/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "debugger.h" #include <sys/uio.h> #include <set> #include "arch/context.h" #include "art_field-inl.h" #include "art_method-inl.h" #include "base/time_utils.h" #include "class_linker.h" #include "class_linker-inl.h" #include "dex_file-inl.h" #include "dex_instruction.h" #include "entrypoints/runtime_asm_entrypoints.h" #include "gc/accounting/card_table-inl.h" #include "gc/allocation_record.h" #include "gc/scoped_gc_critical_section.h" #include "gc/space/large_object_space.h" #include "gc/space/space-inl.h" #include "handle_scope.h" #include "jdwp/jdwp_priv.h" #include "jdwp/object_registry.h" #include "mirror/class.h" #include "mirror/class-inl.h" #include "mirror/class_loader.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "mirror/string-inl.h" #include "mirror/throwable.h" #include "reflection.h" #include "safe_map.h" #include "scoped_thread_state_change.h" #include "ScopedLocalRef.h" #include "ScopedPrimitiveArray.h" #include "handle_scope-inl.h" #include "thread_list.h" #include "utf.h" #include "well_known_classes.h" namespace art { // The key identifying the debugger to update instrumentation. static constexpr const char* kDbgInstrumentationKey = "Debugger"; // Limit alloc_record_count to the 2BE value (64k-1) that is the limit of the current protocol. static uint16_t CappedAllocRecordCount(size_t alloc_record_count) { const size_t cap = 0xffff; if (alloc_record_count > cap) { return cap; } return alloc_record_count; } // Takes a method and returns a 'canonical' one if the method is default (and therefore potentially // copied from some other class). This ensures that the debugger does not get confused as to which // method we are in. static ArtMethod* GetCanonicalMethod(ArtMethod* m) SHARED_REQUIRES(Locks::mutator_lock_) { if (LIKELY(!m->IsDefault())) { return m; } else { mirror::Class* declaring_class = m->GetDeclaringClass(); return declaring_class->FindDeclaredVirtualMethod(declaring_class->GetDexCache(), m->GetDexMethodIndex(), sizeof(void*)); } } class Breakpoint : public ValueObject { public: Breakpoint(ArtMethod* method, uint32_t dex_pc, DeoptimizationRequest::Kind deoptimization_kind) : method_(GetCanonicalMethod(method)), dex_pc_(dex_pc), deoptimization_kind_(deoptimization_kind) { CHECK(deoptimization_kind_ == DeoptimizationRequest::kNothing || deoptimization_kind_ == DeoptimizationRequest::kSelectiveDeoptimization || deoptimization_kind_ == DeoptimizationRequest::kFullDeoptimization); } Breakpoint(const Breakpoint& other) SHARED_REQUIRES(Locks::mutator_lock_) : method_(other.method_), dex_pc_(other.dex_pc_), deoptimization_kind_(other.deoptimization_kind_) {} // Method() is called from root visiting, do not use ScopedObjectAccess here or it can cause // GC to deadlock if another thread tries to call SuspendAll while the GC is in a runnable state. ArtMethod* Method() const { return method_; } uint32_t DexPc() const { return dex_pc_; } DeoptimizationRequest::Kind GetDeoptimizationKind() const { return deoptimization_kind_; } // Returns true if the method of this breakpoint and the passed in method should be considered the // same. That is, they are either the same method or they are copied from the same method. bool IsInMethod(ArtMethod* m) const SHARED_REQUIRES(Locks::mutator_lock_) { return method_ == GetCanonicalMethod(m); } private: // The location of this breakpoint. ArtMethod* method_; uint32_t dex_pc_; // Indicates whether breakpoint needs full deoptimization or selective deoptimization. DeoptimizationRequest::Kind deoptimization_kind_; }; static std::ostream& operator<<(std::ostream& os, const Breakpoint& rhs) SHARED_REQUIRES(Locks::mutator_lock_) { os << StringPrintf("Breakpoint[%s @%#x]", PrettyMethod(rhs.Method()).c_str(), rhs.DexPc()); return os; } class DebugInstrumentationListener FINAL : public instrumentation::InstrumentationListener { public: DebugInstrumentationListener() {} virtual ~DebugInstrumentationListener() {} void MethodEntered(Thread* thread, mirror::Object* this_object, ArtMethod* method, uint32_t dex_pc) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { if (method->IsNative()) { // TODO: post location events is a suspension point and native method entry stubs aren't. return; } if (IsListeningToDexPcMoved()) { // We also listen to kDexPcMoved instrumentation event so we know the DexPcMoved method is // going to be called right after us. To avoid sending JDWP events twice for this location, // we report the event in DexPcMoved. However, we must remind this is method entry so we // send the METHOD_ENTRY event. And we can also group it with other events for this location // like BREAKPOINT or SINGLE_STEP (or even METHOD_EXIT if this is a RETURN instruction). thread->SetDebugMethodEntry(); } else if (IsListeningToMethodExit() && IsReturn(method, dex_pc)) { // We also listen to kMethodExited instrumentation event and the current instruction is a // RETURN so we know the MethodExited method is going to be called right after us. To avoid // sending JDWP events twice for this location, we report the event(s) in MethodExited. // However, we must remind this is method entry so we send the METHOD_ENTRY event. And we can // also group it with other events for this location like BREAKPOINT or SINGLE_STEP. thread->SetDebugMethodEntry(); } else { Dbg::UpdateDebugger(thread, this_object, method, 0, Dbg::kMethodEntry, nullptr); } } void MethodExited(Thread* thread, mirror::Object* this_object, ArtMethod* method, uint32_t dex_pc, const JValue& return_value) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { if (method->IsNative()) { // TODO: post location events is a suspension point and native method entry stubs aren't. return; } uint32_t events = Dbg::kMethodExit; if (thread->IsDebugMethodEntry()) { // It is also the method entry. DCHECK(IsReturn(method, dex_pc)); events |= Dbg::kMethodEntry; thread->ClearDebugMethodEntry(); } Dbg::UpdateDebugger(thread, this_object, method, dex_pc, events, &return_value); } void MethodUnwind(Thread* thread ATTRIBUTE_UNUSED, mirror::Object* this_object ATTRIBUTE_UNUSED, ArtMethod* method, uint32_t dex_pc) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { // We're not recorded to listen to this kind of event, so complain. LOG(ERROR) << "Unexpected method unwind event in debugger " << PrettyMethod(method) << " " << dex_pc; } void DexPcMoved(Thread* thread, mirror::Object* this_object, ArtMethod* method, uint32_t new_dex_pc) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { if (IsListeningToMethodExit() && IsReturn(method, new_dex_pc)) { // We also listen to kMethodExited instrumentation event and the current instruction is a // RETURN so we know the MethodExited method is going to be called right after us. Like in // MethodEntered, we delegate event reporting to MethodExited. // Besides, if this RETURN instruction is the only one in the method, we can send multiple // JDWP events in the same packet: METHOD_ENTRY, METHOD_EXIT, BREAKPOINT and/or SINGLE_STEP. // Therefore, we must not clear the debug method entry flag here. } else { uint32_t events = 0; if (thread->IsDebugMethodEntry()) { // It is also the method entry. events = Dbg::kMethodEntry; thread->ClearDebugMethodEntry(); } Dbg::UpdateDebugger(thread, this_object, method, new_dex_pc, events, nullptr); } } void FieldRead(Thread* thread ATTRIBUTE_UNUSED, mirror::Object* this_object, ArtMethod* method, uint32_t dex_pc, ArtField* field) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { Dbg::PostFieldAccessEvent(method, dex_pc, this_object, field); } void FieldWritten(Thread* thread ATTRIBUTE_UNUSED, mirror::Object* this_object, ArtMethod* method, uint32_t dex_pc, ArtField* field, const JValue& field_value) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { Dbg::PostFieldModificationEvent(method, dex_pc, this_object, field, &field_value); } void ExceptionCaught(Thread* thread ATTRIBUTE_UNUSED, mirror::Throwable* exception_object) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { Dbg::PostException(exception_object); } // We