on whether the classes match. Only compares the number of // methods and fields. static bool SimpleStructuralCheck(const DexFile& dex_file1, const DexFile::ClassDef& dex_class_def1, const DexFile& dex_file2, const DexFile::ClassDef& dex_class_def2, std::string* error_msg) { ClassDataItemIterator dex_data1(dex_file1, dex_file1.GetClassData(dex_class_def1)); ClassDataItemIterator dex_data2(dex_file2, dex_file2.GetClassData(dex_class_def2)); // Counters for current dex file. size_t dex_virtual_methods1, dex_direct_methods1, dex_static_fields1, dex_instance_fields1; CountMethodsAndFields(dex_data1, &dex_virtual_methods1, &dex_direct_methods1, &dex_static_fields1, &dex_instance_fields1); // Counters for compile-time dex file. size_t dex_virtual_methods2, dex_direct_methods2, dex_static_fields2, dex_instance_fields2; CountMethodsAndFields(dex_data2, &dex_virtual_methods2, &dex_direct_methods2, &dex_static_fields2, &dex_instance_fields2); if (dex_virtual_methods1 != dex_virtual_methods2) { std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2); *error_msg = StringPrintf("Virtual method count off: %zu vs %zu\n%s", dex_virtual_methods1, dex_virtual_methods2, class_dump.c_str()); return false; } if (dex_direct_methods1 != dex_direct_methods2) { std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2); *error_msg = StringPrintf("Direct method count off: %zu vs %zu\n%s", dex_direct_methods1, dex_direct_methods2, class_dump.c_str()); return false; } if (dex_static_fields1 != dex_static_fields2) { std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2); *error_msg = StringPrintf("Static field count off: %zu vs %zu\n%s", dex_static_fields1, dex_static_fields2, class_dump.c_str()); return false; } if (dex_instance_fields1 != dex_instance_fields2) { std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2); *error_msg = StringPrintf("Instance field count off: %zu vs %zu\n%s", dex_instance_fields1, dex_instance_fields2, class_dump.c_str()); return false; } return true; } // Checks whether a the super-class changed from what we had at compile-time. This would // invalidate quickening. static bool CheckSuperClassChange(Handle<mirror::Class> klass, const DexFile& dex_file, const DexFile::ClassDef& class_def, mirror::Class* super_class) SHARED_REQUIRES(Locks::mutator_lock_) { // Check for unexpected changes in the superclass. // Quick check 1) is the super_class class-loader the boot class loader? This always has // precedence. if (super_class->GetClassLoader() != nullptr && // Quick check 2) different dex cache? Breaks can only occur for different dex files, // which is implied by different dex cache. klass->GetDexCache() != super_class->GetDexCache()) { // Now comes the expensive part: things can be broken if (a) the klass' dex file has a // definition for the super-class, and (b) the files are in separate oat files. The oat files // are referenced from the dex file, so do (b) first. Only relevant if we have oat files. const OatDexFile* class_oat_dex_file = dex_file.GetOatDexFile(); const OatFile* class_oat_file = nullptr; if (class_oat_dex_file != nullptr) { class_oat_file = class_oat_dex_file->GetOatFile(); } if (class_oat_file != nullptr) { const OatDexFile* loaded_super_oat_dex_file = super_class->GetDexFile().GetOatDexFile(); const OatFile* loaded_super_oat_file = nullptr; if (loaded_super_oat_dex_file != nullptr) { loaded_super_oat_file = loaded_super_oat_dex_file->GetOatFile(); } if (loaded_super_oat_file != nullptr && class_oat_file != loaded_super_oat_file) { // Now check (a). const DexFile::ClassDef* super_class_def = dex_file.FindClassDef(class_def.superclass_idx_); if (super_class_def != nullptr) { // Uh-oh, we found something. Do our check. std::string error_msg; if (!SimpleStructuralCheck(dex_file, *super_class_def, super_class->GetDexFile(), *super_class->GetClassDef(), &error_msg)) { // Print a warning to the log. This exception might be caught, e.g., as common in test // drivers. When the class is later tried to be used, we re-throw a new instance, as we // only save the type of the exception. LOG(WARNING) << "Incompatible structural change detected: " << StringPrintf( "Structural change of %s is hazardous (%s at compile time, %s at runtime): %s", PrettyType(super_class_def->class_idx_, dex_file).c_str(), class_oat_file->GetLocation().c_str(), loaded_super_oat_file->GetLocation().c_str(), error_msg.c_str()); ThrowIncompatibleClassChangeError(klass.Get(), "Structural change of %s is hazardous (%s at compile time, %s at runtime): %s", PrettyType(super_class_def->class_idx_, dex_file).c_str(), class_oat_file->GetLocation().c_str(), loaded_super_oat_file->GetLocation().c_str(), error_msg.c_str()); return false; } } } } } return true; } bool ClassLinker::LoadSuperAndInterfaces(Handle<mirror::Class> klass, const DexFile& dex_file) { CHECK_EQ(mirror::Class::kStatusIdx, klass->GetStatus()); const DexFile::ClassDef& class_def = dex_file.GetClassDef(klass->GetDexClassDefIndex()); uint16_t super_class_idx = class_def.superclass_idx_; if (super_class_idx != DexFile::kDexNoIndex16) { // Check that a class does not inherit from itself directly. // // TODO: This is a cheap check to detect the straightforward case // of a class extending itself (b/28685551), but we should do a // proper cycle detection on loaded classes, to detect all cases // of class circularity errors (b/28830038). if (super_class_idx == class_def.class_idx_) { ThrowClassCircularityError(klass.Get(), "Class %s extends itself", PrettyDescriptor(klass.Get()).c_str()); return false; } mirror::Class* super_class = ResolveType(dex_file, super_class_idx, klass.Get()); if (super_class == nullptr) { DCHECK(Thread::Current()->IsExceptionPending()); return false; } // Verify if (!klass->CanAccess(super_class)) { ThrowIllegalAccessError(klass.Get(), "Class %s extended by class %s is inaccessible", PrettyDescriptor(super_class).c_str(), PrettyDescriptor(klass.Get()).c_str()); return false; } CHECK(super_class->IsResolved()); klass->SetSuperClass(super_class); if (!CheckSuperClassChange(klass, dex_file, class_def, super_class)) { DCHECK(Thread::Current()->IsExceptionPending()); return false; } } const DexFile::TypeList* interfaces = dex_file.GetInterfacesList(class_def); if (interfaces != nullptr) { for (size_t i = 0; i < interfaces->Size(); i++) { uint16_t idx = interfaces->GetTypeItem(i).type_idx_; mirror::Class* interface = ResolveType(dex_file, idx, klass.Get()); if (interface == nullptr) { DCHECK(Thread::Current()->IsExceptionPending()); return false; } // Verify if (!klass->CanAccess(interface)) { // TODO: the RI seemed to ignore this in my testing. ThrowIllegalAccessError(klass.Get(), "Interface %s implemented by class %s is inaccessible", PrettyDescriptor(interface).c_str(), PrettyDescriptor(klass.Get()).c_str()); return false; } } } // Mark the class as loaded. mirror::Class::SetStatus(klass, mirror::Class::kStatusLoaded, nullptr); return true; } bool ClassLinker::LinkSuperClass(Handle<mirror::Class> klass) { CHECK(!klass->IsPrimitive()); mirror::Class* super = klass->GetSuperClass(); if (klass.Get() == GetClassRoot(kJavaLangObject)) { if (super != nullptr) { ThrowClassFormatError(klass.Get(), "java.lang.Object must not have a superclass"); return false; } return true; } if (super == nullptr) { ThrowLinkageError(klass.Get(), "No superclass defined for class %s", PrettyDescriptor(klass.Get()).c_str()); return false; } // Verify if (super->IsFinal() || super->IsInterface()) { ThrowIncompatibleClassChangeError(klass.Get(), "Superclass %s of %s is %s", PrettyDescriptor(super).c_str(), PrettyDescriptor(klass.Get()).c_str(), super->IsFinal() ? "declared final" : "an interface"); return false; } if (!klass->CanAccess(super)) { ThrowIllegalAccessError(klass.Get(), "Superclass %s is inaccessible to class %s", PrettyDescriptor(super).c_str(), PrettyDescriptor(klass.Get()).c_str()); return false; } // Inherit kAccClassIsFinalizable from the superclass in case this // class doesn't override finalize. if (super->IsFinalizable()) { klass->SetFinalizable(); } // Inherit class loader flag form super class. if (super->IsClassLoaderClass()) { klass->SetClassLoaderClass(); } // Inherit reference flags (if any) from the superclass. uint32_t reference_flags = (super->GetClassFlags() & mirror::kClassFlagReference); if (reference_flags != 0) { CHECK_EQ(klass->GetClassFlags(), 0u); klass->SetClassFlags(klass->GetClassFlags() | reference_flags); } // Disallow custom direct subclasses of java.lang.ref.Reference. if (init_done_ && super == GetClassRoot(kJavaLangRefReference)) { ThrowLinkageError(klass.Get(), "Class %s attempts to subclass java.lang.ref.Reference, which is not allowed", PrettyDescriptor(klass.Get()).c_str()); return false; } if (kIsDebugBuild) { // Ensure super classes are fully resolved prior to resolving fields.. while (super != nullptr) { CHECK(super->IsResolved()); super = super->GetSuperClass(); } } return true; } // Populate the class vtable and itable. Compute return type indices. bool ClassLinker::LinkMethods(Thread* self, Handle<mirror::Class> klass, Handle<mirror::ObjectArray<mirror::Class>> interfaces, ArtMethod** out_imt) { self->AllowThreadSuspension(); // A map from vtable indexes to the method they need to be updated to point to. Used because we // need to have default methods be in the virtuals array of each class but we don't set that up // until LinkInterfaceMethods. std::unordered_map<size_t, ClassLinker::MethodTranslation> default_translations; // Link virtual methods then interface methods. // We set up the interface lookup table first because we need it to determine if we need to update // any vtable entries with new default method implementations. return SetupInterfaceLookupTable(self, klass, interfaces) && LinkVirtualMethods(self, klass, /*out*/ &default_translations) && LinkInterfaceMethods(self, klass, default_translations, out_imt); } // Comparator for name and signature of a method, used in finding overriding methods. Implementation // avoids the use of handles, if it didn't then rather than compare dex files we could compare dex // caches in the implementation below. class MethodNameAndSignatureComparator FINAL : public ValueObject { public: explicit MethodNameAndSignatureComparator(ArtMethod* method) SHARED_REQUIRES(Locks::mutator_lock_) : dex_file_(method->GetDexFile()), mid_(&dex_file_->GetMethodId(method->GetDexMethodIndex())), name_(nullptr), name_len_(0) { DCHECK(!method->IsProxyMethod()) << PrettyMethod(method); } const char* GetName() { if (name_ == nullptr) { name_ = dex_file_->StringDataAndUtf16LengthByIdx(mid_->name_idx_, &name_len_); } return name_; } bool HasSameNameAndSignature(ArtMethod* other) SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(!other->IsProxyMethod()) << PrettyMethod(other); const DexFile* other_dex_file = other->GetDexFile(); const DexFile::MethodId& other_mid = other_dex_file->GetMethodId(other->GetDexMethodIndex()); if (dex_file_ == other_dex_file) { return mid_->name_idx_ == other_mid.name_idx_ && mid_->proto_idx_ == other_mid.proto_idx_; } GetName(); // Only used to make sure its calculated. uint32_t other_name_len; const char* other_name = other_dex_file->StringDataAndUtf16LengthByIdx(other_mid.name_idx_, &other_name_len); if (name_len_ != other_name_len || strcmp(name_, other_name) != 0) { return false; } return dex_file_->GetMethodSignature(*mid_) == other_dex_file->GetMethodSignature(other_mid); } private: // Dex file for the method to compare against. const DexFile* const dex_file_; // MethodId for the method to compare against. const DexFile::MethodId* const mid_; // Lazily computed name from the dex file's strings. const char* name_; // Lazily computed name length. uint32_t name_len_; }; class LinkVirtualHashTable { public: LinkVirtualHashTable(Handle<mirror::Class> klass, size_t hash_size, uint32_t* hash_table, size_t image_pointer_size) : klass_(klass), hash_size_(hash_size), hash_table_(hash_table), image_pointer_size_(image_pointer_size) { std::fill(hash_table_, hash_table_ + hash_size_, invalid_index_); } void Add(uint32_t virtual_method_index) SHARED_REQUIRES(Locks::mutator_lock_) { ArtMethod* local_method = klass_->GetVirtualMethodDuringLinking( virtual_method_index, image_pointer_size_); const char* name = local_method->GetInterfaceMethodIfProxy(image_pointer_size_)->GetName(); uint32_t hash = ComputeModifiedUtf8Hash(name); uint32_t index = hash % hash_size_; // Linear probe until we have an empty slot. while (hash_table_[index] != invalid_index_) { if (++index == hash_size_) { index = 0; } } hash_table_[index] = virtual_method_index; } uint32_t FindAndRemove(MethodNameAndSignatureComparator* comparator) SHARED_REQUIRES(Locks::mutator_lock_) { const char* name = comparator->GetName(); uint32_t hash = ComputeModifiedUtf8Hash(name); size_t index = hash % hash_size_; while (true) { const uint32_t value = hash_table_[index]; // Since linear probe makes continuous blocks, hitting an invalid index means we are done // the block and can safely assume not found. if (value == invalid_index_) { break; } if (value != removed_index_) { // This signifies not already overriden. ArtMethod* virtual_method = klass_->GetVirtualMethodDuringLinking(value, image_pointer_size_); if (comparator->HasSameNameAndSignature( virtual_method->GetInterfaceMethodIfProxy(image_pointer_size_))) { hash_table_[index] = removed_index_; return value; } } if (++index == hash_size_) { index = 0; } } return GetNotFoundIndex(); } static uint32_t GetNotFoundIndex() { return invalid_index_; } private: static const uint32_t invalid_index_; static const uint32_t removed_index_; Handle<mirror::Class> klass_; const size_t hash_size_; uint32_t* const hash_table_; const size_t image_pointer_size_; }; const uint32_t LinkVirtualHashTable::invalid_index_ = std::numeric_limits<uint32_t>::max(); const uint32_t LinkVirtualHashTable::removed_index_ = std::numeric_limits<uint32_t>::max() - 1; bool ClassLinker::LinkVirtualMethods( Thread* self, Handle<mirror::Class> klass, /*out*/std::unordered_map<size_t, ClassLinker::MethodTranslation>* default_translations) { const size_t num_virtual_methods = klass->NumVirtualMethods(); if (klass->IsInterface()) { // No vtable. if (!IsUint<16>(num_virtual_methods)) { ThrowClassFormatError(klass.Get(), "Too many methods on interface: %zu", num_virtual_methods); return false; } bool has_defaults = false; // Assign each method an IMT index and set the default flag. for (size_t i = 0; i < num_virtual_methods; ++i) { ArtMethod* m = klass->GetVirtualMethodDuringLinking(i, image_pointer_size_); m->SetMethodIndex(i); if (!m->IsAbstract()) { m->SetAccessFlags(m->GetAccessFlags() | kAccDefault); has_defaults = true; } } // Mark that we have default methods so that we won't need to scan the virtual_methods_ array // during initialization. This is a performance optimization. We could simply traverse the // virtual_methods_ array again during initialization. if (has_defaults) { klass->SetHasDefaultMethods(); } return true; } else if (klass->HasSuperClass()) { const size_t super_vtable_length = klass->GetSuperClass()->GetVTableLength(); const size_t max_count = num_virtual_methods + super_vtable_length; StackHandleScope<2> hs(self); Handle<mirror::Class> super_class(hs.NewHandle(klass->GetSuperClass())); MutableHandle<mirror::PointerArray> vtable; if (super_class->ShouldHaveEmbeddedImtAndVTable()) { vtable = hs.NewHandle(AllocPointerArray(self, max_count)); if (UNLIKELY(vtable.Get() == nullptr)) { self->AssertPendingOOMException(); return false; } for (size_t i = 0; i < super_vtable_length; i++) { vtable->SetElementPtrSize( i, super_class->GetEmbeddedVTableEntry(i, image_pointer_size_), image_pointer_size_); } // We might need to change vtable if we have new virtual methods or new interfaces (since that // might give us new default methods). If no new interfaces then we can skip the rest since // the class cannot override any of the super-class's methods. This is required for // correctness since without it we might not update overridden default method vtable entries // correctly. if (num_virtual_methods == 0 && super_class->GetIfTableCount() == klass->GetIfTableCount()) { klass->SetVTable(vtable.Get()); return true; } } else { DCHECK(super_class->IsAbstract() && !super_class->IsArrayClass()); auto* super_vtable = super_class->GetVTable(); CHECK(super_vtable != nullptr) << PrettyClass(super_class.Get()); // We might need to change vtable if we have new virtual methods or new interfaces (since that // might give us new default methods). See comment above. if (num_virtual_methods == 0 && super_class->GetIfTableCount() == klass->GetIfTableCount()) { klass->SetVTable(super_vtable); return true; } vtable = hs.NewHandle(down_cast<mirror::PointerArray*>( super_vtable->CopyOf(self, max_count))); if (UNLIKELY(vtable.Get() == nullptr)) { self->AssertPendingOOMException(); return false; } } // How the algorithm works: // 1. Populate hash table by adding num_virtual_methods from klass. The values in the hash // table are: invalid_index for unused slots, index super_vtable_length + i for a virtual // method which has not been matched to a vtable method, and j if the virtual method at the // index overrode the super virtual method at index j. // 2. Loop through super virtual methods, if they overwrite, update hash table to j // (j < super_vtable_length) to avoid redundant checks. (TODO maybe use this info for reducing // the need for the initial vtable which we later shrink back down). // 3. Add non overridden methods to the end of the vtable. static constexpr size_t kMaxStackHash = 250; // + 1 so that even if we only have new default methods we will still be able to use this hash // table (i.e. it will never have 0 size). const size_t hash_table_size = num_virtual_methods * 3 + 1; uint32_t* hash_table_ptr; std::unique_ptr<uint32_t[]> hash_heap_storage; if (hash_table_size <= kMaxStackHash) { hash_table_ptr = reinterpret_cast<uint32_t*>( alloca(hash_table_size * sizeof(*hash_table_ptr))); } else { hash_heap_storage.reset(new uint32_t[hash_table_size]); hash_table_ptr = hash_heap_storage.get(); } LinkVirtualHashTable hash_table(klass, hash_table_size, hash_table_ptr, image_pointer_size_); // Add virtual methods to the hash table. for (size_t i = 0; i < num_virtual_methods; ++i) { DCHECK(klass->GetVirtualMethodDuringLinking( i, image_pointer_size_)->GetDeclaringClass() != nullptr); hash_table.Add(i); } // Loop through each super vtable method and see if they are overridden by a method we added to // the hash table. for (size_t j = 0; j < super_vtable_length; ++j) { // Search the hash table to see if we are overridden by any method. ArtMethod* super_method = vtable->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_); MethodNameAndSignatureComparator super_method_name_comparator( super_method->GetInterfaceMethodIfProxy(image_pointer_size_)); uint32_t hash_index = hash_table.FindAndRemove(&super_method_name_comparator); if (hash_index != hash_table.GetNotFoundIndex()) { ArtMethod* virtual_method = klass->GetVirtualMethodDuringLinking( hash_index, image_pointer_size_); if (klass->CanAccessMember(super_method->GetDeclaringClass(), super_method->GetAccessFlags())) { if (super_method->IsFinal()) { ThrowLinkageError(klass.Get(), "Method %s overrides final method in class %s", PrettyMethod(virtual_method).c_str(), super_method->GetDeclaringClassDescriptor()); return false; } vtable->SetElementPtrSize(j, virtual_method, image_pointer_size_); virtual_method->SetMethodIndex(j); } else { LOG(WARNING) << "Before Android 4.1, method " << PrettyMethod(virtual_method) << " would have incorrectly overridden the package-private method in " << PrettyDescriptor(super_method->GetDeclaringClassDescriptor()); } } else if (super_method->IsOverridableByDefaultMethod()) { // We didn't directly override this method but we might through default methods... // Check for default method update. ArtMethod* default_method = nullptr; switch (FindDefaultMethodImplementation(self, super_method, klass, /*out*/&default_method)) { case DefaultMethodSearchResult::kDefaultConflict: { // A conflict was found looking for default methods. Note this (assuming it wasn't // pre-existing) in the translations map. if (UNLIKELY(!super_method->IsDefaultConflicting())) { // Don't generate another conflict method to reduce memory use as an optimization. default_translations->insert( {j, ClassLinker::MethodTranslation::CreateConflictingMethod()}); } break; } case DefaultMethodSearchResult::kAbstractFound: { // No conflict but method is abstract. // We note that this vtable entry must be made abstract. if (UNLIKELY(!super_method->IsAbstract())) { default_translations->insert( {j, ClassLinker::MethodTranslation::CreateAbstractMethod()}); } break; } case DefaultMethodSearchResult::kDefaultFound: { if (UNLIKELY(super_method->IsDefaultConflicting() || default_method->GetDeclaringClass() != super_method->GetDeclaringClass())) { // Found a default method implementation that is new. // TODO Refactor this add default methods to virtuals here and not in // LinkInterfaceMethods maybe. // The problem is default methods might override previously present // default-method or miranda-method vtable entries from the superclass. // Unfortunately we need these to be entries in this class's virtuals. We do not // give these entries there until LinkInterfaceMethods so we pass this map around // to let it know which vtable entries need to be updated. // Make a note that vtable entry j must be updated, store what it needs to be updated // to. We will allocate a virtual method slot in LinkInterfaceMethods and fix it up // then. default_translations->insert( {j, ClassLinker::MethodTranslation::CreateTranslatedMethod(default_method)}); VLOG(class_linker) << "Method " << PrettyMethod(super_method) << " overridden by default " << PrettyMethod(default_method) << " in " << PrettyClass(klass.Get()); } break; } } } } size_t actual_count = super_vtable_length; // Add the non-overridden methods at the end. for (size_t i = 0; i < num_virtual_methods; ++i) { ArtMethod* local_method = klass->GetVirtualMethodDuringLinking(i, image_pointer_size_); size_t method_idx = local_method->GetMethodIndexDuringLinking(); if (method_idx < super_vtable_length && local_method == vtable->GetElementPtrSize<ArtMethod*>(method_idx, image_pointer_size_)) { continue; } vtable->SetElementPtrSize(actual_count, local_method, image_pointer_size_); local_method->SetMethodIndex(actual_count); ++actual_count; } if (!IsUint<16>(actual_count)) { ThrowClassFormatError(klass.Get(), "Too many methods defined on class: %zd", actual_count); return false; } // Shrink vtable if possible CHECK_LE(actual_count, max_count); if (actual_count < max_count) { vtable.Assign(down_cast<mirror::PointerArray*>(vtable->CopyOf(self, actual_count))); if (UNLIKELY(vtable.Get() == nullptr)) { self->AssertPendingOOMException(); return false; } } klass->SetVTable(vtable.Get()); } else { CHECK_EQ(klass.Get(), GetClassRoot(kJavaLangObject)); if (!IsUint<16>(num_virtual_methods)) { ThrowClassFormatError(klass.Get(), "Too many methods: %d", static_cast<int>(num_virtual_methods)); return false; } auto* vtable = AllocPointerArray(self, num_virtual_methods); if (UNLIKELY(vtable == nullptr)) { self->AssertPendingOOMException(); return false; } for (size_t i = 0; i < num_virtual_methods; ++i) { ArtMethod* virtual_method = klass->GetVirtualMethodDuringLinking(i, image_pointer_size_); vtable->SetElementPtrSize(i, virtual_method, image_pointer_size_); virtual_method->SetMethodIndex(i & 0xFFFF); } klass->SetVTable(vtable); } return true; } // Determine if the given iface has any subinterface in the given list that declares the method // specified by 'target'. // // Arguments // - self: The thread we are running on // - target: A comparator that will match any method that overrides the method we are checking for // - iftable: The iftable we are searching for an overriding method on. // - ifstart: The index of the interface we are checking to see if anything overrides // - iface: The interface we are checking to see if anything overrides. // - image_pointer_size: // The image pointer size. // // Returns // - True: There is some method that matches the target comparator defined in an interface that // is a subtype of iface. // - False: There is no method that matches the target comparator in any interface that is a subtype // of iface. static bool ContainsOverridingMethodOf(Thread* self, MethodNameAndSignatureComparator& target, Handle<mirror::IfTable> iftable, size_t ifstart, Handle<mirror::Class> iface, size_t image_pointer_size) SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(self != nullptr); DCHECK(iface.Get() != nullptr); DCHECK(iftable.Get() != nullptr); DCHECK_GE(ifstart, 0u); DCHECK_LT(ifstart, iftable->Count()); DCHECK_EQ(iface.Get(), iftable->GetInterface(ifstart)); DCHECK(iface->IsInterface()); size_t iftable_count = iftable->Count(); StackHandleScope<1> hs(self); MutableHandle<mirror::Class> current_iface(hs.NewHandle<mirror::Class>(nullptr)); for (size_t k = ifstart + 1; k < iftable_count; k++) { // Skip ifstart since our current interface obviously cannot override itself. current_iface.Assign(iftable->GetInterface(k)); // Iterate through every method on this interface. The order does not matter. for (ArtMethod& current_method : current_iface->GetDeclaredVirtualMethods(image_pointer_size)) { if (UNLIKELY(target.HasSameNameAndSignature( current_method.GetInterfaceMethodIfProxy(image_pointer_size)))) { // Check if the i'th interface is a subtype of this one. if (iface->IsAssignableFrom(current_iface.Get())) { return true; } break; } } } return false; } // Find the default method implementation for 'interface_method' in 'klass'. Stores it into // out_default_method and returns kDefaultFound on success. If no default method was found return // kAbstractFound and store nullptr into out_default_method. If an error occurs (such as a // default_method conflict) it will return kDefaultConflict. ClassLinker::DefaultMethodSearchResult ClassLinker::FindDefaultMethodImplementation( Thread* self, ArtMethod* target_method, Handle<mirror::Class> klass, /*out*/ArtMethod** out_default_method) const { DCHECK(self != nullptr); DCHECK(target_method != nullptr); DCHECK(out_default_method != nullptr); *out_default_method = nullptr; // We organize the interface table so that, for interface I any subinterfaces J follow it in the // table. This lets us walk the table backwards when searching for default methods. The first one // we encounter is the best candidate since it is the most specific. Once we have found it we keep // track of it and then continue checking all other interfaces, since we need to throw an error if // we encounter conflicting default method implementations (one is not a subtype of the other). // // The order of unrelated interfaces does not matter and is not defined. size_t iftable_count = klass->GetIfTableCount(); if (iftable_count == 0) { // No interfaces. We have already reset out to null so just return kAbstractFound. return DefaultMethodSearchResult::kAbstractFound; } StackHandleScope<3> hs(self); MutableHandle<mirror::Class> chosen_iface(hs.NewHandle<mirror::Class>(nullptr)); MutableHandle<mirror::IfTable> iftable(hs.NewHandle(klass->GetIfTable())); MutableHandle<mirror::Class> iface(hs.NewHandle<mirror::Class>(nullptr)); MethodNameAndSignatureComparator target_name_comparator( target_method->GetInterfaceMethodIfProxy(image_pointer_size_)); // Iterates over the klass's iftable in reverse for (size_t k = iftable_count; k != 0; ) { --k; DCHECK_LT(k, iftable->Count()); iface.Assign(iftable->GetInterface(k)); // Iterate through every declared method on this interface. The order does not matter. for (auto& method_iter : iface->GetDeclaredVirtualMethods(image_pointer_size_)) { ArtMethod* current_method = &method_iter; // Skip abstract methods and methods with different names. if (current_method->IsAbstract() || !target_name_comparator.HasSameNameAndSignature( current_method->GetInterfaceMethodIfProxy(image_pointer_size_))) { continue; } else if (!current_method->IsPublic()) { // The verifier should have caught the non-public method for dex version 37. Just warn and // skip it since this is from before default-methods so we don't really need to care that it // has code. LOG(WARNING) << "Interface method " << PrettyMethod(current_method) << " is not public! " << "This will be a fatal error in subsequent versions of android. " << "Continuing anyway."; } if (UNLIKELY(chosen_iface.Get() != nullptr)) { // We have multiple default impls of the same method. This is a potential default conflict. // We need to check if this possibly conflicting method is either a superclass of the chosen // default implementation or is overridden by a non-default interface method. In either case // there is no conflict. if (!iface->IsAssignableFrom(chosen_iface.Get()) && !ContainsOverridingMethodOf(self, target_name_comparator, iftable, k, iface, image_pointer_size_)) { VLOG(class_linker) << "Conflicting