only care about branches in the Jit. void Branch(Thread* /*thread*/, ArtMethod* method, uint32_t dex_pc, int32_t dex_pc_offset) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { LOG(ERROR) << "Unexpected branch event in debugger " << PrettyMethod(method) << " " << dex_pc << ", " << dex_pc_offset; } // We only care about invokes in the Jit. void InvokeVirtualOrInterface(Thread* thread ATTRIBUTE_UNUSED, mirror::Object*, ArtMethod* method, uint32_t dex_pc, ArtMethod*) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { LOG(ERROR) << "Unexpected invoke event in debugger " << PrettyMethod(method) << " " << dex_pc; } private: static bool IsReturn(ArtMethod* method, uint32_t dex_pc) SHARED_REQUIRES(Locks::mutator_lock_) { const DexFile::CodeItem* code_item = method->GetCodeItem(); const Instruction* instruction = Instruction::At(&code_item->insns_[dex_pc]); return instruction->IsReturn(); } static bool IsListeningToDexPcMoved() SHARED_REQUIRES(Locks::mutator_lock_) { return IsListeningTo(instrumentation::Instrumentation::kDexPcMoved); } static bool IsListeningToMethodExit() SHARED_REQUIRES(Locks::mutator_lock_) { return IsListeningTo(instrumentation::Instrumentation::kMethodExited); } static bool IsListeningTo(instrumentation::Instrumentation::InstrumentationEvent event) SHARED_REQUIRES(Locks::mutator_lock_) { return (Dbg::GetInstrumentationEvents() & event) != 0; } DISALLOW_COPY_AND_ASSIGN(DebugInstrumentationListener); } gDebugInstrumentationListener; // JDWP is allowed unless the Zygote forbids it. static bool gJdwpAllowed = true; // Was there a -Xrunjdwp or -agentlib:jdwp= argument on the command line? static bool gJdwpConfigured = false; // JDWP options for debugging. Only valid if IsJdwpConfigured() is true. static JDWP::JdwpOptions gJdwpOptions; // Runtime JDWP state. static JDWP::JdwpState* gJdwpState = nullptr; static bool gDebuggerConnected; // debugger or DDMS is connected. static bool gDdmThreadNotification = false; // DDMS GC-related settings. static Dbg::HpifWhen gDdmHpifWhen = Dbg::HPIF_WHEN_NEVER; static Dbg::HpsgWhen gDdmHpsgWhen = Dbg::HPSG_WHEN_NEVER; static Dbg::HpsgWhat gDdmHpsgWhat; static Dbg::HpsgWhen gDdmNhsgWhen = Dbg::HPSG_WHEN_NEVER; static Dbg::HpsgWhat gDdmNhsgWhat; bool Dbg::gDebuggerActive = false; bool Dbg::gDisposed = false; ObjectRegistry* Dbg::gRegistry = nullptr; // Deoptimization support. std::vector<DeoptimizationRequest> Dbg::deoptimization_requests_; size_t Dbg::full_deoptimization_event_count_ = 0; // Instrumentation event reference counters. size_t Dbg::dex_pc_change_event_ref_count_ = 0; size_t Dbg::method_enter_event_ref_count_ = 0; size_t Dbg::method_exit_event_ref_count_ = 0; size_t Dbg::field_read_event_ref_count_ = 0; size_t Dbg::field_write_event_ref_count_ = 0; size_t Dbg::exception_catch_event_ref_count_ = 0; uint32_t Dbg::instrumentation_events_ = 0; // Breakpoints. static std::vector<Breakpoint> gBreakpoints GUARDED_BY(Locks::breakpoint_lock_); void DebugInvokeReq::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) { receiver.VisitRootIfNonNull(visitor, root_info); // null for static method call. klass.VisitRoot(visitor, root_info); } void SingleStepControl::AddDexPc(uint32_t dex_pc) { dex_pcs_.insert(dex_pc); } bool SingleStepControl::ContainsDexPc(uint32_t dex_pc) const { return dex_pcs_.find(dex_pc) == dex_pcs_.end(); } static bool IsBreakpoint(ArtMethod* m, uint32_t dex_pc) REQUIRES(!Locks::breakpoint_lock_) SHARED_REQUIRES(Locks::mutator_lock_) { ReaderMutexLock mu(Thread::Current(), *Locks::breakpoint_lock_); for (size_t i = 0, e = gBreakpoints.size(); i < e; ++i) { if (gBreakpoints[i].DexPc() == dex_pc && gBreakpoints[i].IsInMethod(m)) { VLOG(jdwp) << "Hit breakpoint #" << i << ": " << gBreakpoints[i]; return true; } } return false; } static bool IsSuspendedForDebugger(ScopedObjectAccessUnchecked& soa, Thread* thread) REQUIRES(!Locks::thread_suspend_count_lock_) { MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_); // A thread may be suspended for GC; in this code, we really want to know whether // there's a debugger suspension active. return thread->IsSuspended() && thread->GetDebugSuspendCount() > 0; } static mirror::Array* DecodeNonNullArray(JDWP::RefTypeId id, JDWP::JdwpError* error) SHARED_REQUIRES(Locks::mutator_lock_) { mirror::Object* o = Dbg::GetObjectRegistry()->Get<mirror::Object*>(id, error); if (o == nullptr) { *error = JDWP::ERR_INVALID_OBJECT; return nullptr; } if (!o->IsArrayInstance()) { *error = JDWP::ERR_INVALID_ARRAY; return nullptr; } *error = JDWP::ERR_NONE; return o->AsArray(); } static mirror::Class* DecodeClass(JDWP::RefTypeId id, JDWP::JdwpError* error) SHARED_REQUIRES(Locks::mutator_lock_) { mirror::Object* o = Dbg::GetObjectRegistry()->Get<mirror::Object*>(id, error); if (o == nullptr) { *error = JDWP::ERR_INVALID_OBJECT; return nullptr; } if (!o->IsClass()) { *error = JDWP::ERR_INVALID_CLASS; return nullptr; } *error = JDWP::ERR_NONE; return o->AsClass(); } static Thread* DecodeThread(ScopedObjectAccessUnchecked& soa, JDWP::ObjectId thread_id, JDWP::JdwpError* error) SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(!Locks::thread_list_lock_, !Locks::thread_suspend_count_lock_) { mirror::Object* thread_peer = Dbg::GetObjectRegistry()->Get<mirror::Object*>(thread_id, error); if (thread_peer == nullptr) { // This isn't even an object. *error = JDWP::ERR_INVALID_OBJECT; return nullptr; } mirror::Class* java_lang_Thread = soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_Thread); if (!java_lang_Thread->IsAssignableFrom(thread_peer->GetClass())) { // This isn't a thread. *error = JDWP::ERR_INVALID_THREAD; return nullptr; } MutexLock mu(soa.Self(), *Locks::thread_list_lock_); Thread* thread = Thread::FromManagedThread(soa, thread_peer); // If thread is null then this a java.lang.Thread without a Thread*. Must be a un-started or a // zombie. *error = (thread == nullptr) ? JDWP::ERR_THREAD_NOT_ALIVE : JDWP::ERR_NONE; return thread; } static JDWP::JdwpTag BasicTagFromDescriptor(const char* descriptor) { // JDWP deliberately uses the descriptor characters' ASCII values for its enum. // Note that by "basic" we mean that we don't get more specific than JT_OBJECT. return static_cast<JDWP::JdwpTag>(descriptor[0]); } static JDWP::JdwpTag BasicTagFromClass(mirror::Class* klass) SHARED_REQUIRES(Locks::mutator_lock_) { std::string temp; const char* descriptor = klass->GetDescriptor(&temp); return BasicTagFromDescriptor(descriptor); } static JDWP::JdwpTag TagFromClass(const ScopedObjectAccessUnchecked& soa, mirror::Class* c) SHARED_REQUIRES(Locks::mutator_lock_) { CHECK(c != nullptr); if (c->IsArrayClass()) { return JDWP::JT_ARRAY; } if (c->IsStringClass()) { return JDWP::JT_STRING; } if (c->IsClassClass()) { return JDWP::JT_CLASS_OBJECT; } { mirror::Class* thread_class = soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_Thread); if (thread_class->IsAssignableFrom(c)) { return JDWP::JT_THREAD; } } { mirror::Class* thread_group_class = soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_ThreadGroup); if (thread_group_class->IsAssignableFrom(c)) { return JDWP::JT_THREAD_GROUP; } } { mirror::Class* class_loader_class = soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_ClassLoader); if (class_loader_class->IsAssignableFrom(c)) { return JDWP::JT_CLASS_LOADER; } } return JDWP::JT_OBJECT; } /* * Objects declared to hold Object might actually hold a more specific * type. The debugger may take a special interest in these (e.g. it * wants to display the contents of Strings), so we want to return an * appropriate tag. * * Null objects are tagged JT_OBJECT. */ JDWP::JdwpTag Dbg::TagFromObject(const ScopedObjectAccessUnchecked& soa, mirror::Object* o) { return (o == nullptr) ? JDWP::JT_OBJECT : TagFromClass(soa, o->GetClass()); } static bool IsPrimitiveTag(JDWP::JdwpTag tag) { switch (tag) { case JDWP::JT_BOOLEAN: case JDWP::JT_BYTE: case JDWP::JT_CHAR: case JDWP::JT_FLOAT: case JDWP::JT_DOUBLE: case JDWP::JT_INT: case JDWP::JT_LONG: case JDWP::JT_SHORT: case JDWP::JT_VOID: return true; default: return false; } } void Dbg::StartJdwp() { if (!gJdwpAllowed || !IsJdwpConfigured()) { // No JDWP for you! return; } CHECK(gRegistry == nullptr); gRegistry = new ObjectRegistry; // Init JDWP if the debugger is enabled. This may connect out to a // debugger, passively listen for a debugger, or block waiting for a // debugger. gJdwpState = JDWP::JdwpState::Create(&gJdwpOptions); if (gJdwpState == nullptr) { // We probably failed because some other process has the port already, which means that // if we don't abort the user is likely to think they're talking to us when they're actually // talking to that other process. LOG(FATAL) << "Debugger thread failed to initialize"; } // If a debugger has already attached, send the "welcome" message. // This may cause us to suspend all threads. if (gJdwpState->IsActive()) { ScopedObjectAccess soa(Thread::Current()); gJdwpState->PostVMStart(); } } void Dbg::StopJdwp() { // Post VM_DEATH event before the JDWP connection is closed (either by the JDWP thread or the // destruction of gJdwpState). if (gJdwpState != nullptr && gJdwpState->IsActive()) { gJdwpState->PostVMDeath(); } // Prevent the JDWP thread from processing JDWP incoming packets after we close the connection. Dispose(); delete gJdwpState; gJdwpState = nullptr; delete gRegistry; gRegistry = nullptr; } void Dbg::GcDidFinish() { if (gDdmHpifWhen != HPIF_WHEN_NEVER) { ScopedObjectAccess soa(Thread::Current()); VLOG(jdwp) << "Sending heap info to DDM"; DdmSendHeapInfo(gDdmHpifWhen); } if (gDdmHpsgWhen != HPSG_WHEN_NEVER) { ScopedObjectAccess soa(Thread::Current()); VLOG(jdwp) << "Dumping heap to DDM"; DdmSendHeapSegments(false); } if (gDdmNhsgWhen != HPSG_WHEN_NEVER) { ScopedObjectAccess soa(Thread::Current()); VLOG(jdwp) << "Dumping native heap to DDM"; DdmSendHeapSegments(true); } } void Dbg::SetJdwpAllowed(bool allowed) { gJdwpAllowed = allowed; } DebugInvokeReq* Dbg::GetInvokeReq() { return Thread::Current()->GetInvokeReq(); } Thread* Dbg::GetDebugThread() { return (gJdwpState != nullptr) ? gJdwpState->GetDebugThread() : nullptr; } void Dbg::ClearWaitForEventThread() { gJdwpState->ReleaseJdwpTokenForEvent(); } void Dbg::Connected() { CHECK(!gDebuggerConnected); VLOG(jdwp) << "JDWP has attached"; gDebuggerConnected = true; gDisposed = false; } bool Dbg::RequiresDeoptimization() { // We don't need deoptimization if everything runs with interpreter after // enabling -Xint mode. return !Runtime::Current()->GetInstrumentation()->IsForcedInterpretOnly(); } // Used to patch boot image method entry point to interpreter bridge. class UpdateEntryPointsClassVisitor : public ClassVisitor { public: explicit UpdateEntryPointsClassVisitor(instrumentation::Instrumentation* instrumentation) : instrumentation_(instrumentation) {} bool operator()(mirror::Class* klass) OVERRIDE REQUIRES(Locks::mutator_lock_) { auto pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); for (auto& m : klass->GetMethods(pointer_size)) { const void* code = m.GetEntryPointFromQuickCompiledCode(); if (Runtime::Current()->GetHeap()->IsInBootImageOatFile(code) && !m.IsNative() && !m.IsProxyMethod()) { instrumentation_->UpdateMethodsCodeFromDebugger(&m, GetQuickToInterpreterBridge()); } } return true; } private: instrumentation::Instrumentation* const instrumentation_; }; void Dbg::GoActive() { // Enable all debugging features, including scans for breakpoints. // This is a no-op if we're already active. // Only called from the JDWP handler thread. if (IsDebuggerActive()) { return; } Thread* const self = Thread::Current(); { // TODO: dalvik only warned if there were breakpoints left over. clear in Dbg::Disconnected? ReaderMutexLock mu(self, *Locks::breakpoint_lock_); CHECK_EQ(gBreakpoints.size(), 0U); } { MutexLock mu(self, *Locks::deoptimization_lock_); CHECK_EQ(deoptimization_requests_.size(), 0U); CHECK_EQ(full_deoptimization_event_count_, 0U); CHECK_EQ(dex_pc_change_event_ref_count_, 0U); CHECK_EQ(method_enter_event_ref_count_, 0U); CHECK_EQ(method_exit_event_ref_count_, 0U); CHECK_EQ(field_read_event_ref_count_, 0U); CHECK_EQ(field_write_event_ref_count_, 0U); CHECK_EQ(exception_catch_event_ref_count_, 0U); } Runtime* runtime = Runtime::Current(); // Since boot image code may be AOT compiled as not debuggable, we need to patch // entry points of methods in boot image to interpreter bridge. // However, the performance cost of this is non-negligible during native-debugging due to the // forced JIT, so we keep the AOT code in that case in exchange for limited native debugging. if (!runtime->GetInstrumentation()->IsForcedInterpretOnly() && !runtime->IsNativeDebuggable()) { ScopedObjectAccess soa(self); UpdateEntryPointsClassVisitor visitor(runtime->GetInstrumentation()); runtime->GetClassLinker()->VisitClasses(&visitor); } ScopedSuspendAll ssa(__FUNCTION__); if (RequiresDeoptimization()) { runtime->GetInstrumentation()->EnableDeoptimization(); } instrumentation_events_ = 0; gDebuggerActive = true; LOG(INFO) << "Debugger is active"; } void Dbg::Disconnected() { CHECK(gDebuggerConnected); LOG(INFO) << "Debugger is no longer active"; // Suspend all threads and exclusively acquire the mutator lock. Set the state of the thread // to kRunnable to avoid scoped object access transitions. Remove the debugger as a listener // and clear the object registry. Runtime* runtime = Runtime::Current(); Thread* self = Thread::Current(); { // Required for DisableDeoptimization. gc::ScopedGCCriticalSection gcs(self, gc::kGcCauseInstrumentation, gc::kCollectorTypeInstrumentation); ScopedSuspendAll ssa(__FUNCTION__); ThreadState old_state = self->SetStateUnsafe(kRunnable); // Debugger may not be active at this point. if (IsDebuggerActive()) { { // Since we're going to disable deoptimization, we clear the deoptimization requests queue. // This prevents us from having any pending deoptimization request when the debugger attaches // to us again while no event has been requested yet. MutexLock mu(self, *Locks::deoptimization_lock_); deoptimization_requests_.clear(); full_deoptimization_event_count_ = 0U; } if (instrumentation_events_ != 0) { runtime->GetInstrumentation()->RemoveListener(&gDebugInstrumentationListener, instrumentation_events_); instrumentation_events_ = 0; } if (RequiresDeoptimization()) { runtime->GetInstrumentation()->DisableDeoptimization(kDbgInstrumentationKey); } gDebuggerActive = false; } CHECK_EQ(self->SetStateUnsafe(old_state), kRunnable); } { ScopedObjectAccess soa(self); gRegistry->Clear(); } gDebuggerConnected = false; } void Dbg::ConfigureJdwp(const JDWP::JdwpOptions& jdwp_options) { CHECK_NE(jdwp_options.transport, JDWP::kJdwpTransportUnknown); gJdwpOptions = jdwp_options; gJdwpConfigured = true; } bool Dbg::IsJdwpConfigured() { return gJdwpConfigured; } int64_t Dbg::LastDebuggerActivity() { return gJdwpState->LastDebuggerActivity(); } void Dbg::UndoDebuggerSuspensions() { Runtime::Current()->GetThreadList()->UndoDebuggerSuspensions(); } std::string Dbg::GetClassName(JDWP::RefTypeId class_id) { JDWP::JdwpError error; mirror::Object* o = gRegistry->Get<mirror::Object*>(class_id, &error); if (o == nullptr) { if (error == JDWP::ERR_NONE) { return "null"; } else { return StringPrintf("invalid object %p", reinterpret_cast<void*>(class_id)); } } if (!o->IsClass()) { return StringPrintf("non-class %p", o); // This is only used for debugging output anyway. } return GetClassName(o->AsClass()); } std::string Dbg::GetClassName(mirror::Class* klass) { if (klass == nullptr) { return "null"; } std::string temp; return DescriptorToName(klass->GetDescriptor(&temp)); } JDWP::JdwpError Dbg::GetClassObject(JDWP::RefTypeId id, JDWP::ObjectId* class_object_id) { JDWP::JdwpError status; mirror::Class* c = DecodeClass(id, &status); if (c == nullptr) { *class_object_id = 0; return status; } *class_object_id = gRegistry->Add(c); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetSuperclass(JDWP::RefTypeId id, JDWP::RefTypeId* superclass_id) { JDWP::JdwpError status; mirror::Class* c = DecodeClass(id, &status); if (c == nullptr) { *superclass_id = 0; return status; } if (c->IsInterface()) { // http://code.google.com/p/android/issues/detail?id=20856 *superclass_id = 0; } else { *superclass_id = gRegistry->Add(c->GetSuperClass()); } return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetClassLoader(JDWP::RefTypeId id, JDWP::ExpandBuf* pReply) { JDWP::JdwpError error; mirror::Class* c = DecodeClass(id, &error); if (c == nullptr) { return error; } expandBufAddObjectId(pReply, gRegistry->Add(c->GetClassLoader())); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetModifiers(JDWP::RefTypeId id, JDWP::ExpandBuf* pReply) { JDWP::JdwpError error; mirror::Class* c = DecodeClass(id, &error); if (c == nullptr) { return error; } uint32_t access_flags = c->GetAccessFlags() & kAccJavaFlagsMask; // Set ACC_SUPER. Dex files don't contain this flag but only classes are supposed to have it set, // not interfaces. // Class.getModifiers doesn't return it, but JDWP does, so we set it here. if ((access_flags & kAccInterface) == 0) { access_flags |= kAccSuper; } expandBufAdd4BE(pReply, access_flags); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetMonitorInfo(JDWP::ObjectId object_id, JDWP::ExpandBuf* reply) { JDWP::JdwpError error; mirror::Object* o = gRegistry->Get<mirror::Object*>(object_id, &error); if (o == nullptr) { return JDWP::ERR_INVALID_OBJECT; } // Ensure all threads are suspended while we read objects' lock words. Thread* self = Thread::Current(); CHECK_EQ(self->GetState(), kRunnable); MonitorInfo monitor_info; { ScopedThreadSuspension sts(self, kSuspended); ScopedSuspendAll ssa(__FUNCTION__); monitor_info = MonitorInfo(o); } if (monitor_info.owner_ != nullptr) { expandBufAddObjectId(reply, gRegistry->Add(monitor_info.owner_->GetPeer())); } else { expandBufAddObjectId(reply, gRegistry->Add(nullptr)); } expandBufAdd4BE(reply, monitor_info.entry_count_); expandBufAdd4BE(reply, monitor_info.waiters_.size()); for (size_t i = 0; i < monitor_info.waiters_.size(); ++i) { expandBufAddObjectId(reply, gRegistry->Add(monitor_info.waiters_[i]->GetPeer())); } return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetOwnedMonitors(JDWP::ObjectId thread_id, std::vector<JDWP::ObjectId>* monitors, std::vector<uint32_t>* stack_depths) { struct OwnedMonitorVisitor : public StackVisitor { OwnedMonitorVisitor(Thread* thread, Context* context, std::vector<JDWP::ObjectId>* monitor_vector, std::vector<uint32_t>* stack_depth_vector) SHARED_REQUIRES(Locks::mutator_lock_) : StackVisitor(thread, context, StackVisitor::StackWalkKind::kIncludeInlinedFrames), current_stack_depth(0), monitors(monitor_vector), stack_depths(stack_depth_vector) {} // TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses // annotalysis. bool VisitFrame() NO_THREAD_SAFETY_ANALYSIS { if (!GetMethod()->IsRuntimeMethod()) { Monitor::VisitLocks(this, AppendOwnedMonitors, this); ++current_stack_depth; } return true; } static void AppendOwnedMonitors(mirror::Object* owned_monitor, void* arg) SHARED_REQUIRES(Locks::mutator_lock_) { OwnedMonitorVisitor* visitor = reinterpret_cast<OwnedMonitorVisitor*>(arg); visitor->monitors->push_back(gRegistry->Add(owned_monitor)); visitor->stack_depths->push_back(visitor->current_stack_depth); } size_t current_stack_depth; std::vector<JDWP::ObjectId>* const monitors; std::vector<uint32_t>* const stack_depths; }; ScopedObjectAccessUnchecked soa(Thread::Current()); JDWP::JdwpError error; Thread* thread = DecodeThread(soa, thread_id, &error); if (thread == nullptr) { return error; } if (!IsSuspendedForDebugger(soa, thread)) { return JDWP::ERR_THREAD_NOT_SUSPENDED; } std::unique_ptr<Context> context(Context::Create()); OwnedMonitorVisitor visitor(thread, context.get(), monitors, stack_depths); visitor.WalkStack(); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetContendedMonitor(JDWP::ObjectId thread_id, JDWP::ObjectId* contended_monitor) { ScopedObjectAccessUnchecked soa(Thread::Current()); *contended_monitor = 0; JDWP::JdwpError error; Thread* thread = DecodeThread(soa, thread_id, &error); if (thread == nullptr) { return error; } if (!IsSuspendedForDebugger(soa, thread)) { return JDWP::ERR_THREAD_NOT_SUSPENDED; } mirror::Object* contended_monitor_obj = Monitor::GetContendedMonitor(thread); // Add() requires the thread_list_lock_ not held to avoid the lock // level violation. *contended_monitor = gRegistry->Add(contended_monitor_obj); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetInstanceCounts(const std::vector<JDWP::RefTypeId>& class_ids, std::vector<uint64_t>* counts) { gc::Heap* heap = Runtime::Current()->GetHeap(); heap->CollectGarbage(false); std::vector<mirror::Class*> classes; counts->clear(); for (size_t i = 0; i < class_ids.size(); ++i) { JDWP::JdwpError error; mirror::Class* c = DecodeClass(class_ids[i], &error); if (c == nullptr) { return error; } classes.push_back(c); counts->push_back(0); } heap->CountInstances(classes, false, &(*counts)[0]); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetInstances(JDWP::RefTypeId class_id, int32_t max_count, std::vector<JDWP::ObjectId>* instances) { gc::Heap* heap = Runtime::Current()->GetHeap(); // We only want reachable instances, so do a GC. heap->CollectGarbage(false); JDWP::JdwpError error; mirror::Class* c = DecodeClass(class_id, &error); if (c == nullptr) { return error; } std::vector<mirror::Object*> raw_instances; Runtime::Current()->GetHeap()->GetInstances(c, max_count, raw_instances); for (size_t i = 0; i < raw_instances.size(); ++i) { instances->push_back(gRegistry->Add(raw_instances[i])); } return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetReferringObjects(JDWP::ObjectId object_id, int32_t max_count, std::vector<JDWP::ObjectId>* referring_objects) { gc::Heap* heap = Runtime::Current()->GetHeap(); heap->CollectGarbage(false); JDWP::JdwpError error; mirror::Object* o = gRegistry->Get<mirror::Object*>(object_id, &error); if (o == nullptr) { return JDWP::ERR_INVALID_OBJECT; } std::vector<mirror::Object*> raw_instances; heap->GetReferringObjects(o, max_count, raw_instances); for (size_t i = 0; i < raw_instances.size(); ++i) { referring_objects->push_back(gRegistry->Add(raw_instances[i])); } return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::DisableCollection(JDWP::ObjectId object_id) { JDWP::JdwpError error; mirror::Object* o = gRegistry->Get<mirror::Object*>(object_id, &error); if (o == nullptr) { return JDWP::ERR_INVALID_OBJECT; } gRegistry->DisableCollection(object_id); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::EnableCollection(JDWP::ObjectId object_id) { JDWP::JdwpError error; mirror::Object* o = gRegistry->Get<mirror::Object*>(object_id, &error); // Unlike DisableCollection, JDWP specs do not state an invalid object causes an error. The RI // also ignores these cases and never return an error. However it's not obvious why this command // should behave differently from DisableCollection and IsCollected commands. So let's be more // strict and return an error if this happens. if (o == nullptr) { return JDWP::ERR_INVALID_OBJECT; } gRegistry->EnableCollection(object_id); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::IsCollected(JDWP::ObjectId object_id, bool* is_collected) { *is_collected = true; if (object_id == 0) { // Null object id is invalid. return JDWP::ERR_INVALID_OBJECT; } // JDWP specs state an INVALID_OBJECT error is returned if the object ID is not valid. However // the RI seems to ignore this and assume object has been collected. JDWP::JdwpError error; mirror::Object* o = gRegistry->Get<mirror::Object*>(object_id, &error); if (o != nullptr) { *is_collected = gRegistry->IsCollected(object_id); } return JDWP::ERR_NONE; } void Dbg::DisposeObject(JDWP::ObjectId object_id, uint32_t reference_count) { gRegistry->DisposeObject(object_id, reference_count); } JDWP::JdwpTypeTag Dbg::GetTypeTag(mirror::Class* klass) { DCHECK(klass != nullptr); if (klass->IsArrayClass()) { return JDWP::TT_ARRAY; } else if (klass->IsInterface()) { return JDWP::TT_INTERFACE; } else { return JDWP::TT_CLASS; } } JDWP::JdwpError Dbg::GetReflectedType(JDWP::RefTypeId class_id, JDWP::ExpandBuf* pReply) { JDWP::JdwpError