default method implementations found: " << PrettyMethod(current_method) << " and " << PrettyMethod(*out_default_method) << " in class " << PrettyClass(klass.Get()) << " conflict."; *out_default_method = nullptr; return DefaultMethodSearchResult::kDefaultConflict; } else { break; // Continue checking at the next interface. } } else { // chosen_iface == null if (!ContainsOverridingMethodOf(self, target_name_comparator, iftable, k, iface, image_pointer_size_)) { // Don't set this as the chosen interface if something else is overriding it (because that // other interface would be potentially chosen instead if it was default). If the other // interface was abstract then we wouldn't select this interface as chosen anyway since // the abstract method masks it. *out_default_method = current_method; chosen_iface.Assign(iface.Get()); // We should now finish traversing the graph to find if we have default methods that // conflict. } else { VLOG(class_linker) << "A default method '" << PrettyMethod(current_method) << "' was " << "skipped because it was overridden by an abstract method in a " << "subinterface on class '" << PrettyClass(klass.Get()) << "'"; } } break; } } if (*out_default_method != nullptr) { VLOG(class_linker) << "Default method '" << PrettyMethod(*out_default_method) << "' selected " << "as the implementation for '" << PrettyMethod(target_method) << "' " << "in '" << PrettyClass(klass.Get()) << "'"; return DefaultMethodSearchResult::kDefaultFound; } else { return DefaultMethodSearchResult::kAbstractFound; } } ArtMethod* ClassLinker::AddMethodToConflictTable(mirror::Class* klass, ArtMethod* conflict_method, ArtMethod* interface_method, ArtMethod* method, bool force_new_conflict_method) { ImtConflictTable* current_table = conflict_method->GetImtConflictTable(sizeof(void*)); Runtime* const runtime = Runtime::Current(); LinearAlloc* linear_alloc = GetAllocatorForClassLoader(klass->GetClassLoader()); bool new_entry = conflict_method == runtime->GetImtConflictMethod() || force_new_conflict_method; // Create a new entry if the existing one is the shared conflict method. ArtMethod* new_conflict_method = new_entry ? runtime->CreateImtConflictMethod(linear_alloc) : conflict_method; // Allocate a new table. Note that we will leak this table at the next conflict, // but that's a tradeoff compared to making the table fixed size. void* data = linear_alloc->Alloc( Thread::Current(), ImtConflictTable::ComputeSizeWithOneMoreEntry(current_table, image_pointer_size_)); if (data == nullptr) { LOG(ERROR) << "Failed to allocate conflict table"; return conflict_method; } ImtConflictTable* new_table = new (data) ImtConflictTable(current_table, interface_method, method, image_pointer_size_); // Do a fence to ensure threads see the data in the table before it is assigned // to the conflict method. // Note that there is a race in the presence of multiple threads and we may leak // memory from the LinearAlloc, but that's a tradeoff compared to using // atomic operations. QuasiAtomic::ThreadFenceRelease(); new_conflict_method->SetImtConflictTable(new_table, image_pointer_size_); return new_conflict_method; } void ClassLinker::SetIMTRef(ArtMethod* unimplemented_method, ArtMethod* imt_conflict_method, ArtMethod* current_method, /*out*/ArtMethod** imt_ref) { // Place method in imt if entry is empty, place conflict otherwise. if (*imt_ref == unimplemented_method) { *imt_ref = current_method; } else if (!(*imt_ref)->IsRuntimeMethod()) { // If we are not a conflict and we have the same signature and name as the imt // entry, it must be that we overwrote a superclass vtable entry. // Note that we have checked IsRuntimeMethod, as there may be multiple different // conflict methods. MethodNameAndSignatureComparator imt_comparator( (*imt_ref)->GetInterfaceMethodIfProxy(image_pointer_size_)); if (imt_comparator.HasSameNameAndSignature( current_method->GetInterfaceMethodIfProxy(image_pointer_size_))) { *imt_ref = current_method; } else { *imt_ref = imt_conflict_method; } } else { // Place the default conflict method. Note that there may be an existing conflict // method in the IMT, but it could be one tailored to the super class, with a // specific ImtConflictTable. *imt_ref = imt_conflict_method; } } void ClassLinker::FillIMTAndConflictTables(mirror::Class* klass) { DCHECK(klass->ShouldHaveEmbeddedImtAndVTable()) << PrettyClass(klass); DCHECK(!klass->IsTemp()) << PrettyClass(klass); ArtMethod* imt[mirror::Class::kImtSize]; Runtime* const runtime = Runtime::Current(); ArtMethod* const unimplemented_method = runtime->GetImtUnimplementedMethod(); ArtMethod* const conflict_method = runtime->GetImtConflictMethod(); std::fill_n(imt, arraysize(imt), unimplemented_method); if (klass->GetIfTable() != nullptr) { FillIMTFromIfTable(klass->GetIfTable(), unimplemented_method, conflict_method, klass, true, false, &imt[0]); } for (size_t i = 0; i < mirror::Class::kImtSize; ++i) { klass->SetEmbeddedImTableEntry(i, imt[i], image_pointer_size_); } } static inline uint32_t GetIMTIndex(ArtMethod* interface_method) SHARED_REQUIRES(Locks::mutator_lock_) { return interface_method->GetDexMethodIndex() % mirror::Class::kImtSize; } ImtConflictTable* ClassLinker::CreateImtConflictTable(size_t count, LinearAlloc* linear_alloc, size_t image_pointer_size) { void* data = linear_alloc->Alloc(Thread::Current(), ImtConflictTable::ComputeSize(count, image_pointer_size)); return (data != nullptr) ? new (data) ImtConflictTable(count, image_pointer_size) : nullptr; } ImtConflictTable* ClassLinker::CreateImtConflictTable(size_t count, LinearAlloc* linear_alloc) { return CreateImtConflictTable(count, linear_alloc, image_pointer_size_); } void ClassLinker::FillIMTFromIfTable(mirror::IfTable* if_table, ArtMethod* unimplemented_method, ArtMethod* imt_conflict_method, mirror::Class* klass, bool create_conflict_tables, bool ignore_copied_methods, ArtMethod** imt) { uint32_t conflict_counts[mirror::Class::kImtSize] = {}; for (size_t i = 0, length = if_table->Count(); i < length; ++i) { mirror::Class* interface = if_table->GetInterface(i); const size_t num_virtuals = interface->NumVirtualMethods(); const size_t method_array_count = if_table->GetMethodArrayCount(i); // Virtual methods can be larger than the if table methods if there are default methods. DCHECK_GE(num_virtuals, method_array_count); if (kIsDebugBuild) { if (klass->IsInterface()) { DCHECK_EQ(method_array_count, 0u); } else { DCHECK_EQ(interface->NumDeclaredVirtualMethods(), method_array_count); } } if (method_array_count == 0) { continue; } auto* method_array = if_table->GetMethodArray(i); for (size_t j = 0; j < method_array_count; ++j) { ArtMethod* implementation_method = method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_); if (ignore_copied_methods && implementation_method->IsCopied()) { continue; } DCHECK(implementation_method != nullptr); // Miranda methods cannot be used to implement an interface method, but they are safe to put // in the IMT since their entrypoint is the interface trampoline. If we put any copied methods // or interface methods in the IMT here they will not create extra conflicts since we compare // names and signatures in SetIMTRef. ArtMethod* interface_method = interface->GetVirtualMethod(j, image_pointer_size_); const uint32_t imt_index = GetIMTIndex(interface_method); // There is only any conflicts if all of the interface methods for an IMT slot don't have // the same implementation method, keep track of this to avoid creating a conflict table in // this case. // Conflict table size for each IMT slot. ++conflict_counts[imt_index]; SetIMTRef(unimplemented_method, imt_conflict_method, implementation_method, /*out*/&imt[imt_index]); } } if (create_conflict_tables) { // Create the conflict tables. LinearAlloc* linear_alloc = GetAllocatorForClassLoader(klass->GetClassLoader()); for (size_t i = 0; i < mirror::Class::kImtSize; ++i) { size_t conflicts = conflict_counts[i]; if (imt[i] == imt_conflict_method) { ImtConflictTable* new_table = CreateImtConflictTable(conflicts, linear_alloc); if (new_table != nullptr) { ArtMethod* new_conflict_method = Runtime::Current()->CreateImtConflictMethod(linear_alloc); new_conflict_method->SetImtConflictTable(new_table, image_pointer_size_); imt[i] = new_conflict_method; } else { LOG(ERROR) << "Failed to allocate conflict table"; imt[i] = imt_conflict_method; } } else { DCHECK_NE(imt[i], imt_conflict_method); } } for (size_t i = 0, length = if_table->Count(); i < length; ++i) { mirror::Class* interface = if_table->GetInterface(i); const size_t method_array_count = if_table->GetMethodArrayCount(i); // Virtual methods can be larger than the if table methods if there are default methods. if (method_array_count == 0) { continue; } auto* method_array = if_table->GetMethodArray(i); for (size_t j = 0; j < method_array_count; ++j) { ArtMethod* implementation_method = method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_); if (ignore_copied_methods && implementation_method->IsCopied()) { continue; } DCHECK(implementation_method != nullptr); ArtMethod* interface_method = interface->GetVirtualMethod(j, image_pointer_size_); const uint32_t imt_index = GetIMTIndex(interface_method); if (!imt[imt_index]->IsRuntimeMethod() || imt[imt_index] == unimplemented_method || imt[imt_index] == imt_conflict_method) { continue; } ImtConflictTable* table = imt[imt_index]->GetImtConflictTable(image_pointer_size_); const size_t num_entries = table->NumEntries(image_pointer_size_); table->SetInterfaceMethod(num_entries, image_pointer_size_, interface_method); table->SetImplementationMethod(num_entries, image_pointer_size_, implementation_method); } } } } // Simple helper function that checks that no subtypes of 'val' are contained within the 'classes' // set. static bool NotSubinterfaceOfAny(const std::unordered_set<mirror::Class*>& classes, mirror::Class* val) REQUIRES(Roles::uninterruptible_) SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(val != nullptr); for (auto c : classes) { if (val->IsAssignableFrom(&*c)) { return false; } } return true; } // Fills in and flattens the interface inheritance hierarchy. // // By the end of this function all interfaces in the transitive closure of to_process are added to // the iftable and every interface precedes all of its sub-interfaces in this list. // // all I, J: Interface | I <: J implies J precedes I // // (note A <: B means that A is a subtype of B) // // This returns the total number of items in the iftable. The iftable might be resized down after // this call. // // We order this backwards so that we do not need to reorder superclass interfaces when new // interfaces are added in subclass's interface tables. // // Upon entry into this function iftable is a copy of the superclass's iftable with the first // super_ifcount entries filled in with the transitive closure of the interfaces of the superclass. // The other entries are uninitialized. We will fill in the remaining entries in this function. The // iftable must be large enough to hold all interfaces without changing its size. static size_t FillIfTable(mirror::IfTable* iftable, size_t super_ifcount, std::vector<mirror::Class*> to_process) REQUIRES(Roles::uninterruptible_) SHARED_REQUIRES(Locks::mutator_lock_) { // This is the set of all class's already in the iftable. Used to make checking if a class has // already been added quicker. std::unordered_set<mirror::Class*> classes_in_iftable; // The first super_ifcount elements are from the superclass. We note that they are already added. for (size_t i = 0; i < super_ifcount; i++) { mirror::Class* iface = iftable->GetInterface(i); DCHECK(NotSubinterfaceOfAny(classes_in_iftable, iface)) << "Bad ordering."; classes_in_iftable.insert(iface); } size_t filled_ifcount = super_ifcount; for (mirror::Class* interface : to_process) { // Let us call the first filled_ifcount elements of iftable the current-iface-list. // At this point in the loop current-iface-list has the invariant that: // for every pair of interfaces I,J within it: // if index_of(I) < index_of(J) then I is not a subtype of J // If we have already seen this element then all of its super-interfaces must already be in the // current-iface-list so we can skip adding it. if (!ContainsElement(classes_in_iftable, interface)) { // We haven't seen this interface so add all of its super-interfaces onto the // current-iface-list, skipping those already on it. int32_t ifcount = interface->GetIfTableCount(); for (int32_t j = 0; j < ifcount; j++) { mirror::Class* super_interface = interface->GetIfTable()->GetInterface(j); if (!ContainsElement(classes_in_iftable, super_interface)) { DCHECK(NotSubinterfaceOfAny(classes_in_iftable, super_interface)) << "Bad ordering."; classes_in_iftable.insert(super_interface); iftable->SetInterface(filled_ifcount, super_interface); filled_ifcount++; } } DCHECK(NotSubinterfaceOfAny(classes_in_iftable, interface)) << "Bad ordering"; // Place this interface onto the current-iface-list after all of its super-interfaces. classes_in_iftable.insert(interface); iftable->SetInterface(filled_ifcount, interface); filled_ifcount++; } else if (kIsDebugBuild) { // Check all super-interfaces are already in the list. int32_t ifcount = interface->GetIfTableCount(); for (int32_t j = 0; j < ifcount; j++) { mirror::Class* super_interface = interface->GetIfTable()->GetInterface(j); DCHECK(ContainsElement(classes_in_iftable, super_interface)) << "Iftable does not contain " << PrettyClass(super_interface) << ", a superinterface of " << PrettyClass(interface); } } } if (kIsDebugBuild) { // Check that the iftable is ordered correctly. for (size_t i = 0; i < filled_ifcount; i++) { mirror::Class* if_a = iftable->GetInterface(i); for (size_t j = i + 1; j < filled_ifcount; j++) { mirror::Class* if_b = iftable->GetInterface(j); // !