error; mirror::Class* c = DecodeClass(class_id, &error); if (c == nullptr) { return error; } JDWP::JdwpTypeTag type_tag = GetTypeTag(c); expandBufAdd1(pReply, type_tag); expandBufAddRefTypeId(pReply, class_id); return JDWP::ERR_NONE; } // Get the complete list of reference classes (i.e. all classes except // the primitive types). // Returns a newly-allocated buffer full of RefTypeId values. class ClassListCreator : public ClassVisitor { public: explicit ClassListCreator(std::vector<JDWP::RefTypeId>* classes) : classes_(classes) {} bool operator()(mirror::Class* c) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { if (!c->IsPrimitive()) { classes_->push_back(Dbg::GetObjectRegistry()->AddRefType(c)); } return true; } private: std::vector<JDWP::RefTypeId>* const classes_; }; void Dbg::GetClassList(std::vector<JDWP::RefTypeId>* classes) { ClassListCreator clc(classes); Runtime::Current()->GetClassLinker()->VisitClassesWithoutClassesLock(&clc); } JDWP::JdwpError Dbg::GetClassInfo(JDWP::RefTypeId class_id, JDWP::JdwpTypeTag* pTypeTag, uint32_t* pStatus, std::string* pDescriptor) { JDWP::JdwpError error; mirror::Class* c = DecodeClass(class_id, &error); if (c == nullptr) { return error; } if (c->IsArrayClass()) { *pStatus = JDWP::CS_VERIFIED | JDWP::CS_PREPARED; *pTypeTag = JDWP::TT_ARRAY; } else { if (c->IsErroneous()) { *pStatus = JDWP::CS_ERROR; } else { *pStatus = JDWP::CS_VERIFIED | JDWP::CS_PREPARED | JDWP::CS_INITIALIZED; } *pTypeTag = c->IsInterface() ? JDWP::TT_INTERFACE : JDWP::TT_CLASS; } if (pDescriptor != nullptr) { std::string temp; *pDescriptor = c->GetDescriptor(&temp); } return JDWP::ERR_NONE; } void Dbg::FindLoadedClassBySignature(const char* descriptor, std::vector<JDWP::RefTypeId>* ids) { std::vector<mirror::Class*> classes; Runtime::Current()->GetClassLinker()->LookupClasses(descriptor, classes); ids->clear(); for (size_t i = 0; i < classes.size(); ++i) { ids->push_back(gRegistry->Add(classes[i])); } } JDWP::JdwpError Dbg::GetReferenceType(JDWP::ObjectId object_id, JDWP::ExpandBuf* pReply) { JDWP::JdwpError error; mirror::Object* o = gRegistry->Get<mirror::Object*>(object_id, &error); if (o == nullptr) { return JDWP::ERR_INVALID_OBJECT; } JDWP::JdwpTypeTag type_tag = GetTypeTag(o->GetClass()); JDWP::RefTypeId type_id = gRegistry->AddRefType(o->GetClass()); expandBufAdd1(pReply, type_tag); expandBufAddRefTypeId(pReply, type_id); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetSignature(JDWP::RefTypeId class_id, std::string* signature) { JDWP::JdwpError error; mirror::Class* c = DecodeClass(class_id, &error); if (c == nullptr) { return error; } std::string temp; *signature = c->GetDescriptor(&temp); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetSourceFile(JDWP::RefTypeId class_id, std::string* result) { JDWP::JdwpError error; mirror::Class* c = DecodeClass(class_id, &error); if (c == nullptr) { return error; } const char* source_file = c->GetSourceFile(); if (source_file == nullptr) { return JDWP::ERR_ABSENT_INFORMATION; } *result = source_file; return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetObjectTag(JDWP::ObjectId object_id, uint8_t* tag) { ScopedObjectAccessUnchecked soa(Thread::Current()); JDWP::JdwpError error; mirror::Object* o = gRegistry->Get<mirror::Object*>(object_id, &error); if (error != JDWP::ERR_NONE) { *tag = JDWP::JT_VOID; return error; } *tag = TagFromObject(soa, o); return JDWP::ERR_NONE; } size_t Dbg::GetTagWidth(JDWP::JdwpTag tag) { switch (tag) { case JDWP::JT_VOID: return 0; case JDWP::JT_BYTE: case JDWP::JT_BOOLEAN: return 1; case JDWP::JT_CHAR: case JDWP::JT_SHORT: return 2; case JDWP::JT_FLOAT: case JDWP::JT_INT: return 4; case JDWP::JT_ARRAY: case JDWP::JT_OBJECT: case JDWP::JT_STRING: case JDWP::JT_THREAD: case JDWP::JT_THREAD_GROUP: case JDWP::JT_CLASS_LOADER: case JDWP::JT_CLASS_OBJECT: return sizeof(JDWP::ObjectId); case JDWP::JT_DOUBLE: case JDWP::JT_LONG: return 8; default: LOG(FATAL) << "Unknown tag " << tag; return -1; } } JDWP::JdwpError Dbg::GetArrayLength(JDWP::ObjectId array_id, int32_t* length) { JDWP::JdwpError error; mirror::Array* a = DecodeNonNullArray(array_id, &error); if (a == nullptr) { return error; } *length = a->GetLength(); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::OutputArray(JDWP::ObjectId array_id, int offset, int count, JDWP::ExpandBuf* pReply) { JDWP::JdwpError error; mirror::Array* a = DecodeNonNullArray(array_id, &error); if (a == nullptr) { return error; } if (offset < 0 || count < 0 || offset > a->GetLength() || a->GetLength() - offset < count) { LOG(WARNING) << __FUNCTION__ << " access out of bounds: offset=" << offset << "; count=" << count; return JDWP::ERR_INVALID_LENGTH; } JDWP::JdwpTag element_tag = BasicTagFromClass(a->GetClass()->GetComponentType()); expandBufAdd1(pReply, element_tag); expandBufAdd4BE(pReply, count); if (IsPrimitiveTag(element_tag)) { size_t width = GetTagWidth(element_tag); uint8_t* dst = expandBufAddSpace(pReply, count * width); if (width == 8) { const uint64_t* src8 = reinterpret_cast<uint64_t*>(a->GetRawData(sizeof(uint64_t), 0)); for (int i = 0; i < count; ++i) JDWP::Write8BE(&dst, src8[offset + i]); } else if (width == 4) { const uint32_t* src4 = reinterpret_cast<uint32_t*>(a->GetRawData(sizeof(uint32_t), 0)); for (int i = 0; i < count; ++i) JDWP::Write4BE(&dst, src4[offset + i]); } else if (width == 2) { const uint16_t* src2 = reinterpret_cast<uint16_t*>(a->GetRawData(sizeof(uint16_t), 0)); for (int i = 0; i < count; ++i) JDWP::Write2BE(&dst, src2[offset + i]); } else { const uint8_t* src = reinterpret_cast<uint8_t*>(a->GetRawData(sizeof(uint8_t), 0)); memcpy(dst, &src[offset * width], count * width); } } else { ScopedObjectAccessUnchecked soa(Thread::Current()); mirror::ObjectArray<mirror::Object>* oa = a->AsObjectArray<mirror::Object>(); for (int i = 0; i < count; ++i) { mirror::Object* element = oa->Get(offset + i); JDWP::JdwpTag specific_tag = (element != nullptr) ? TagFromObject(soa, element) : element_tag; expandBufAdd1(pReply, specific_tag); expandBufAddObjectId(pReply, gRegistry->Add(element)); } } return JDWP::ERR_NONE; } template <typename T> static void CopyArrayData(mirror::Array* a, JDWP::Request* src, int offset, int count) NO_THREAD_SAFETY_ANALYSIS { // TODO: fix when annotalysis correctly handles non-member functions. DCHECK(a->GetClass()->IsPrimitiveArray()); T* dst = reinterpret_cast<T*>(a->GetRawData(sizeof(T), offset)); for (int i = 0; i < count; ++i) { *dst++ = src->ReadValue(sizeof(T)); } } JDWP::JdwpError Dbg::SetArrayElements(JDWP::ObjectId array_id, int offset, int count, JDWP::Request* request) { JDWP::JdwpError error; mirror::Array* dst = DecodeNonNullArray(array_id, &error); if (dst == nullptr) { return error; } if (offset < 0 || count < 0 || offset > dst->GetLength() || dst->GetLength() - offset < count) { LOG(WARNING) << __FUNCTION__ << " access out of bounds: offset=" << offset << "; count=" << count; return JDWP::ERR_INVALID_LENGTH; } JDWP::JdwpTag element_tag = BasicTagFromClass(dst->GetClass()->GetComponentType()); if (IsPrimitiveTag(element_tag)) { size_t width = GetTagWidth(element_tag); if (width == 8) { CopyArrayData<uint64_t>(dst, request, offset, count); } else if (width == 4) { CopyArrayData<uint32_t>(dst, request, offset, count); } else if (width == 2) { CopyArrayData<uint16_t>(dst, request, offset, count); } else { CopyArrayData<uint8_t>(dst, request, offset, count); } } else { mirror::ObjectArray<mirror::Object>* oa = dst->AsObjectArray<mirror::Object>(); for (int i = 0; i < count; ++i) { JDWP::ObjectId id = request->ReadObjectId(); mirror::Object* o = gRegistry->Get<mirror::Object*>(id, &error); if (error != JDWP::ERR_NONE) { return error; } // Check if the object's type is compatible with the array's type. if (o != nullptr && !o->InstanceOf(oa->GetClass()->GetComponentType())) { return JDWP::ERR_TYPE_MISMATCH; } oa->Set<false>(offset + i, o); } } return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::CreateString(const std::string& str, JDWP::ObjectId* new_string_id) { Thread* self = Thread::Current(); mirror::String* new_string = mirror::String::AllocFromModifiedUtf8(self, str.c_str()); if (new_string == nullptr) { DCHECK(self->IsExceptionPending()); self->ClearException(); LOG(ERROR) << "Could not allocate string"; *new_string_id = 0; return JDWP::ERR_OUT_OF_MEMORY; } *new_string_id = gRegistry->Add(new_string); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::CreateObject(JDWP::RefTypeId class_id, JDWP::ObjectId* new_object_id) { JDWP::JdwpError error; mirror::Class* c = DecodeClass(class_id, &error); if (c == nullptr) { *new_object_id = 0; return error; } Thread* self = Thread::Current(); mirror::Object* new_object; if (c->IsStringClass()) { // Special case for java.lang.String. gc::AllocatorType allocator_type = Runtime::Current()->GetHeap()->GetCurrentAllocator(); mirror::SetStringCountVisitor visitor(0); new_object = mirror::String::Alloc<true>(self, 0, allocator_type, visitor); } else { new_object = c->AllocObject(self); } if (new_object == nullptr) { DCHECK(self->IsExceptionPending()); self->ClearException(); LOG(ERROR) << "Could not allocate object of type " << PrettyDescriptor(c); *new_object_id = 0; return JDWP::ERR_OUT_OF_MEMORY; } *new_object_id = gRegistry->Add(new_object); return JDWP::ERR_NONE; } /* * Used by Eclipse's "Display" view to evaluate "new byte[5]" to get "(byte[]) [0, 0, 0, 0, 0]". */ JDWP::JdwpError Dbg::CreateArrayObject(JDWP::RefTypeId array_class_id, uint32_t length, JDWP::ObjectId* new_array_id) { JDWP::JdwpError error; mirror::Class* c = DecodeClass(array_class_id, &error); if (c == nullptr) { *new_array_id = 0; return error; } Thread* self = Thread::Current(); gc::Heap* heap = Runtime::Current()->GetHeap(); mirror::Array* new_array = mirror::Array::Alloc<true>(self, c, length, c->GetComponentSizeShift(), heap->GetCurrentAllocator()); if (new_array == nullptr) { DCHECK(self->IsExceptionPending()); self->ClearException(); LOG(ERROR) << "Could not allocate array of type " << PrettyDescriptor(c); *new_array_id = 0; return JDWP::ERR_OUT_OF_MEMORY; } *new_array_id = gRegistry->Add(new_array); return JDWP::ERR_NONE; } JDWP::FieldId Dbg::ToFieldId(const ArtField* f) { return static_cast<JDWP::FieldId>(reinterpret_cast<uintptr_t>(f)); } static JDWP::MethodId ToMethodId(ArtMethod* m) SHARED_REQUIRES(Locks::mutator_lock_) { return static_cast<JDWP::MethodId>(reinterpret_cast<uintptr_t>(GetCanonicalMethod(m))); } static ArtField* FromFieldId(JDWP::FieldId fid) SHARED_REQUIRES(Locks::mutator_lock_) { return reinterpret_cast<ArtField*>(static_cast<uintptr_t>(fid)); } static ArtMethod* FromMethodId(JDWP::MethodId mid) SHARED_REQUIRES(Locks::mutator_lock_) { return reinterpret_cast<ArtMethod*>(static_cast<uintptr_t>(mid)); } bool Dbg::MatchThread(JDWP::ObjectId expected_thread_id, Thread* event_thread) { CHECK(event_thread != nullptr); JDWP::JdwpError error; mirror::Object* expected_thread_peer = gRegistry->Get<mirror::Object*>( expected_thread_id, &error); return expected_thread_peer == event_thread->GetPeer(); } bool Dbg::MatchLocation(const JDWP::JdwpLocation& expected_location, const JDWP::EventLocation& event_location) { if (expected_location.dex_pc != event_location.dex_pc) { return false; } ArtMethod* m = FromMethodId(expected_location.method_id); return m == event_location.method; } bool Dbg::MatchType(mirror::Class* event_class, JDWP::RefTypeId class_id) { if (event_class == nullptr) { return false; } JDWP::JdwpError error; mirror::Class* expected_class = DecodeClass(class_id, &error); CHECK(expected_class != nullptr); return expected_class->IsAssignableFrom(event_class); } bool Dbg::MatchField(JDWP::RefTypeId expected_type_id, JDWP::FieldId expected_field_id, ArtField* event_field) { ArtField* expected_field = FromFieldId(expected_field_id); if (expected_field != event_field) { return false; } return Dbg::MatchType(event_field->GetDeclaringClass(), expected_type_id); } bool Dbg::MatchInstance(JDWP::ObjectId expected_instance_id, mirror::Object* event_instance) { JDWP::JdwpError error; mirror::Object* modifier_instance = gRegistry->Get<mirror::Object*>(expected_instance_id, &error); return modifier_instance == event_instance; } void Dbg::SetJdwpLocation(JDWP::JdwpLocation* location, ArtMethod* m, uint32_t dex_pc) { if (m == nullptr) { memset(location, 0, sizeof(*location)); } else { mirror::Class* c = m->GetDeclaringClass(); location->type_tag = GetTypeTag(c); location->class_id = gRegistry->AddRefType(c); location->method_id = ToMethodId(m); location->dex_pc = (m->IsNative() || m->IsProxyMethod()) ? static_cast<uint64_t>(-1) : dex_pc; } } std::string Dbg::GetMethodName(JDWP::MethodId method_id) { ArtMethod* m = FromMethodId(method_id); if (m == nullptr) { return "null"; } return m->GetInterfaceMethodIfProxy(sizeof(void*))->GetName(); } std::string Dbg::GetFieldName(JDWP::FieldId field_id) { ArtField* f = FromFieldId(field_id); if (f == nullptr) { return "null"; } return f->GetName(); } /* * Augment the access flags for synthetic methods and fields by setting * the (as described by the spec) "0xf0000000 bit". Also, strip out any * flags not specified by the Java programming language. */ static uint32_t MangleAccessFlags(uint32_t accessFlags) { accessFlags &= kAccJavaFlagsMask; if ((accessFlags & kAccSynthetic) != 0) { accessFlags |= 0xf0000000; } return accessFlags; } /* * Circularly shifts registers so that arguments come first. Debuggers * expect slots to begin with arguments, but dex code places them at * the end. */ static uint16_t MangleSlot(uint16_t slot, ArtMethod* m) SHARED_REQUIRES(Locks::mutator_lock_) { const DexFile::CodeItem* code_item = m->GetCodeItem(); if (code_item == nullptr) { // We should not get here for a method without code (native, proxy or abstract). Log it and // return the slot as is since all registers are arguments. LOG(WARNING) << "Trying to mangle slot for method without code " << PrettyMethod(m); return slot; } uint16_t ins_size = code_item->ins_size_; uint16_t locals_size = code_item->registers_size_ - ins_size; if (slot >= locals_size) { return slot - locals_size; } else { return slot + ins_size; } } /* * Circularly shifts registers so that arguments come last. Reverts * slots to dex style argument placement. */ static uint16_t DemangleSlot(uint16_t slot, ArtMethod* m, JDWP::JdwpError* error) SHARED_REQUIRES(Locks::mutator_lock_) { const DexFile::CodeItem* code_item = m->GetCodeItem(); if (code_item == nullptr) { // We should not get here for a method without code (native, proxy or abstract). Log it and // return the slot as is since all registers are arguments. LOG(WARNING) << "Trying to demangle slot for method without code " << PrettyMethod(m); uint16_t vreg_count = ArtMethod::NumArgRegisters(m->GetShorty()); if (slot < vreg_count) { *error = JDWP::ERR_NONE; return slot; } } else { if (slot < code_item->registers_size_) { uint16_t ins_size = code_item->ins_size_; uint16_t locals_size = code_item->registers_size_ - ins_size; *error = JDWP::ERR_NONE; return (slot < ins_size) ? slot + locals_size : slot - ins_size; } } // Slot is invalid in the method. LOG(ERROR) << "Invalid local slot " << slot << " for method " << PrettyMethod(m); *error = JDWP::ERR_INVALID_SLOT; return DexFile::kDexNoIndex16; } JDWP::JdwpError Dbg::OutputDeclaredFields(JDWP::RefTypeId class_id, bool with_generic, JDWP::ExpandBuf* pReply) { JDWP::JdwpError error; mirror::Class* c = DecodeClass(class_id, &error); if (c == nullptr) { return error; } size_t instance_field_count = c->NumInstanceFields(); size_t static_field_count = c->NumStaticFields(); expandBufAdd4BE(pReply, instance_field_count + static_field_count); for (size_t i = 0; i < instance_field_count + static_field_count; ++i) { ArtField* f = (i < instance_field_count) ? c->GetInstanceField(i) : c->GetStaticField(i - instance_field_count); expandBufAddFieldId(pReply, ToFieldId(f)); expandBufAddUtf8String(pReply, f->GetName()); expandBufAddUtf8String(pReply, f->GetTypeDescriptor()); if (with_generic) { static const char