(if_a <: if_b) CHECK(!if_b->IsAssignableFrom(if_a)) << "Bad interface order: " << PrettyClass(if_a) << " (index " << i << ") extends " << PrettyClass(if_b) << " (index " << j << ") and so should be after it in the " << "interface list."; } } } return filled_ifcount; } bool ClassLinker::SetupInterfaceLookupTable(Thread* self, Handle<mirror::Class> klass, Handle<mirror::ObjectArray<mirror::Class>> interfaces) { StackHandleScope<1> hs(self); const size_t super_ifcount = klass->HasSuperClass() ? klass->GetSuperClass()->GetIfTableCount() : 0U; const bool have_interfaces = interfaces.Get() != nullptr; const size_t num_interfaces = have_interfaces ? interfaces->GetLength() : klass->NumDirectInterfaces(); if (num_interfaces == 0) { if (super_ifcount == 0) { // Class implements no interfaces. DCHECK_EQ(klass->GetIfTableCount(), 0); DCHECK(klass->GetIfTable() == nullptr); return true; } // Class implements same interfaces as parent, are any of these not marker interfaces? bool has_non_marker_interface = false; mirror::IfTable* super_iftable = klass->GetSuperClass()->GetIfTable(); for (size_t i = 0; i < super_ifcount; ++i) { if (super_iftable->GetMethodArrayCount(i) > 0) { has_non_marker_interface = true; break; } } // Class just inherits marker interfaces from parent so recycle parent's iftable. if (!has_non_marker_interface) { klass->SetIfTable(super_iftable); return true; } } size_t ifcount = super_ifcount + num_interfaces; // Check that every class being implemented is an interface. for (size_t i = 0; i < num_interfaces; i++) { mirror::Class* interface = have_interfaces ? interfaces->GetWithoutChecks(i) : mirror::Class::GetDirectInterface(self, klass, i); DCHECK(interface != nullptr); if (UNLIKELY(!interface->IsInterface())) { std::string temp; ThrowIncompatibleClassChangeError(klass.Get(), "Class %s implements non-interface class %s", PrettyDescriptor(klass.Get()).c_str(), PrettyDescriptor(interface->GetDescriptor(&temp)).c_str()); return false; } ifcount += interface->GetIfTableCount(); } // Create the interface function table. MutableHandle<mirror::IfTable> iftable(hs.NewHandle(AllocIfTable(self, ifcount))); if (UNLIKELY(iftable.Get() == nullptr)) { self->AssertPendingOOMException(); return false; } // Fill in table with superclass's iftable. if (super_ifcount != 0) { mirror::IfTable* super_iftable = klass->GetSuperClass()->GetIfTable(); for (size_t i = 0; i < super_ifcount; i++) { mirror::Class* super_interface = super_iftable->GetInterface(i); iftable->SetInterface(i, super_interface); } } // Note that AllowThreadSuspension is to thread suspension as pthread_testcancel is to pthread // cancellation. That is it will suspend if one has a pending suspend request but otherwise // doesn't really do anything. self->AllowThreadSuspension(); size_t new_ifcount; { ScopedAssertNoThreadSuspension nts(self, "Copying mirror::Class*'s for FillIfTable"); std::vector<mirror::Class*> to_add; for (size_t i = 0; i < num_interfaces; i++) { mirror::Class* interface = have_interfaces ? interfaces->Get(i) : mirror::Class::GetDirectInterface(self, klass, i); to_add.push_back(interface); } new_ifcount = FillIfTable(iftable.Get(), super_ifcount, std::move(to_add)); } self->AllowThreadSuspension(); // Shrink iftable in case duplicates were found if (new_ifcount < ifcount) { DCHECK_NE(num_interfaces, 0U); iftable.Assign(down_cast<mirror::IfTable*>( iftable->CopyOf(self, new_ifcount * mirror::IfTable::kMax))); if (UNLIKELY(iftable.Get() == nullptr)) { self->AssertPendingOOMException(); return false; } ifcount = new_ifcount; } else { DCHECK_EQ(new_ifcount, ifcount); } klass->SetIfTable(iftable.Get()); return true; } // Finds the method with a name/signature that matches cmp in the given list of methods. The list of // methods must be unique. static ArtMethod* FindSameNameAndSignature(MethodNameAndSignatureComparator& cmp, const ScopedArenaVector<ArtMethod*>& list) SHARED_REQUIRES(Locks::mutator_lock_) { for (ArtMethod* method : list) { if (cmp.HasSameNameAndSignature(method)) { return method; } } return nullptr; } static void SanityCheckVTable(Handle<mirror::Class> klass, uint32_t pointer_size) SHARED_REQUIRES(Locks::mutator_lock_) { mirror::PointerArray* check_vtable = klass->GetVTableDuringLinking(); mirror::Class* superclass = (klass->HasSuperClass()) ? klass->GetSuperClass() : nullptr; int32_t super_vtable_length = (superclass != nullptr) ? superclass->GetVTableLength() : 0; for (int32_t i = 0; i < check_vtable->GetLength(); ++i) { ArtMethod* m = check_vtable->GetElementPtrSize<ArtMethod*>(i, pointer_size); CHECK(m != nullptr); ArraySlice<ArtMethod> virtuals = klass->GetVirtualMethodsSliceUnchecked(pointer_size); auto is_same_method = [m] (const ArtMethod& meth) { return &meth == m; }; CHECK((super_vtable_length > i && superclass->GetVTableEntry(i, pointer_size) == m) || std::find_if(virtuals.begin(), virtuals.end(), is_same_method) != virtuals.end()) << "While linking class '" << PrettyClass(klass.Get()) << "' unable to find owning class " << "of '" << PrettyMethod(m) << "' (vtable index: " << i << ")."; } } void ClassLinker::FillImtFromSuperClass(Handle<mirror::Class> klass, ArtMethod* unimplemented_method, ArtMethod* imt_conflict_method, ArtMethod** imt) { DCHECK(klass->HasSuperClass()); mirror::Class* super_class = klass->GetSuperClass(); if (super_class->ShouldHaveEmbeddedImtAndVTable()) { for (size_t i = 0; i < mirror::Class::kImtSize; ++i) { imt[i] = super_class->GetEmbeddedImTableEntry(i, image_pointer_size_); } } else { // No imt in the super class, need to reconstruct from the iftable. mirror::IfTable* if_table = super_class->GetIfTable(); if (if_table != nullptr) { // Ignore copied methods since we will handle these in LinkInterfaceMethods. FillIMTFromIfTable(if_table, unimplemented_method, imt_conflict_method, klass.Get(), /*create_conflict_table*/false, /*ignore_copied_methods*/true, /*out*/imt); } } } // TODO This method needs to be split up into several smaller methods. bool ClassLinker::LinkInterfaceMethods( Thread* self, Handle<mirror::Class> klass, const std::unordered_map<size_t, ClassLinker::MethodTranslation>& default_translations, ArtMethod** out_imt) { StackHandleScope<3> hs(self); Runtime* const runtime = Runtime::Current(); const bool is_interface = klass->IsInterface(); const bool has_superclass = klass->HasSuperClass(); const bool fill_tables = !is_interface; const size_t super_ifcount = has_superclass ? klass->GetSuperClass()->GetIfTableCount() : 0U; const size_t method_alignment = ArtMethod::Alignment(image_pointer_size_); const size_t method_size = ArtMethod::Size(image_pointer_size_); const size_t ifcount = klass->GetIfTableCount(); MutableHandle<mirror::IfTable> iftable(hs.NewHandle(klass->GetIfTable())); // These are allocated on the heap to begin, we then transfer to linear alloc when we re-create // the virtual methods array. // Need to use low 4GB arenas for compiler or else the pointers wont fit in 32 bit method array // during cross compilation. // Use the linear alloc pool since this one is in the low 4gb for the compiler. ArenaStack stack(runtime->GetLinearAlloc()->GetArenaPool()); ScopedArenaAllocator allocator(&stack); ScopedArenaVector<ArtMethod*> default_conflict_methods(allocator.Adapter()); ScopedArenaVector<ArtMethod*> miranda_methods(allocator.Adapter()); ScopedArenaVector<ArtMethod*> default_methods(allocator.Adapter()); MutableHandle<mirror::PointerArray> vtable(hs.NewHandle(klass->GetVTableDuringLinking())); ArtMethod* const unimplemented_method = runtime->GetImtUnimplementedMethod(); ArtMethod* const imt_conflict_method = runtime->GetImtConflictMethod(); // Copy the IMT from the super class if possible. const bool extend_super_iftable = has_superclass; if (has_superclass && fill_tables) { FillImtFromSuperClass(klass, unimplemented_method, imt_conflict_method, out_imt); } // Allocate method arrays before since we don't want miss visiting miranda method roots due to // thread suspension. if (fill_tables) { for (size_t i = 0; i < ifcount; ++i) { size_t num_methods = iftable->GetInterface(i)->NumDeclaredVirtualMethods(); if (num_methods > 0) { const bool is_super = i < super_ifcount; // This is an interface implemented by a super-class. Therefore we can just copy the method // array from the superclass. const bool super_interface = is_super && extend_super_iftable; mirror::PointerArray* method_array; if (super_interface) { mirror::IfTable* if_table = klass->GetSuperClass()->GetIfTable(); DCHECK(if_table != nullptr); DCHECK(if_table->GetMethodArray(i) != nullptr); // If we are working on a super interface, try extending the existing method array. method_array = down_cast<mirror::PointerArray*>(if_table->GetMethodArray(i)->Clone(self)); } else { method_array = AllocPointerArray(self, num_methods); } if (UNLIKELY(method_array == nullptr)) { self->AssertPendingOOMException(); return false; } iftable->SetMethodArray(i, method_array); } } } auto* old_cause = self->StartAssertNoThreadSuspension( "Copying ArtMethods for LinkInterfaceMethods"); // Going in reverse to ensure that we will hit abstract methods that override defaults before the // defaults. This means we don't need to do any trickery when creating the Miranda methods, since // they will already be null. This has the additional benefit that the declarer of a miranda // method will actually declare an abstract method. for (size_t i = ifcount; i != 0; ) { --i; DCHECK_GE(i, 0u); DCHECK_LT(i, ifcount); size_t num_methods = iftable->GetInterface(i)->NumDeclaredVirtualMethods(); if (num_methods > 0) { StackHandleScope<2> hs2(self); const bool is_super = i < super_ifcount; const bool super_interface = is_super && extend_super_iftable; // We don't actually create or fill these tables for interfaces, we just copy some methods for // conflict methods. Just set this as nullptr in those cases. Handle<mirror::PointerArray> method_array(fill_tables ? hs2.NewHandle(iftable->GetMethodArray(i)) : hs2.NewHandle<mirror::PointerArray>(nullptr)); ArraySlice<ArtMethod> input_virtual_methods; ScopedNullHandle<mirror::PointerArray> null_handle; Handle<mirror::PointerArray> input_vtable_array(null_handle); int32_t input_array_length = 0; // TODO Cleanup Needed: In the presence of default methods this optimization is rather dirty // and confusing. Default methods should always look through all the superclasses // because they are the last choice of an implementation. We get around this by looking // at the super-classes iftable methods (copied into method_array previously) when we are // looking for the implementation of a super-interface method but that is rather dirty. bool using_virtuals; if (super_interface || is_interface) { // If we are overwriting a super class interface, try to only virtual methods instead of the // whole vtable. using_virtuals = true; input_virtual_methods = klass->GetDeclaredMethodsSlice(image_pointer_size_); input_array_length = input_virtual_methods.size(); } else { // For a new interface, however, we need the whole vtable in case a new // interface method is implemented in the whole superclass. using_virtuals = false; DCHECK(vtable.Get() != nullptr); input_vtable_array = vtable; input_array_length = input_vtable_array->GetLength(); } // For each method in interface for (size_t j = 0; j < num_methods; ++j) { auto* interface_method = iftable->GetInterface(i)->GetVirtualMethod(j, image_pointer_size_); MethodNameAndSignatureComparator interface_name_comparator( interface_method->GetInterfaceMethodIfProxy(image_pointer_size_)); uint32_t imt_index = GetIMTIndex(interface_method); ArtMethod** imt_ptr = &out_imt[imt_index]; // For each method listed in the interface's method list, find the // matching method in our class's method list. We want to favor the // subclass over the superclass, which just requires walking // back from the end of the vtable. (This only matters if the // superclass defines a private method and this class redefines // it -- otherwise it would use the same vtable slot. In .dex files // those don't end up in the virtual method table, so it shouldn't // matter which direction we go. We walk it backward anyway.) // // To find defaults we need to do the same but also go over interfaces. bool found_impl = false; ArtMethod* vtable_impl = nullptr; for (int32_t k = input_array_length - 1; k >= 0; --k) { ArtMethod* vtable_method = using_virtuals ? &input_virtual_methods[k] : input_vtable_array->GetElementPtrSize<ArtMethod*>(k, image_pointer_size_); ArtMethod* vtable_method_for_name_comparison = vtable_method->GetInterfaceMethodIfProxy(image_pointer_size_); if (interface_name_comparator.HasSameNameAndSignature( vtable_method_for_name_comparison)) { if (!vtable_method->IsAbstract() && !vtable_method->IsPublic()) { // Must do EndAssertNoThreadSuspension before throw since the throw can cause // allocations. self->EndAssertNoThreadSuspension(old_cause); ThrowIllegalAccessError(klass.Get(), "Method '%s' implementing interface method '%s' is not public", PrettyMethod(vtable_method).c_str(), PrettyMethod(interface_method).c_str()); return false; } else if (UNLIKELY(vtable_method->IsOverridableByDefaultMethod())) { // We might have a newer, better, default method for this, so we just skip it. If we // are still using this we will select it again when scanning for default methods. To // obviate the need to copy the method again we will make a note that we already found // a default here. // TODO This should be much cleaner. vtable_impl = vtable_method; break; } else { found_impl = true; if (LIKELY(fill_tables)) { method_array->SetElementPtrSize(j, vtable_method, image_pointer_size_); // Place method in imt if entry is empty, place conflict otherwise. SetIMTRef(unimplemented_method, imt_conflict_method, vtable_method, /*out*/imt_ptr); } break; } } } // Continue on to the next method if we are done. if (LIKELY(found_impl)) { continue; } else if (LIKELY(super_interface)) { // Don't look for a default implementation when the super-method is implemented directly // by the class. // // See if we can use the superclasses method and skip searching everything else. // Note: !found_impl && super_interface CHECK(extend_super_iftable); // If this is a super_interface method it is possible we shouldn't override it because a // superclass could have implemented it directly. We get the method the superclass used // to implement this to know if we can override it with a default method. Doing this is // safe since we know that the super_iftable is filled in so we can simply pull it from // there. We don't bother if this is not a super-classes interface since in that case we // have scanned the entire vtable anyway and would have found it. // TODO This is rather dirty but it is faster than searching through the entire vtable // every time. ArtMethod* supers_method = method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_); DCHECK(supers_method != nullptr); DCHECK(interface_name_comparator.HasSameNameAndSignature(supers_method)); if (LIKELY(!supers_method->IsOverridableByDefaultMethod())) { // The method is not overridable by a default method (i.e. it is directly implemented // in some class). Therefore move onto the next interface method. continue; } else { // If the super-classes method is override-able by a default method we need to keep // track of it since though it is override-able it is not guaranteed to be 'overridden'. // If it turns out not to be overridden and we did not keep track of it we might add it // to the vtable twice, causing corruption in this class and possibly any subclasses. DCHECK(vtable_impl == nullptr || vtable_impl == supers_method) << "vtable_impl was " << PrettyMethod(vtable_impl) << " and not 'nullptr' or " << PrettyMethod(supers_method) << " as expected. IFTable appears to be corrupt!"; vtable_impl = supers_method; } } // If we haven't found it yet we should search through the interfaces for default methods. ArtMethod* current_method = nullptr; switch (FindDefaultMethodImplementation(self, interface_method, klass, /*out*/¤t_method)) { case DefaultMethodSearchResult::kDefaultConflict: { // Default method conflict. DCHECK(current_method == nullptr); ArtMethod* default_conflict_method = nullptr; if (vtable_impl != nullptr && vtable_impl->IsDefaultConflicting()) { // We can reuse the method from the superclass, don't bother adding it to virtuals. default_conflict_method = vtable_impl; } else { // See if we already have a conflict method for this method. ArtMethod* preexisting_conflict = FindSameNameAndSignature(interface_name_comparator, default_conflict_methods); if (LIKELY(preexisting_conflict != nullptr)) { // We already have another conflict we can reuse. default_conflict_method = preexisting_conflict; } else { // Note that we do this even if we are an interface since we need to create this and // cannot reuse another classes. // Create a new conflict method for this to use. default_conflict_method = reinterpret_cast<ArtMethod*>(allocator.Alloc(method_size)); new(default_conflict_method) ArtMethod(interface_method, image_pointer_size_); default_conflict_methods.push_back(default_conflict_method); } } current_method = default_conflict_method; break; } // case kDefaultConflict case DefaultMethodSearchResult::kDefaultFound: { DCHECK(current_method != nullptr); // Found a default method. if (vtable_impl != nullptr && current_method->GetDeclaringClass() == vtable_impl->GetDeclaringClass()) { // We found a default method but it was the same one we already have from our // superclass. Don't bother adding it to our vtable again. current_method = vtable_impl; } else if (LIKELY(fill_tables)) { // Interfaces don't need to copy default methods since they don't have vtables. // Only record this default method if it is new to save space. // TODO It might be worthwhile to copy default methods on interfaces anyway since it // would make lookup for interface super much faster. (We would only need to scan // the iftable to find if there is a NSME or AME.) ArtMethod* old = FindSameNameAndSignature(interface_name_comparator, default_methods); if (old == nullptr) { // We found a default method implementation and there were no conflicts. // Save the default method. We need to add it to the vtable. default_methods.push_back(current_method); } else { CHECK(old == current_method) << "Multiple default implementations selected!"; } } break; } // case kDefaultFound case DefaultMethodSearchResult::kAbstractFound: { DCHECK(current_method == nullptr); // Abstract method masks all defaults. if (vtable_impl != nullptr && vtable_impl->IsAbstract() && !vtable_impl->IsDefaultConflicting()) { // We need to make this an abstract method but the version in the vtable already is so // don't do anything. current_method = vtable_impl; } break; } // case kAbstractFound } if (LIKELY(fill_tables)) { if (current_method == nullptr && !super_interface) { // We could not find an implementation for this method and since it is a brand new // interface we searched the entire vtable (and all default methods) for an // implementation but couldn't find one. We therefore need to make a miranda method. // // Find out if there is already a miranda method we can use. ArtMethod* miranda_method = FindSameNameAndSignature(interface_name_comparator, miranda_methods); if (miranda_method == nullptr) { DCHECK(interface_method->IsAbstract()) << PrettyMethod(interface_method); miranda_method = reinterpret_cast<ArtMethod*>(allocator.Alloc(method_size)); CHECK(miranda_method != nullptr); // Point the interface table at a phantom slot. new(miranda_method) ArtMethod(interface_method, image_pointer_size_); miranda_methods.push_back(miranda_method); } current_method = miranda_method; } if (current_method != nullptr) { // We found a default method implementation. Record it in the iftable and IMT. method_array->SetElementPtrSize(j, current_method, image_pointer_size_); SetIMTRef(unimplemented_method, imt_conflict_method, current_method, /*out*/imt_ptr); } } } // For each method in interface end. } // if (num_methods > 0) } // For each interface. const bool has_new_virtuals = !(miranda_methods.empty() && default_methods.empty() && default_conflict_methods.empty()); // TODO don't extend virtuals of interface unless necessary (when is it?). if (has_new_virtuals) { DCHECK(!is_interface || (default_methods.empty() && miranda_methods.empty())) << "Interfaces should only have default-conflict methods appended to them."; VLOG(class_linker) << PrettyClass(klass.Get()) << ": miranda_methods=" << miranda_methods.size() << " default_methods=" << default_methods.size() << " default_conflict_methods=" << default_conflict_methods.size(); const size_t old_method_count = klass->NumMethods(); const size_t new_method_count = old_method_count + miranda_methods.size() + default_methods.size() + default_conflict_methods.size(); // Attempt to realloc to save RAM if possible. LengthPrefixedArray<ArtMethod>* old_methods = klass->GetMethodsPtr(); // The Realloced virtual methods aren't visible from the class roots, so there is no issue // where GCs could attempt to mark stale pointers due to memcpy. And since we overwrite the // realloced memory with out->CopyFrom, we are guaranteed to have objects in the to space since // CopyFrom has internal read barriers. // // TODO We should maybe move some of this into mirror::Class or at least into another method. const size_t old_size = LengthPrefixedArray<ArtMethod>::ComputeSize(old_method_count, method_size, method_alignment); const size_t new_size = LengthPrefixedArray<ArtMethod>::ComputeSize(new_method_count, method_size, method_alignment); const size_t old_methods_ptr_size = (old_methods != nullptr) ? old_size : 0; auto* methods = reinterpret_cast<LengthPrefixedArray<ArtMethod>*>( runtime->GetLinearAlloc()->Realloc(self, old_methods, old_methods_ptr_size, new_size)); if (UNLIKELY(methods == nullptr)) { self->AssertPendingOOMException(); self->EndAssertNoThreadSuspension(old_cause); return false; } ScopedArenaUnorderedMap<ArtMethod*, ArtMethod*> move_table(allocator.Adapter()); if (methods != old_methods) { // Maps from heap allocated miranda method to linear alloc miranda method. StrideIterator<ArtMethod> out = methods->begin(method_size, method_alignment); // Copy over the old methods. for (auto& m : klass->GetMethods(image_pointer_size_)) { move_table.emplace(&m, &*out); // The CopyFrom is only necessary to not miss read barriers since Realloc won't do read // barriers when it copies. out->CopyFrom(&m, image_pointer_size_); ++out; } } StrideIterator<ArtMethod> out(methods->begin(method_size, method_alignment) + old_method_count); // Copy over miranda methods before copying vtable since CopyOf may cause thread suspension and // we want the roots of the miranda methods to get visited. for (ArtMethod* mir_method : miranda_methods) { ArtMethod& new_method = *out; new_method.CopyFrom(mir_method, image_pointer_size_); new_method.SetAccessFlags(new_method.GetAccessFlags() | kAccMiranda | kAccCopied); DCHECK_NE(new_method.GetAccessFlags() & kAccAbstract, 0u) << "Miranda method should be abstract!"; move_table.emplace(mir_method, &new_method); ++out; } // We need to copy the default methods into our own method table since the runtime requires that // every method on a class's vtable be in that respective class's virtual method table. // NOTE This means that two classes might have the same implementation of a method from the same // interface but will have different ArtMethod*s for them. This also means we cannot compare a // default method found on a class with one found on the declaring interface directly and must // look at the declaring class to determine if they are the same. for (ArtMethod* def_method : default_methods) { ArtMethod& new_method = *out; new_method.CopyFrom(def_method, image_pointer_size_); // Clear the kAccSkipAccessChecks flag if it is present. Since this class hasn't been verified // yet it shouldn't have methods that are skipping access checks. // TODO This is rather arbitrary. We should maybe support classes where only some of its // methods are skip_access_checks. constexpr uint32_t kSetFlags = kAccDefault | kAccCopied; constexpr uint32_t kMaskFlags = ~kAccSkipAccessChecks; new_method.SetAccessFlags((new_method.GetAccessFlags() | kSetFlags) & kMaskFlags); move_table.emplace(def_method, &new_method); ++out; } for (ArtMethod* conf_method : default_conflict_methods) { ArtMethod& new_method = *out; new_method.CopyFrom(conf_method, image_pointer_size_); // This is a type of default method (there are default method impls, just a conflict) so mark // this as a default, non-abstract method, since thats what it is. Also clear the // kAccSkipAccessChecks bit since this class hasn't been verified yet it shouldn't have // methods that are skipping access checks. constexpr uint32_t kSetFlags = kAccDefault | kAccDefaultConflict | kAccCopied; constexpr uint32_t kMaskFlags = ~(kAccAbstract | kAccSkipAccessChecks); new_method.SetAccessFlags((new_method.GetAccessFlags() | kSetFlags) & kMaskFlags); DCHECK(new_method.IsDefaultConflicting()); // The actual method might or might not be marked abstract since we just copied it from a // (possibly default) interface method. We need to set it entry point to be the bridge so that // the compiler will not invoke the implementation of whatever method we copied from. EnsureThrowsInvocationError(&new_method); move_table.emplace(conf_method, &new_method); ++out; } methods->SetSize(new_method_count); UpdateClassMethods(klass.Get(), methods); // Done copying methods, they are all roots in the class now, so we can end the no thread // suspension assert. self->EndAssertNoThreadSuspension(old_cause); if (fill_tables) { // Update the vtable to the new method structures. We can skip this for interfaces since they // do not have vtables. const size_t old_vtable_count = vtable->GetLength(); const size_t new_vtable_count = old_vtable_count + miranda_methods.size() + default_methods.size() + default_conflict_methods.size(); vtable.Assign(down_cast<mirror::PointerArray*>(vtable->CopyOf(self, new_vtable_count))); if (UNLIKELY(vtable.Get() == nullptr)) { self->AssertPendingOOMException(); return false; } out = methods->begin(method_size, method_alignment) + old_method_count; size_t vtable_pos = old_vtable_count; // Update all the newly copied method's indexes so they denote their placement in the vtable. for (size_t i = old_method_count; i < new_method_count; ++i) { // Leave the declaring class alone the method's dex_code_item_offset_ and dex_method_index_ // fields are references into the dex file the method was defined in. Since the ArtMethod // does not store that information it uses declaring_class_->dex_cache_. out->SetMethodIndex(0xFFFF & vtable_pos); vtable->SetElementPtrSize(vtable_pos, &*out, image_pointer_size_); ++out; ++vtable_pos; } CHECK_EQ(vtable_pos, new_vtable_count); // Update old vtable methods. We use the default_translations map to figure out what each // vtable entry should be updated to, if they need to be at all. for (size_t i = 0; i < old_vtable_count; ++i) { ArtMethod* translated_method = vtable->GetElementPtrSize<ArtMethod*>( i, image_pointer_size_); // Try and find what we need to change this method to. auto translation_it = default_translations.find(i); bool found_translation = false; if (translation_it != default_translations.end()) { if (translation_it->second.IsInConflict()) { // Find which conflict method we are to use for this method. MethodNameAndSignatureComparator old_method_comparator( translated_method->GetInterfaceMethodIfProxy(image_pointer_size_)); ArtMethod* new_conflict_method = FindSameNameAndSignature(old_method_comparator, default_conflict_methods); CHECK(new_conflict_method != nullptr) << "Expected a conflict method!"; translated_method = new_conflict_method; } else if (translation_it->second.IsAbstract()) { // Find which miranda method we are to use for this method. MethodNameAndSignatureComparator old_method_comparator( translated_method->GetInterfaceMethodIfProxy(image_pointer_size_)); ArtMethod* miranda_method = FindSameNameAndSignature(old_method_comparator, miranda_methods); DCHECK(miranda_method != nullptr); translated_method = miranda_method; } else { // Normal default method (changed from an older default or abstract interface method). DCHECK(translation_it->second.IsTranslation()); translated_method = translation_it->second.GetTranslation(); } found_translation = true; } DCHECK(translated_method != nullptr); auto it = move_table.find(translated_method); if (it != move_table.end()) { auto* new_method = it->second; DCHECK(new_method != nullptr); vtable->SetElementPtrSize(i, new_method, image_pointer_size_); } else { // If it was not going to be updated we wouldn't have put it into the default_translations // map. CHECK(!found_translation) << "We were asked to update this vtable entry. Must not fail."; } } klass->SetVTable(vtable.Get()); // Go fix up all the stale iftable pointers. for (size_t i = 0; i < ifcount; ++i) { for (size_t j = 0, count = iftable->GetMethodArrayCount(i); j < count; ++j) { auto* method_array = iftable->GetMethodArray(i); auto* m = method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_); DCHECK(m != nullptr) << PrettyClass(klass.Get()); auto it = move_table.find(m); if (it != move_table.end()) { auto* new_m = it->second; DCHECK(new_m != nullptr) << PrettyClass(klass.Get()); method_array->SetElementPtrSize(j, new_m, image_pointer_size_); } } } // Fix up IMT next for (size_t i = 0; i < mirror::Class::kImtSize; ++i) { auto it = move_table.find(out_imt[i]); if (it != move_table.end()) { out_imt[i] = it->second; } } } // Check that there are no stale methods are in the dex cache array. if (kIsDebugBuild) { auto* resolved_methods = klass->GetDexCache()->GetResolvedMethods(); for (size_t i = 0, count = klass->GetDexCache()->NumResolvedMethods(); i < count; ++i) { auto* m = mirror::DexCache::GetElementPtrSize(resolved_methods, i, image_pointer_size_); CHECK(move_table.find(m) == move_table.end() || // The original versions of copied methods will still be present so allow those too. // Note that if the first check passes this might fail to GetDeclaringClass(). std::find_if(m->GetDeclaringClass()->GetMethods(image_pointer_size_).begin(), m->GetDeclaringClass()->GetMethods(image_pointer_size_).end(), [m] (ArtMethod& meth) { return &meth == m; }) != m->GetDeclaringClass()->GetMethods(image_pointer_size_).end()) << "Obsolete methods " << PrettyMethod(m) << " is in dex cache!"; } } // Put some random garbage in old methods to help find stale pointers. if (methods != old_methods && old_methods != nullptr && kIsDebugBuild) { // Need to make sure the GC is not running since it could be scanning the methods we are // about to overwrite. ScopedThreadStateChange tsc(self, kSuspended); gc::ScopedGCCriticalSection gcs(self, gc::kGcCauseClassLinker, gc::kCollectorTypeClassLinker); memset(old_methods, 0xFEu, old_size); } } else { self->EndAssertNoThreadSuspension(old_cause); } if (kIsDebugBuild && !is_interface) { SanityCheckVTable(klass, image_pointer_size_); } return true; } bool ClassLinker::LinkInstanceFields(Thread* self, Handle<mirror::Class> klass) { CHECK(klass.Get() != nullptr); return LinkFields(self, klass, false, nullptr); } bool ClassLinker::LinkStaticFields(Thread* self, Handle<mirror::Class> klass, size_t* class_size) { CHECK(klass.Get() != nullptr); return LinkFields(self, klass, true, class_size); } struct LinkFieldsComparator { explicit LinkFieldsComparator() SHARED_REQUIRES(Locks::mutator_lock_) { } // No thread safety analysis as will be called from STL. Checked lock held in constructor. bool operator()(ArtField* field1, ArtField* field2) NO_THREAD_SAFETY_ANALYSIS { // First come reference fields, then 64-bit, then 32-bit, and then 16-bit, then finally 8-bit. Primitive::Type type1 = field1->GetTypeAsPrimitiveType(); Primitive::Type type2 = field2->GetTypeAsPrimitiveType(); if (type1 != type2) { if (type1 == Primitive::kPrimNot) { // Reference always goes first. return true; } if (type2 == Primitive::kPrimNot) { // Reference always goes first. return false; } size_t size1 = Primitive::ComponentSize(type1); size_t size2 = Primitive::ComponentSize(type2); if (size1 != size2) { // Larger primitive types go first. return size1 > size2; } // Primitive types differ but sizes match. Arbitrarily order by primitive type. return type1 < type2; } // Same basic group? Then sort by dex field index. This is guaranteed to be sorted // by name and for equal names by type id index. // NOTE: This works also for proxies. Their static fields are assigned appropriate indexes. return field1->GetDexFieldIndex() < field2->GetDexFieldIndex(); } }; bool ClassLinker::LinkFields(Thread* self, Handle<mirror::Class> klass, bool is_static, size_t* class_size) { self->AllowThreadSuspension(); const size_t num_fields = is_static ? klass->NumStaticFields() : klass->NumInstanceFields(); LengthPrefixedArray<ArtField>* const fields = is_static ? klass->GetSFieldsPtr() : klass->GetIFieldsPtr(); // Initialize field_offset MemberOffset field_offset(0); if (is_static) { field_offset = klass->GetFirstReferenceStaticFieldOffsetDuringLinking(image_pointer_size_); } else { mirror::Class* super_class = klass->GetSuperClass(); if (super_class != nullptr) { CHECK(super_class->IsResolved()) << PrettyClass(klass.Get()) << " " << PrettyClass(super_class); field_offset = MemberOffset(super_class->GetObjectSize()); } } CHECK_EQ(num_fields == 0, fields == nullptr) << PrettyClass(klass.Get()); // we want a relatively stable order so that adding new fields // minimizes disruption of C++ version such as Class and Method. // // The overall sort order order is: // 1) All object reference fields, sorted alphabetically. // 2) All java long (64-bit) integer fields, sorted alphabetically. // 3) All java double (64-bit) floating point fields, sorted alphabetically. // 4) All java int (32-bit) integer fields, sorted alphabetically. // 5) All java float (32-bit) floating point fields, sorted alphabetically. // 6) All java char (16-bit) integer fields, sorted alphabetically. // 7) All java short (16-bit) integer fields, sorted alphabetically. // 8) All java boolean (8-bit) integer fields, sorted alphabetically. // 9) All java byte (8-bit) integer fields, sorted alphabetically. // // Once the fields are sorted in this order we will attempt to fill any gaps that might be present // in the memory layout of the structure. See ShuffleForward for how this is done. std::deque<ArtField*> grouped_and_sorted_fields; const char* old_no_suspend_cause = self->StartAssertNoThreadSuspension( "Naked ArtField references in deque"); for (size_t i = 0; i < num_fields; i++) { grouped_and_sorted_fields.push_back(&fields->At(i)); } std::sort(grouped_and_sorted_fields.begin(), grouped_and_sorted_fields.end(), LinkFieldsComparator()); // References should be at the front. size_t current_field = 0; size_t num_reference_fields = 0; FieldGaps gaps; for (; current_field < num_fields; current_field++) { ArtField* field = grouped_and_sorted_fields.front(); Primitive::Type type = field->GetTypeAsPrimitiveType(); bool isPrimitive = type != Primitive::kPrimNot; if (isPrimitive) { break; // past last reference, move on to the next phase } if (UNLIKELY(!IsAligned<sizeof(mirror::HeapReference<mirror::Object>)>( field_offset.Uint32Value()))) { MemberOffset old_offset = field_offset; field_offset = MemberOffset(RoundUp(field_offset.Uint32Value(), 4)); AddFieldGap(old_offset.Uint32Value(), field_offset.Uint32Value(), &gaps); } DCHECK_ALIGNED(field_offset.Uint32Value(), sizeof(mirror::HeapReference<mirror::Object>)); grouped_and_sorted_fields.pop_front(); num_reference_fields++; field->SetOffset(field_offset); field_offset = MemberOffset(field_offset.Uint32Value() + sizeof(mirror::HeapReference<mirror::Object>)); } // Gaps are stored as a max heap which means that we must shuffle from largest to smallest // otherwise we could end up with suboptimal gap fills. ShuffleForward<8>(¤t_field, &field_offset, &grouped_and_sorted_fields, &gaps); ShuffleForward<4>(¤t_field, &field_offset, &grouped_and_sorted_fields, &gaps); ShuffleForward<2>(¤t_field, &field_offset, &grouped_and_sorted_fields, &gaps); ShuffleForward<1>(¤t_field, &field_offset, &grouped_and_sorted_fields, &gaps); CHECK(grouped_and_sorted_fields.empty()) << "Missed " << grouped_and_sorted_fields.size() << " fields."; self->EndAssertNoThreadSuspension(old_no_suspend_cause); // We lie to the GC about the java.lang.ref.Reference.referent field, so it doesn't scan it. if (!is_static && klass->DescriptorEquals("Ljava/lang/ref/Reference;")) { // We know there are no non-reference fields in the Reference classes, and we know // that 'referent' is alphabetically last, so this is easy... CHECK_EQ(num_reference_fields, num_fields) << PrettyClass(klass.Get()); CHECK_STREQ(fields->At(num_fields - 1).GetName(), "referent") << PrettyClass(klass.Get()); --num_reference_fields; } size_t size = field_offset.Uint32Value(); // Update klass if (is_static) { klass->SetNumReferenceStaticFields(num_reference_fields); *class_size = size; } else { klass->SetNumReferenceInstanceFields(num_reference_fields); mirror::Class* super_class = klass->GetSuperClass(); if (num_reference_fields == 0 || super_class == nullptr) { // object has one reference field, klass, but we ignore it since we always visit the class. // super_class is null iff the class is java.lang.Object. if (super_class == nullptr || (super_class->GetClassFlags() & mirror::kClassFlagNoReferenceFields) != 0) { klass->SetClassFlags(klass->GetClassFlags() | mirror::kClassFlagNoReferenceFields); } } if (kIsDebugBuild) { DCHECK_EQ(super_class == nullptr, klass->DescriptorEquals("Ljava/lang/Object;")); size_t total_reference_instance_fields = 0; mirror::Class* cur_super = klass.Get(); while (cur_super != nullptr) { total_reference_instance_fields += cur_super->NumReferenceInstanceFieldsDuringLinking(); cur_super = cur_super->GetSuperClass(); } if (super_class == nullptr) { CHECK_EQ(total_reference_instance_fields, 1u) << PrettyDescriptor(klass.Get()); } else { // Check that there is at least num_reference_fields other than Object.class. CHECK_GE(total_reference_instance_fields, 1u + num_reference_fields) << PrettyClass(klass.Get()); } } if (!klass->IsVariableSize()) { std::string temp; DCHECK_GE(size, sizeof(mirror::Object)) << klass->GetDescriptor(&temp); size_t previous_size = klass->GetObjectSize(); if (previous_size != 0) { // Make sure that we didn't originally have an incorrect size. CHECK_EQ(previous_size, size) << klass->GetDescriptor(&temp); } klass->SetObjectSize(size); } } if (kIsDebugBuild) { // Make sure that the fields array is ordered by name but all reference // offsets are at the beginning as far as alignment allows. MemberOffset start_ref_offset = is_static ? klass->GetFirstReferenceStaticFieldOffsetDuringLinking(image_pointer_size_) : klass->GetFirstReferenceInstanceFieldOffset(); MemberOffset end_ref_offset(start_ref_offset.Uint32Value() + num_reference_fields * sizeof(mirror::HeapReference<mirror::Object>)); MemberOffset current_ref_offset = start_ref_offset; for (size_t i = 0; i < num_fields; i++) { ArtField* field = &fields->At(i); VLOG(class_linker) << "LinkFields: " << (is_static ? "static" : "instance") << " class=" << PrettyClass(klass.Get()) << " field=" << PrettyField(field) << " offset=" << field->GetOffsetDuringLinking(); if (i != 0) { ArtField* const prev_field = &fields->At(i - 1); // NOTE: The field names can be the same. This is not possible in the Java language // but it's valid Java/dex bytecode and for example proguard can generate such bytecode. DCHECK_LE(strcmp(prev_field->GetName(), field->GetName()), 0); } Primitive::Type type = field->GetTypeAsPrimitiveType(); bool is_primitive = type != Primitive::kPrimNot; if (klass->DescriptorEquals("Ljava/lang/ref/Reference;") && strcmp("referent", field->GetName()) == 0) { is_primitive = true; // We lied above, so we have to expect a lie here. } MemberOffset offset = field->GetOffsetDuringLinking(); if (is_primitive) { if (offset.Uint32Value() < end_ref_offset.Uint32Value()) { // Shuffled before references. size_t type_size = Primitive::ComponentSize(type); CHECK_LT(type_size, sizeof(mirror::HeapReference<mirror::Object>)); CHECK_LT(offset.Uint32Value(), start_ref_offset.Uint32Value()); CHECK_LE(offset.Uint32Value() + type_size, start_ref_offset.Uint32Value()); CHECK(!IsAligned<sizeof(mirror::HeapReference<mirror::Object>)>(offset.Uint32Value())); } } else { CHECK_EQ(current_ref_offset.Uint32Value(), offset.Uint32Value()); current_ref_offset = MemberOffset(current_ref_offset.Uint32Value() + sizeof(mirror::HeapReference<mirror::Object>)); } } CHECK_EQ(current_ref_offset.Uint32Value(), end_ref_offset.Uint32Value()); } return true; } // Set the bitmap of reference instance field offsets. void ClassLinker::CreateReferenceInstanceOffsets(Handle<mirror::Class> klass) { uint32_t reference_offsets = 0; mirror::Class* super_class = klass->GetSuperClass(); // Leave the reference offsets as 0 for mirror::Object (the class field is handled specially). if (super_class != nullptr) { reference_offsets = super_class->GetReferenceInstanceOffsets(); // Compute reference offsets unless our superclass overflowed. if (reference_offsets != mirror::Class::kClassWalkSuper) { size_t num_reference_fields = klass->NumReferenceInstanceFieldsDuringLinking(); if (num_reference_fields != 0u) { // All of the fields that contain object references are guaranteed be grouped in memory // starting at an appropriately aligned address after super class object data. uint32_t start_offset = RoundUp(super_class->GetObjectSize(), sizeof(mirror::HeapReference<mirror::Object>)); uint32_t start_bit = (start_offset - mirror::kObjectHeaderSize) / sizeof(mirror::HeapReference<mirror::Object>); if (start_bit + num_reference_fields > 32) { reference_offsets = mirror::Class::kClassWalkSuper; } else { reference_offsets |= (0xffffffffu << start_bit) & (0xffffffffu >> (32 - (start_bit + num_reference_fields))); } } } } klass->SetReferenceInstanceOffsets(reference_offsets); } mirror::String* ClassLinker::ResolveString(const DexFile& dex_file, uint32_t string_idx, Handle<mirror::DexCache> dex_cache) { DCHECK(dex_cache.Get() != nullptr); mirror::String* resolved = dex_cache->GetResolvedString(string_idx); if (resolved != nullptr) { return resolved; } uint32_t utf16_length; const char* utf8_data = dex_file.StringDataAndUtf16LengthByIdx(string_idx, &utf16_length); mirror::String* string = intern_table_->InternStrong(utf16_length, utf8_data); dex_cache->SetResolvedString(string_idx, string); return string; } mirror::String* ClassLinker::LookupString(const DexFile& dex_file, uint32_t string_idx, Handle<mirror::DexCache> dex_cache) { DCHECK(dex_cache.Get() != nullptr); mirror::String* resolved = dex_cache->GetResolvedString(string_idx); if (resolved != nullptr) { return resolved; } uint32_t utf16_length; const char* utf8_data = dex_file.StringDataAndUtf16LengthByIdx(string_idx, &utf16_length); mirror::String* string = intern_table_->LookupStrong(Thread::Current(), utf16_length, utf8_data); if (string != nullptr) { dex_cache->SetResolvedString(string_idx, string); } return string; } mirror::Class* ClassLinker::ResolveType(const DexFile& dex_file, uint16_t type_idx, mirror::Class* referrer) { StackHandleScope<2> hs(Thread::Current()); Handle<mirror::DexCache> dex_cache(hs.NewHandle(referrer->GetDexCache())); Handle<mirror::ClassLoader> class_loader(hs.NewHandle(referrer->GetClassLoader())); return ResolveType(dex_file, type_idx, dex_cache, class_loader); } mirror::Class* ClassLinker::ResolveType(const DexFile& dex_file, uint16_t type_idx, Handle<mirror::DexCache> dex_cache, Handle<mirror::ClassLoader> class_loader) { DCHECK(dex_cache.Get() != nullptr); mirror::Class* resolved = dex_cache->GetResolvedType(type_idx); if (resolved == nullptr) { Thread* self = Thread::Current(); const char* descriptor = dex_file.StringByTypeIdx(type_idx); resolved = FindClass(self, descriptor, class_loader); if (resolved != nullptr) { // TODO: we used to throw here if resolved's class loader was not the // boot class loader. This was to permit different classes with the // same name to be loaded simultaneously by different loaders dex_cache->SetResolvedType(type_idx, resolved); } else { CHECK(self->IsExceptionPending()) << "Expected pending exception for failed resolution of: " << descriptor; // Convert a ClassNotFoundException to a NoClassDefFoundError. StackHandleScope<1> hs(self); Handle<mirror::Throwable> cause(hs.NewHandle(self->GetException())); if (cause->InstanceOf(GetClassRoot(kJavaLangClassNotFoundException))) { DCHECK(resolved == nullptr); // No Handle needed to preserve resolved. self->ClearException(); ThrowNoClassDefFoundError("Failed resolution of: %s", descriptor); self->GetException()->SetCause(cause.Get()); } } } DCHECK((resolved == nullptr) || resolved->IsResolved() || resolved->IsErroneous()) << PrettyDescriptor(resolved) << " " << resolved->GetStatus(); return resolved; } template <ClassLinker::ResolveMode kResolveMode> ArtMethod* ClassLinker::ResolveMethod(const DexFile& dex_file, uint32_t method_idx, Handle<mirror::DexCache> dex_cache, Handle<mirror::ClassLoader> class_loader, ArtMethod* referrer, InvokeType type) { DCHECK(dex_cache.Get() != nullptr); // Check for hit in the dex cache. ArtMethod* resolved = dex_cache->GetResolvedMethod(method_idx, image_pointer_size_); if (resolved != nullptr && !resolved->IsRuntimeMethod()) { DCHECK(resolved->GetDeclaringClassUnchecked() != nullptr) << resolved->GetDexMethodIndex(); if (kResolveMode == ClassLinker::kForceICCECheck) { if (resolved->CheckIncompatibleClassChange(type)) { ThrowIncompatibleClassChangeError(type, resolved->GetInvokeType(), resolved, referrer); return nullptr; } } return resolved; } // Fail, get the declaring class. const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx); mirror::Class* klass = ResolveType(dex_file, method_id.class_idx_, dex_cache, class_loader); if (klass == nullptr) { DCHECK(Thread::Current()->IsExceptionPending()); return nullptr; } // Scan using method_idx, this saves string compares but will only hit for matching dex // caches/files. switch (type) { case kDirect: // Fall-through. case kStatic: resolved = klass->FindDirectMethod(dex_cache.Get(), method_idx, image_pointer_size_); DCHECK(resolved == nullptr || resolved->GetDeclaringClassUnchecked() != nullptr); break; case kInterface: // We have to check whether the method id really belongs to an interface (dex static bytecode // constraint A15). Otherwise you must not invoke-interface on it. // // This is not symmetric to A12-A14 (direct, static, virtual), as using FindInterfaceMethod // assumes that the given type is an interface, and will check the interface table if the // method isn't declared in the class. So it may find an interface method (usually by name // in the handling below, but we do the constraint check early). In that case, // CheckIncompatibleClassChange will succeed (as it is called on an interface method) // unexpectedly. // Example: // interface I { // foo() // } // class A implements I { // ... // } // class B extends A { // ... // } // invoke-interface B.foo // -> FindInterfaceMethod finds I.foo (interface method), not A.foo (miranda method) if (UNLIKELY(!klass->IsInterface())) { ThrowIncompatibleClassChangeError(klass, "Found class %s, but interface was expected", PrettyDescriptor(klass).c_str()); return nullptr; } else { resolved = klass->FindInterfaceMethod(dex_cache.Get(), method_idx, image_pointer_size_); DCHECK(resolved == nullptr || resolved->GetDeclaringClass()->IsInterface()); } break; case kSuper: if (klass->IsInterface()) { resolved = klass->FindInterfaceMethod(dex_cache.Get(), method_idx, image_pointer_size_); } else { resolved = klass->FindVirtualMethod(dex_cache.Get(), method_idx, image_pointer_size_); } break; case kVirtual: resolved = klass->FindVirtualMethod(dex_cache.Get(), method_idx, image_pointer_size_); break; default: LOG(FATAL) << "Unreachable - invocation type: " << type; UNREACHABLE(); } if (resolved == nullptr) { // Search by name, which works across dex files. const char* name = dex_file.StringDataByIdx(method_id.name_idx_); const Signature signature = dex_file.GetMethodSignature(method_id); switch (type) { case kDirect: // Fall-through. case kStatic: resolved = klass->FindDirectMethod(name, signature, image_pointer_size_); DCHECK(resolved == nullptr || resolved->GetDeclaringClassUnchecked() != nullptr); break; case kInterface: resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_); DCHECK(resolved == nullptr || resolved->GetDeclaringClass()->IsInterface()); break; case kSuper: if (klass->IsInterface()) { resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_); } else { resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_); } break; case kVirtual: resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_); break; } } // If we found a method, check for incompatible class changes. if (LIKELY(resolved != nullptr && !resolved->CheckIncompatibleClassChange(type))) { // Be a good citizen and update the dex cache to speed subsequent calls. dex_cache->SetResolvedMethod(method_idx, resolved, image_pointer_size_); return resolved; } else { // If we had a method, it's an incompatible-class-change error. if (resolved != nullptr) { ThrowIncompatibleClassChangeError(type, resolved->GetInvokeType(), resolved, referrer); } else { // We failed to find the method which means either an access error, an incompatible class // change, or no such method. First try to find the method among direct and virtual methods. const char* name = dex_file.StringDataByIdx(method_id.name_idx_); const Signature signature = dex_file.GetMethodSignature(method_id); switch (type) { case kDirect: case kStatic: resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_); // Note: kDirect and kStatic are also mutually exclusive, but in that case we would // have had a resolved method before, which triggers the "true" branch above. break; case kInterface: case kVirtual: case kSuper: resolved = klass->FindDirectMethod(name, signature, image_pointer_size_); break; } // If we found something, check that it can be accessed by the referrer. bool exception_generated = false; if (resolved != nullptr && referrer != nullptr) { mirror::Class* methods_class = resolved->GetDeclaringClass(); mirror::Class* referring_class = referrer->GetDeclaringClass(); if (!referring_class->CanAccess(methods_class)) { ThrowIllegalAccessErrorClassForMethodDispatch(referring_class, methods_class, resolved, type); exception_generated = true; } else if (!referring_class->CanAccessMember(methods_class, resolved->GetAccessFlags())) { ThrowIllegalAccessErrorMethod(referring_class, resolved); exception_generated = true; } } if (!exception_generated) { // Otherwise, throw an IncompatibleClassChangeError if we found something, and check // interface methods and throw if we find the method there. If we find nothing, throw a // NoSuchMethodError. switch (type) { case kDirect: case kStatic: if (resolved != nullptr) { ThrowIncompatibleClassChangeError(type, kVirtual, resolved, referrer); } else { resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_); if (resolved != nullptr) { ThrowIncompatibleClassChangeError(type, kInterface, resolved, referrer); } else { ThrowNoSuchMethodError(type, klass, name, signature); } } break; case kInterface: if (resolved != nullptr) { ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer); } else { resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_); if (resolved != nullptr) { ThrowIncompatibleClassChangeError(type, kVirtual, resolved, referrer); } else { ThrowNoSuchMethodError(type, klass, name, signature); } } break; case kSuper: if (resolved != nullptr) { ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer); } else { ThrowNoSuchMethodError(type, klass, name, signature); } break; case kVirtual: if (resolved != nullptr) { ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer); } else { resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_); if (resolved != nullptr) { ThrowIncompatibleClassChangeError(type, kInterface, resolved, referrer); } else { ThrowNoSuchMethodError(type, klass, name, signature); } } break; } } } Thread::Current()->AssertPendingException(); return nullptr; } } ArtMethod* ClassLinker::ResolveMethodWithoutInvokeType(const DexFile& dex_file, uint32_t method_idx, Handle<mirror::DexCache> dex_cache, Handle<mirror::ClassLoader> class_loader) { ArtMethod* resolved = dex_cache->GetResolvedMethod(method_idx, image_pointer_size_); if (resolved != nullptr && !resolved->IsRuntimeMethod()) { DCHECK(resolved->GetDeclaringClassUnchecked() != nullptr) << resolved->GetDexMethodIndex(); return resolved; } // Fail, get the declaring class. const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx); mirror::Class* klass = ResolveType(dex_file, method_id.class_idx_, dex_cache, class_loader); if (klass == nullptr) { Thread::Current()->AssertPendingException(); return nullptr; } if (klass->IsInterface()) { LOG(FATAL) << "ResolveAmbiguousMethod: unexpected method in interface: " << PrettyClass(klass); return nullptr; } // Search both direct and virtual methods resolved = klass->FindDirectMethod(dex_cache.Get(), method_idx, image_pointer_size_); if (resolved == nullptr) { resolved = klass->FindVirtualMethod(dex_cache.Get(), method_idx, image_pointer_size_); } return resolved; } ArtField* ClassLinker::ResolveField(const DexFile& dex_file, uint32_t field_idx, Handle<mirror::DexCache> dex_cache, Handle<mirror::ClassLoader> class_loader, bool is_static) { DCHECK(dex_cache.Get() != nullptr); ArtField* resolved = dex_cache->GetResolvedField(field_idx, image_pointer_size_); if (resolved != nullptr) { return resolved; } const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx); Thread* const self = Thread::Current(); StackHandleScope<1> hs(self); Handle<mirror::Class> klass( hs.NewHandle(ResolveType(dex_file, field_id.class_idx_, dex_cache, class_loader))); if (klass.Get() == nullptr) { DCHECK(Thread::Current()->IsExceptionPending()); return nullptr; } if (is_static) { resolved = mirror::Class::FindStaticField(self, klass, dex_cache.Get(), field_idx); } else { resolved = klass->FindInstanceField(dex_cache.Get(), field_idx); } if (resolved == nullptr) { const char* name = dex_file.GetFieldName(field_id); const char* type = dex_file.GetFieldTypeDescriptor(field_id); if (is_static) { resolved = mirror::Class::FindStaticField(self, klass, name, type); } else { resolved = klass->FindInstanceField(name, type); } if (resolved == nullptr) { ThrowNoSuchFieldError(is_static ? "static " : "instance ", klass.Get(), type, name); return nullptr; } } dex_cache->SetResolvedField(field_idx, resolved, image_pointer_size_); return resolved; } ArtField* ClassLinker::ResolveFieldJLS(const DexFile& dex_file, uint32_t field_idx, Handle<mirror::DexCache> dex_cache, Handle<mirror::ClassLoader> class_loader) { DCHECK(dex_cache.Get() != nullptr); ArtField* resolved = dex_cache->GetResolvedField(field_idx, image_pointer_size_); if (resolved != nullptr) { return resolved; } const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx); Thread* self = Thread::Current(); StackHandleScope<1> hs(self); Handle<mirror::Class> klass( hs.NewHandle(ResolveType(dex_file, field_id.class_idx_, dex_cache, class_loader))); if (klass.Get() == nullptr) { DCHECK(Thread::Current()->IsExceptionPending()); return nullptr; } StringPiece name(dex_file.StringDataByIdx(field_id.name_idx_)); StringPiece type(dex_file.StringDataByIdx( dex_file.GetTypeId(field_id.type_idx_).descriptor_idx_)); resolved = mirror::Class::FindField(self, klass, name, type); if (resolved != nullptr) { dex_cache->SetResolvedField(field_idx, resolved, image_pointer_size_); } else { ThrowNoSuchFieldError("", klass.Get(), type, name); } return resolved; } const char* ClassLinker::MethodShorty(uint32_t method_idx, ArtMethod* referrer, uint32_t* length) { mirror::Class* declaring_class = referrer->GetDeclaringClass(); mirror::DexCache* dex_cache = declaring_class->GetDexCache(); const DexFile& dex_file = *dex_cache->GetDexFile(); const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx); return dex_file.GetMethodShorty(method_id, length); } class DumpClassVisitor : public ClassVisitor { public: explicit DumpClassVisitor(int flags) : flags_(flags) {} bool operator()(mirror::Class* klass) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { klass->DumpClass(LOG(ERROR), flags_); return true; } private: const int flags_; }; void ClassLinker::DumpAllClasses(int flags) { DumpClassVisitor visitor(flags); VisitClasses(&visitor); } static OatFile::OatMethod CreateOatMethod(const void* code) { CHECK(code != nullptr); const uint8_t* base = reinterpret_cast<const uint8_t*>(code); // Base of data points at code. base -= sizeof(void*); // Move backward so that code_offset != 0. const uint32_t code_offset = sizeof(void*); return OatFile::OatMethod(base, code_offset); } bool ClassLinker::IsQuickResolutionStub(const void* entry_point) const { return (entry_point == GetQuickResolutionStub()) || (quick_resolution_trampoline_ == entry_point); } bool ClassLinker::IsQuickToInterpreterBridge(const void* entry_point) const { return (entry_point == GetQuickToInterpreterBridge()) || (quick_to_interpreter_bridge_trampoline_ == entry_point); } bool ClassLinker::IsQuickGenericJniStub(const void* entry_point) const { return (entry_point == GetQuickGenericJniStub()) || (quick_generic_jni_trampoline_ == entry_point); } const void* ClassLinker::GetRuntimeQuickGenericJniStub() const { return GetQuickGenericJniStub(); } void ClassLinker::SetEntryPointsToCompiledCode(ArtMethod* method, const void* method_code) const { OatFile::OatMethod oat_method = CreateOatMethod(method_code); oat_method.LinkMethod(method); } void ClassLinker::SetEntryPointsToInterpreter(ArtMethod* method) const { if (!method->IsNative()) { method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge()); } else { const void* quick_method_code = GetQuickGenericJniStub(); OatFile::OatMethod oat_method = CreateOatMethod(quick_method_code); oat_method.LinkMethod(method); } } void ClassLinker::DumpForSigQuit(std::ostream& os) { ScopedObjectAccess soa(Thread::Current()); if (dex_cache_boot_image_class_lookup_required_) { AddBootImageClassesToClassTable(); } ReaderMutexLock mu(soa.Self(), *Locks::classlinker_classes_lock_); os << "Zygote loaded classes=" << NumZygoteClasses() << " post zygote classes=" << NumNonZygoteClasses() << "\n"; } class CountClassesVisitor : public ClassLoaderVisitor { public: CountClassesVisitor() : num_zygote_classes(0), num_non_zygote_classes(0) {} void Visit(mirror::ClassLoader* class_loader) SHARED_REQUIRES(Locks::classlinker_classes_lock_, Locks::mutator_lock_) OVERRIDE { ClassTable* const class_table = class_loader->GetClassTable(); if (class_table != nullptr) { num_zygote_classes += class_table->NumZygoteClasses(); num_non_zygote_classes += class_table->NumNonZygoteClasses(); } } size_t num_zygote_classes; size_t num_non_zygote_classes; }; size_t ClassLinker::NumZygoteClasses() const { CountClassesVisitor visitor; VisitClassLoaders(&visitor); return visitor.num_zygote_classes + boot_class_table_.NumZygoteClasses(); } size_t ClassLinker::NumNonZygoteClasses() const { CountClassesVisitor visitor; VisitClassLoaders(&visitor); return visitor.num_non_zygote_classes + boot_class_table_.NumNonZygoteClasses(); } size_t ClassLinker::NumLoadedClasses() { if (dex_cache_boot_image_class_lookup_required_) { AddBootImageClassesToClassTable(); } ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); // Only return non zygote classes since these are the ones which apps which care about. return NumNonZygoteClasses(); } pid_t ClassLinker::GetClassesLockOwner() { return Locks::classlinker_classes_lock_->GetExclusiveOwnerTid(); } pid_t ClassLinker::GetDexLockOwner() { return dex_lock_.GetExclusiveOwnerTid(); } void ClassLinker::SetClassRoot(ClassRoot class_root, mirror::Class* klass) { DCHECK(!init_done_); DCHECK(klass != nullptr); DCHECK(klass->GetClassLoader() == nullptr); mirror::ObjectArray<mirror::Class>* class_roots = class_roots_.Read(); DCHECK(class_roots != nullptr); DCHECK(class_roots->Get(class_root) == nullptr); class_roots->Set<false>(class_root, klass); } const char* ClassLinker::GetClassRootDescriptor(ClassRoot class_root) { static const char* class_roots_descriptors[] = { "Ljava/lang/Class;", "Ljava/lang/Object;", "[Ljava/lang/Class;", "[Ljava/lang/Object;", "Ljava/lang/String;", "Ljava/lang/DexCache;", "Ljava/lang/ref/Reference;", "Ljava/lang/reflect/Constructor;", "Ljava/lang/reflect/Field;", "Ljava/lang/reflect/Method;", "Ljava/lang/reflect/Proxy;", "[Ljava/lang/String;", "[Ljava/lang/reflect/Constructor;", "[Ljava/lang/reflect/Field;", "[Ljava/lang/reflect/Method;", "Ljava/lang/ClassLoader;", "Ljava/lang/Throwable;", "Ljava/lang/ClassNotFoundException;", "Ljava/lang/StackTraceElement;", "Z", "B", "C", "D", "F", "I", "J", "S", "V", "[Z", "[B", "[C", "[D", "[F", "[I", "[J", "[S", "[Ljava/lang/StackTraceElement;", }; static_assert(arraysize(class_roots_descriptors) == size_t(kClassRootsMax), "Mismatch between class descriptors and class-root enum"); const char* descriptor = class_roots_descriptors[class_root]; CHECK(descriptor != nullptr); return descriptor; } jobject ClassLinker::CreatePathClassLoader(Thread* self, const std::vector<const DexFile*>& dex_files) { // SOAAlreadyRunnable is protected, and we need something to add a global reference. // We could move the jobject to the callers, but all call-sites do this... ScopedObjectAccessUnchecked soa(self); // For now, create a libcore-level DexFile for each ART DexFile. This "explodes" multidex. StackHandleScope<10> hs(self); ArtField* dex_elements_field = soa.DecodeField(WellKnownClasses::dalvik_system_DexPathList_dexElements); mirror::Class* dex_elements_class = dex_elements_field->GetType<true>(); DCHECK(dex_elements_class != nullptr); DCHECK(dex_elements_class->IsArrayClass()); Handle<mirror::ObjectArray<mirror::Object>> h_dex_elements(hs.NewHandle( mirror::ObjectArray<mirror::Object>::Alloc(self, dex_elements_class, dex_files.size()))); Handle<mirror::Class> h_dex_element_class = hs.NewHandle(dex_elements_class->GetComponentType()); ArtField* element_file_field = soa.DecodeField(WellKnownClasses::dalvik_system_DexPathList__Element_dexFile); DCHECK_EQ(h_dex_element_class.Get(), element_file_field->GetDeclaringClass()); ArtField* cookie_field = soa.DecodeField(WellKnownClasses::dalvik_system_DexFile_cookie); DCHECK_EQ(cookie_field->GetDeclaringClass(), element_file_field->GetType<false>()); ArtField* file_name_field = soa.DecodeField(WellKnownClasses::dalvik_system_DexFile_fileName); DCHECK_EQ(file_name_field->GetDeclaringClass(), element_file_field->GetType<false>()); // Fill the elements array. int32_t index = 0; for (const DexFile* dex_file : dex_files) { StackHandleScope<4> hs2(self); // CreatePathClassLoader is only used by gtests. Index 0 of h_long_array is supposed to be the // oat file but we can leave it null. Handle<mirror::LongArray> h_long_array = hs2.NewHandle(mirror::LongArray::Alloc( self, kDexFileIndexStart + 1)); DCHECK(h_long_array.Get() != nullptr); h_long_array->Set(kDexFileIndexStart, reinterpret_cast<intptr_t>(dex_file)); Handle<mirror::Object> h_dex_file = hs2.NewHandle( cookie_field->GetDeclaringClass()->AllocObject(self)); DCHECK(h_dex_file.Get() != nullptr); cookie_field->SetObject<false>(h_dex_file.Get(), h_long_array.Get()); Handle<mirror::String> h_file_name = hs2.NewHandle( mirror::String::AllocFromModifiedUtf8(self, dex_file->GetLocation().c_str())); DCHECK(h_file_name.Get() != nullptr); file_name_field->SetObject<false>(h_dex_file.Get(), h_file_name.Get()); Handle<mirror::Object> h_element = hs2.NewHandle(h_dex_element_class->AllocObject(self)); DCHECK(h_element.Get() != nullptr); element_file_field->SetObject<false>(h_element.Get(), h_dex_file.Get()); h_dex_elements->Set(index, h_element.Get()); index++; } DCHECK_EQ(index, h_dex_elements->GetLength()); // Create DexPathList. Handle<mirror::Object> h_dex_path_list = hs.NewHandle( dex_elements_field->GetDeclaringClass()->AllocObject(self)); DCHECK(h_dex_path_list.Get() != nullptr); // Set elements. dex_elements_field->SetObject<false>(h_dex_path_list.Get(), h_dex_elements.Get()); // Create PathClassLoader. Handle<mirror::Class> h_path_class_class = hs.NewHandle( soa.Decode<mirror::Class*>(WellKnownClasses::dalvik_system_PathClassLoader)); Handle<mirror::Object> h_path_class_loader = hs.NewHandle( h_path_class_class->AllocObject(self)); DCHECK(h_path_class_loader.Get() != nullptr); // Set DexPathList. ArtField* path_list_field = soa.DecodeField(WellKnownClasses::dalvik_system_PathClassLoader_pathList); DCHECK(path_list_field != nullptr); path_list_field->SetObject<false>(h_path_class_loader.Get(), h_dex_path_list.Get()); // Make a pretend boot-classpath. // TODO: Should we scan the image? ArtField* const parent_field = mirror::Class::FindField(self, hs.NewHandle(h_path_class_loader->GetClass()), "parent", "Ljava/lang/ClassLoader;"); DCHECK(parent_field != nullptr); mirror::Object* boot_cl = soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_BootClassLoader)->AllocObject(self); parent_field->SetObject<false>(h_path_class_loader.Get(), boot_cl); // Make it a global ref and return. ScopedLocalRef<jobject> local_ref( soa.Env(), soa.Env()->AddLocalReference<jobject>(h_path_class_loader.Get())); return soa.Env()->NewGlobalRef(local_ref.get()); } ArtMethod* ClassLinker::CreateRuntimeMethod(LinearAlloc* linear_alloc) { const size_t method_alignment = ArtMethod::Alignment(image_pointer_size_); const size_t method_size = ArtMethod::Size(image_pointer_size_); LengthPrefixedArray<ArtMethod>* method_array = AllocArtMethodArray( Thread::Current(), linear_alloc, 1); ArtMethod* method = &method_array->At(0, method_size, method_alignment); CHECK(method != nullptr); method->SetDexMethodIndex(DexFile::kDexNoIndex); CHECK(method->IsRuntimeMethod()); return method; } void ClassLinker::DropFindArrayClassCache() { std::fill_n(find_array_class_cache_, kFindArrayCacheSize, GcRoot<mirror::Class>(nullptr)); find_array_class_cache_next_victim_ = 0; } void ClassLinker::ClearClassTableStrongRoots() const { Thread* const self = Thread::Current(); WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); for (const ClassLoaderData& data : class_loaders_) { if (data.class_table != nullptr) { data.class_table->ClearStrongRoots(); } } } void ClassLinker::VisitClassLoaders(ClassLoaderVisitor* visitor) const { Thread* const self = Thread::Current(); for (const ClassLoaderData& data : class_loaders_) { // Need to use DecodeJObject so that we get null for cleared JNI weak globals. auto* const class_loader = down_cast<mirror::ClassLoader*>(self->DecodeJObject(data.weak_root)); if (class_loader != nullptr) { visitor->Visit(class_loader); } } } void ClassLinker::InsertDexFileInToClassLoader(mirror::Object* dex_file, mirror::ClassLoader* class_loader) { DCHECK(dex_file != nullptr); Thread* const self = Thread::Current(); WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); ClassTable* const table = ClassTableForClassLoader(class_loader); DCHECK(table != nullptr); if (table->InsertStrongRoot(dex_file) && class_loader != nullptr) { // It was not already inserted, perform the write barrier to let the GC know the class loader's // class table was modified. Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader); } } void ClassLinker::CleanupClassLoaders() { Thread* const self = Thread::Current(); WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); for (auto it = class_loaders_.begin(); it != class_loaders_.end(); ) { const ClassLoaderData& data = *it; // Need to use DecodeJObject so that we get null for cleared JNI weak globals. auto* const class_loader = down_cast<mirror::ClassLoader*>(self->DecodeJObject(data.weak_root)); if (class_loader != nullptr) { ++it; } else { VLOG(class_linker) << "Freeing class loader"; DeleteClassLoader(self, data); it = class_loaders_.erase(it); } } } std::set<DexCacheResolvedClasses> ClassLinker::GetResolvedClasses(bool ignore_boot_classes) { ScopedTrace trace(__PRETTY_FUNCTION__); ScopedObjectAccess soa(Thread::Current()); ScopedAssertNoThreadSuspension ants(soa.Self(), __FUNCTION__); std::set<DexCacheResolvedClasses> ret; VLOG(class_linker) << "Collecting resolved classes"; const uint64_t start_time = NanoTime(); ReaderMutexLock mu(soa.Self(), *DexLock()); // Loop through all the dex caches and inspect resolved classes. for (const ClassLinker::DexCacheData& data : GetDexCachesData()) { if (soa.Self()->IsJWeakCleared(data.weak_root)) { continue; } mirror::DexCache* dex_cache = down_cast<mirror::DexCache*>(soa.Self()->DecodeJObject(data.weak_root)); if (dex_cache == nullptr) { continue; } const DexFile* dex_file = dex_cache->GetDexFile(); const std::string& location = dex_file->GetLocation(); const size_t num_class_defs = dex_file->NumClassDefs(); // Use the resolved types, this will miss array classes. const size_t num_types = dex_file->NumTypeIds(); VLOG(class_linker) << "Collecting class profile for dex file " << location << " types=" << num_types << " class_defs=" << num_class_defs; DexCacheResolvedClasses resolved_classes(dex_file->GetLocation(), dex_file->GetBaseLocation(), dex_file->GetLocationChecksum()); size_t num_resolved = 0; std::unordered_set<uint16_t> class_set; CHECK_EQ(num_types, dex_cache->NumResolvedTypes()); for (size_t i = 0; i < num_types; ++i) { mirror::Class* klass = dex_cache->GetResolvedType(i); // Filter out null class loader since that is the boot class loader. if (klass == nullptr || (ignore_boot_classes && klass->GetClassLoader() == nullptr)) { continue; } ++num_resolved; DCHECK(!klass->IsProxyClass()); if (!klass->IsResolved()) { DCHECK(klass->IsErroneous()); continue; } mirror::DexCache* klass_dex_cache = klass->GetDexCache(); if (klass_dex_cache == dex_cache) { const size_t class_def_idx = klass->GetDexClassDefIndex(); DCHECK(klass->IsResolved()); CHECK_LT(class_def_idx, num_class_defs); class_set.insert(class_def_idx); } } if (!class_set.empty()) { auto it = ret.find(resolved_classes); if (it != ret.end()) { // Already have the key, union the class def idxs. it->AddClasses(class_set.begin(), class_set.end()); } else { resolved_classes.AddClasses(class_set.begin(), class_set.end()); ret.insert(resolved_classes); } } VLOG(class_linker) << "Dex location " << location << " has " << num_resolved << " / " << num_class_defs << " resolved classes"; } VLOG(class_linker) << "Collecting class profile took " << PrettyDuration(NanoTime() - start_time); return ret; } std::unordered_set<std::string> ClassLinker::GetClassDescriptorsForProfileKeys( const std::set<DexCacheResolvedClasses>& classes) { ScopedTrace trace(__PRETTY_FUNCTION__); std::unordered_set<std::string> ret; Thread* const self = Thread::Current(); std::unordered_map<std::string, const DexFile*> location_to_dex_file; ScopedObjectAccess soa(self); ScopedAssertNoThreadSuspension ants(soa.Self(), __FUNCTION__); ReaderMutexLock mu(self, *DexLock()); for (const ClassLinker::DexCacheData& data : GetDexCachesData()) { if (!self->IsJWeakCleared(data.weak_root)) { mirror::DexCache* dex_cache = down_cast<mirror::DexCache*>(soa.Self()->DecodeJObject(data.weak_root)); if (dex_cache != nullptr) { const DexFile* dex_file = dex_cache->GetDexFile(); // There could be duplicates if two dex files with the same location are mapped. location_to_dex_file.emplace( ProfileCompilationInfo::GetProfileDexFileKey(dex_file->GetLocation()), dex_file); } } } for (const DexCacheResolvedClasses& info : classes) { const std::string& profile_key = info.GetDexLocation(); auto found = location_to_dex_file.find(profile_key); if (found != location_to_dex_file.end()) { const DexFile* dex_file = found->second; VLOG(profiler) << "Found opened dex file for " << dex_file->GetLocation() << " with " << info.GetClasses().size() << " classes"; DCHECK_EQ(dex_file->GetLocationChecksum(), info.GetLocationChecksum()); for (uint16_t class_def_idx : info.GetClasses()) { if (class_def_idx >= dex_file->NumClassDefs()) { LOG(WARNING) << "Class def index " << class_def_idx << " >= " << dex_file->NumClassDefs(); continue; } const DexFile::TypeId& type_id = dex_file->GetTypeId( dex_file->GetClassDef(class_def_idx).class_idx_); const char* descriptor = dex_file->GetTypeDescriptor(type_id); ret.insert(descriptor); } } else { VLOG(class_linker) << "Failed to find opened dex file for profile key " << profile_key; } } return ret; } // Instantiate ResolveMethod. template ArtMethod* ClassLinker::ResolveMethod<ClassLinker::kForceICCECheck>( const DexFile& dex_file, uint32_t method_idx, Handle<mirror::DexCache> dex_cache, Handle<mirror::ClassLoader> class_loader, ArtMethod* referrer, InvokeType type); template ArtMethod* ClassLinker::ResolveMethod<ClassLinker::kNoICCECheckForCache>( const DexFile& dex_file, uint32_t method_idx, Handle<mirror::DexCache> dex_cache, Handle<mirror::ClassLoader> class_loader, ArtMethod* referrer, InvokeType type); } // namespace art