genericSignature[1] = ""; expandBufAddUtf8String(pReply, genericSignature); } expandBufAdd4BE(pReply, MangleAccessFlags(f->GetAccessFlags())); } return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::OutputDeclaredMethods(JDWP::RefTypeId class_id, bool with_generic, JDWP::ExpandBuf* pReply) { JDWP::JdwpError error; mirror::Class* c = DecodeClass(class_id, &error); if (c == nullptr) { return error; } expandBufAdd4BE(pReply, c->NumMethods()); auto* cl = Runtime::Current()->GetClassLinker(); auto ptr_size = cl->GetImagePointerSize(); for (ArtMethod& m : c->GetMethods(ptr_size)) { expandBufAddMethodId(pReply, ToMethodId(&m)); expandBufAddUtf8String(pReply, m.GetInterfaceMethodIfProxy(sizeof(void*))->GetName()); expandBufAddUtf8String(pReply, m.GetInterfaceMethodIfProxy(sizeof(void*))->GetSignature().ToString()); if (with_generic) { const char* generic_signature = ""; expandBufAddUtf8String(pReply, generic_signature); } expandBufAdd4BE(pReply, MangleAccessFlags(m.GetAccessFlags())); } return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::OutputDeclaredInterfaces(JDWP::RefTypeId class_id, JDWP::ExpandBuf* pReply) { JDWP::JdwpError error; Thread* self = Thread::Current(); StackHandleScope<1> hs(self); Handle<mirror::Class> c(hs.NewHandle(DecodeClass(class_id, &error))); if (c.Get() == nullptr) { return error; } size_t interface_count = c->NumDirectInterfaces(); expandBufAdd4BE(pReply, interface_count); for (size_t i = 0; i < interface_count; ++i) { expandBufAddRefTypeId(pReply, gRegistry->AddRefType(mirror::Class::GetDirectInterface(self, c, i))); } return JDWP::ERR_NONE; } void Dbg::OutputLineTable(JDWP::RefTypeId, JDWP::MethodId method_id, JDWP::ExpandBuf* pReply) { struct DebugCallbackContext { int numItems; JDWP::ExpandBuf* pReply; static bool Callback(void* context, const DexFile::PositionInfo& entry) { DebugCallbackContext* pContext = reinterpret_cast<DebugCallbackContext*>(context); expandBufAdd8BE(pContext->pReply, entry.address_); expandBufAdd4BE(pContext->pReply, entry.line_); pContext->numItems++; return false; } }; ArtMethod* m = FromMethodId(method_id); const DexFile::CodeItem* code_item = m->GetCodeItem(); uint64_t start, end; if (code_item == nullptr) { DCHECK(m->IsNative() || m->IsProxyMethod()); start = -1; end = -1; } else { start = 0; // Return the index of the last instruction end = code_item->insns_size_in_code_units_ - 1; } expandBufAdd8BE(pReply, start); expandBufAdd8BE(pReply, end); // Add numLines later size_t numLinesOffset = expandBufGetLength(pReply); expandBufAdd4BE(pReply, 0); DebugCallbackContext context; context.numItems = 0; context.pReply = pReply; if (code_item != nullptr) { m->GetDexFile()->DecodeDebugPositionInfo(code_item, DebugCallbackContext::Callback, &context); } JDWP::Set4BE(expandBufGetBuffer(pReply) + numLinesOffset, context.numItems); } void Dbg::OutputVariableTable(JDWP::RefTypeId, JDWP::MethodId method_id, bool with_generic, JDWP::ExpandBuf* pReply) { struct DebugCallbackContext { ArtMethod* method; JDWP::ExpandBuf* pReply; size_t variable_count; bool with_generic; static void Callback(void* context, const DexFile::LocalInfo& entry) SHARED_REQUIRES(Locks::mutator_lock_) { DebugCallbackContext* pContext = reinterpret_cast<DebugCallbackContext*>(context); uint16_t slot = entry.reg_; VLOG(jdwp) << StringPrintf(" %2zd: %d(%d) '%s' '%s' '%s' actual slot=%d mangled slot=%d", pContext->variable_count, entry.start_address_, entry.end_address_ - entry.start_address_, entry.name_, entry.descriptor_, entry.signature_, slot, MangleSlot(slot, pContext->method)); slot = MangleSlot(slot, pContext->method); expandBufAdd8BE(pContext->pReply, entry.start_address_); expandBufAddUtf8String(pContext->pReply, entry.name_); expandBufAddUtf8String(pContext->pReply, entry.descriptor_); if (pContext->with_generic) { expandBufAddUtf8String(pContext->pReply, entry.signature_); } expandBufAdd4BE(pContext->pReply, entry.end_address_- entry.start_address_); expandBufAdd4BE(pContext->pReply, slot); ++pContext->variable_count; } }; ArtMethod* m = FromMethodId(method_id); // arg_count considers doubles and longs to take 2 units. // variable_count considers everything to take 1 unit. std::string shorty(m->GetShorty()); expandBufAdd4BE(pReply, ArtMethod::NumArgRegisters(shorty)); // We don't know the total number of variables yet, so leave a blank and update it later. size_t variable_count_offset = expandBufGetLength(pReply); expandBufAdd4BE(pReply, 0); DebugCallbackContext context; context.method = m; context.pReply = pReply; context.variable_count = 0; context.with_generic = with_generic; const DexFile::CodeItem* code_item = m->GetCodeItem(); if (code_item != nullptr) { m->GetDexFile()->DecodeDebugLocalInfo( code_item, m->IsStatic(), m->GetDexMethodIndex(), DebugCallbackContext::Callback, &context); } JDWP::Set4BE(expandBufGetBuffer(pReply) + variable_count_offset, context.variable_count); } void Dbg::OutputMethodReturnValue(JDWP::MethodId method_id, const JValue* return_value, JDWP::ExpandBuf* pReply) { ArtMethod* m = FromMethodId(method_id); JDWP::JdwpTag tag = BasicTagFromDescriptor(m->GetShorty()); OutputJValue(tag, return_value, pReply); } void Dbg::OutputFieldValue(JDWP::FieldId field_id, const JValue* field_value, JDWP::ExpandBuf* pReply) { ArtField* f = FromFieldId(field_id); JDWP::JdwpTag tag = BasicTagFromDescriptor(f->GetTypeDescriptor()); OutputJValue(tag, field_value, pReply); } JDWP::JdwpError Dbg::GetBytecodes(JDWP::RefTypeId, JDWP::MethodId method_id, std::vector<uint8_t>* bytecodes) { ArtMethod* m = FromMethodId(method_id); if (m == nullptr) { return JDWP::ERR_INVALID_METHODID; } const DexFile::CodeItem* code_item = m->GetCodeItem(); size_t byte_count = code_item->insns_size_in_code_units_ * 2; const uint8_t* begin = reinterpret_cast<const uint8_t*>(code_item->insns_); const uint8_t* end = begin + byte_count; for (const uint8_t* p = begin; p != end; ++p) { bytecodes->push_back(*p); } return JDWP::ERR_NONE; } JDWP::JdwpTag Dbg::GetFieldBasicTag(JDWP::FieldId field_id) { return BasicTagFromDescriptor(FromFieldId(field_id)->GetTypeDescriptor()); } JDWP::JdwpTag Dbg::GetStaticFieldBasicTag(JDWP::FieldId field_id) { return BasicTagFromDescriptor(FromFieldId(field_id)->GetTypeDescriptor()); } static JValue GetArtFieldValue(ArtField* f, mirror::Object* o) SHARED_REQUIRES(Locks::mutator_lock_) { Primitive::Type fieldType = f->GetTypeAsPrimitiveType(); JValue field_value; switch (fieldType) { case Primitive::kPrimBoolean: field_value.SetZ(f->GetBoolean(o)); return field_value; case Primitive::kPrimByte: field_value.SetB(f->GetByte(o)); return field_value; case Primitive::kPrimChar: field_value.SetC(f->GetChar(o)); return field_value; case Primitive::kPrimShort: field_value.SetS(f->GetShort(o)); return field_value; case Primitive::kPrimInt: case Primitive::kPrimFloat: // Int and Float must be treated as 32-bit values in JDWP. field_value.SetI(f->GetInt(o)); return field_value; case Primitive::kPrimLong: case Primitive::kPrimDouble: // Long and Double must be treated as 64-bit values in JDWP. field_value.SetJ(f->GetLong(o)); return field_value; case Primitive::kPrimNot: field_value.SetL(f->GetObject(o)); return field_value; case Primitive::kPrimVoid: LOG(FATAL) << "Attempt to read from field of type 'void'"; UNREACHABLE(); } LOG(FATAL) << "Attempt to read from field of unknown type"; UNREACHABLE(); } static JDWP::JdwpError GetFieldValueImpl(JDWP::RefTypeId ref_type_id, JDWP::ObjectId object_id, JDWP::FieldId field_id, JDWP::ExpandBuf* pReply, bool is_static) SHARED_REQUIRES(Locks::mutator_lock_) { JDWP::JdwpError error; mirror::Class* c = DecodeClass(ref_type_id, &error); if (ref_type_id != 0 && c == nullptr) { return error; } mirror::Object* o = Dbg::GetObjectRegistry()->Get<mirror::Object*>(object_id, &error); if ((!is_static && o == nullptr) || error != JDWP::ERR_NONE) { return JDWP::ERR_INVALID_OBJECT; } ArtField* f = FromFieldId(field_id); mirror::Class* receiver_class = c; if (receiver_class == nullptr && o != nullptr) { receiver_class = o->GetClass(); } // TODO: should we give up now if receiver_class is null? if (receiver_class != nullptr && !f->GetDeclaringClass()->IsAssignableFrom(receiver_class)) { LOG(INFO) << "ERR_INVALID_FIELDID: " << PrettyField(f) << " " << PrettyClass(receiver_class); return JDWP::ERR_INVALID_FIELDID; } // The RI only enforces the static/non-static mismatch in one direction. // TODO: should we change the tests and check both? if (is_static) { if (!f->IsStatic()) { return JDWP::ERR_INVALID_FIELDID; } } else { if (f->IsStatic()) { LOG(WARNING) << "Ignoring non-nullptr receiver for ObjectReference.GetValues" << " on static field " << PrettyField(f); } } if (f->IsStatic()) { o = f->GetDeclaringClass(); } JValue field_value(GetArtFieldValue(f, o)); JDWP::JdwpTag tag = BasicTagFromDescriptor(f->GetTypeDescriptor()); Dbg::OutputJValue(tag, &field_value, pReply); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetFieldValue(JDWP::ObjectId object_id, JDWP::FieldId field_id, JDWP::ExpandBuf* pReply) { return GetFieldValueImpl(0, object_id, field_id, pReply, false); } JDWP::JdwpError Dbg::GetStaticFieldValue(JDWP::RefTypeId ref_type_id, JDWP::FieldId field_id, JDWP::ExpandBuf* pReply) { return GetFieldValueImpl(ref_type_id, 0, field_id, pReply, true); } static JDWP::JdwpError SetArtFieldValue(ArtField* f, mirror::Object* o, uint64_t value, int width) SHARED_REQUIRES(Locks::mutator_lock_) { Primitive::Type fieldType = f->GetTypeAsPrimitiveType(); // Debugging only happens at runtime so we know we are not running in a transaction. static constexpr bool kNoTransactionMode = false; switch (fieldType) { case Primitive::kPrimBoolean: CHECK_EQ(width, 1); f->SetBoolean<kNoTransactionMode>(o, static_cast<uint8_t>(value)); return JDWP::ERR_NONE; case Primitive::kPrimByte: CHECK_EQ(width, 1); f->SetByte<kNoTransactionMode>(o, static_cast<uint8_t>(value)); return JDWP::ERR_NONE; case Primitive::kPrimChar: CHECK_EQ(width, 2); f->SetChar<kNoTransactionMode>(o, static_cast<uint16_t>(value)); return JDWP::ERR_NONE; case Primitive::kPrimShort: CHECK_EQ(width, 2); f->SetShort<kNoTransactionMode>(o, static_cast<int16_t>(value)); return JDWP::ERR_NONE; case Primitive::kPrimInt: case Primitive::kPrimFloat: CHECK_EQ(width, 4); // Int and Float must be treated as 32-bit values in JDWP. f->SetInt<kNoTransactionMode>(o, static_cast<int32_t>(value)); return JDWP::ERR_NONE; case Primitive::kPrimLong: case Primitive::kPrimDouble: CHECK_EQ(width, 8); // Long and Double must be treated as 64-bit values in JDWP. f->SetLong<kNoTransactionMode>(o, value); return JDWP::ERR_NONE; case Primitive::kPrimNot: { JDWP::JdwpError error; mirror::Object* v = Dbg::GetObjectRegistry()->Get<mirror::Object*>(value, &error); if (error != JDWP::ERR_NONE) { return JDWP::ERR_INVALID_OBJECT; } if (v != nullptr) { mirror::Class* field_type; { StackHandleScope<2> hs(Thread::Current()); HandleWrapper<mirror::Object> h_v(hs.NewHandleWrapper(&v)); HandleWrapper<mirror::Object> h_o(hs.NewHandleWrapper(&o)); field_type = f->GetType<true>(); } if (!field_type->IsAssignableFrom(v->GetClass())) { return JDWP::ERR_INVALID_OBJECT; } } f->SetObject<kNoTransactionMode>(o, v); return JDWP::ERR_NONE; } case Primitive::kPrimVoid: LOG(FATAL) << "Attempt to write to field of type 'void'"; UNREACHABLE(); } LOG(FATAL) << "Attempt to write to field of unknown type"; UNREACHABLE(); } static JDWP::JdwpError SetFieldValueImpl(JDWP::ObjectId object_id, JDWP::FieldId field_id, uint64_t value, int width, bool is_static) SHARED_REQUIRES(Locks::mutator_lock_) { JDWP::JdwpError error; mirror::Object* o = Dbg::GetObjectRegistry()->Get<mirror::Object*>(object_id, &error); if ((!is_static && o == nullptr) || error != JDWP::ERR_NONE) { return JDWP::ERR_INVALID_OBJECT; } ArtField* f = FromFieldId(field_id); // The RI only enforces the static/non-static mismatch in one direction. // TODO: should we change the tests and check both? if (is_static) { if (!f->IsStatic()) { return JDWP::ERR_INVALID_FIELDID; } } else { if (f->IsStatic()) { LOG(WARNING) << "Ignoring non-nullptr receiver for ObjectReference.SetValues" << " on static field " << PrettyField(f); } } if (f->IsStatic()) { o = f->GetDeclaringClass(); } return SetArtFieldValue(f, o, value, width); } JDWP::JdwpError Dbg::SetFieldValue(JDWP::ObjectId object_id, JDWP::FieldId field_id, uint64_t value, int width) { return SetFieldValueImpl(object_id, field_id, value, width, false); } JDWP::JdwpError Dbg::SetStaticFieldValue(JDWP::FieldId field_id, uint64_t value, int width) { return SetFieldValueImpl(0, field_id, value, width, true); } JDWP::JdwpError Dbg::StringToUtf8(JDWP::ObjectId string_id, std::string* str) { JDWP::JdwpError error; mirror::Object* obj = gRegistry->Get<mirror::Object*>(string_id, &error); if (error != JDWP::ERR_NONE) { return error; } if (obj == nullptr) { return JDWP::ERR_INVALID_OBJECT; } { ScopedObjectAccessUnchecked soa(Thread::Current()); mirror::Class* java_lang_String = soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_String); if (!java_lang_String->IsAssignableFrom(obj->GetClass())) { // This isn't a string. return JDWP::ERR_INVALID_STRING; } } *str = obj->AsString()->ToModifiedUtf8(); return JDWP::ERR_NONE; } void Dbg::OutputJValue(JDWP::JdwpTag tag, const JValue* return_value, JDWP::ExpandBuf* pReply) { if (IsPrimitiveTag(tag)) { expandBufAdd1(pReply, tag); if (tag == JDWP::JT_BOOLEAN || tag == JDWP::JT_BYTE) { expandBufAdd1(pReply, return_value->GetI()); } else if (tag == JDWP::JT_CHAR || tag == JDWP::JT_SHORT) { expandBufAdd2BE(pReply, return_value->GetI()); } else if (tag == JDWP::JT_FLOAT || tag == JDWP::JT_INT) { expandBufAdd4BE(pReply, return_value->GetI()); } else if (tag == JDWP::JT_DOUBLE || tag == JDWP::JT_LONG) { expandBufAdd8BE(pReply, return_value->GetJ()); } else { CHECK_EQ(tag, JDWP::JT_VOID); } } else { ScopedObjectAccessUnchecked soa(Thread::Current()); mirror::Object* value = return_value->GetL(); expandBufAdd1(pReply, TagFromObject(soa, value)); expandBufAddObjectId(pReply, gRegistry->Add(value)); } } JDWP::JdwpError Dbg::GetThreadName(JDWP::ObjectId thread_id, std::string* name) { ScopedObjectAccessUnchecked soa(Thread::Current()); JDWP::JdwpError error; DecodeThread(soa, thread_id, &error); if (error != JDWP::ERR_NONE && error != JDWP::ERR_THREAD_NOT_ALIVE) { return error; } // We still need to report the zombie threads' names, so we can't just call Thread::GetThreadName. mirror::Object* thread_object = gRegistry->Get<mirror::Object*>(thread_id, &error); CHECK(thread_object != nullptr) << error; ArtField* java_lang_Thread_name_field = soa.DecodeField(WellKnownClasses::java_lang_Thread_name); mirror::String* s = reinterpret_cast<mirror::String*>(java_lang_Thread_name_field->GetObject(thread_object)); if (s != nullptr) { *name = s->ToModifiedUtf8(); } return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetThreadGroup(JDWP::ObjectId thread_id, JDWP::ExpandBuf* pReply) { ScopedObjectAccessUnchecked soa(Thread::Current()); JDWP::JdwpError error; mirror::Object* thread_object = gRegistry->Get<mirror::Object*>(thread_id, &error); if (error != JDWP::ERR_NONE) { return JDWP::ERR_INVALID_OBJECT; } ScopedAssertNoThreadSuspension ants(soa.Self(), "Debugger: GetThreadGroup"); // Okay, so it's an object, but is it actually a thread? DecodeThread(soa, thread_id, &error); if (error == JDWP::ERR_THREAD_NOT_ALIVE) { // Zombie threads are in the null group. expandBufAddObjectId(pReply, JDWP::ObjectId(0)); error = JDWP::ERR_NONE; } else if (error == JDWP::ERR_NONE) { mirror::Class* c = soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_Thread); CHECK(c != nullptr); ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_group); CHECK(f != nullptr); mirror::Object* group = f->GetObject(thread_object); CHECK(group != nullptr); JDWP::ObjectId thread_group_id = gRegistry->Add(group); expandBufAddObjectId(pReply, thread_group_id); } return error; } static mirror::Object* DecodeThreadGroup(ScopedObjectAccessUnchecked& soa, JDWP::ObjectId thread_group_id, JDWP::JdwpError* error) SHARED_REQUIRES(Locks::mutator_lock_) { mirror::Object* thread_group = Dbg::GetObjectRegistry()->Get<mirror::Object*>(thread_group_id, error); if (*error != JDWP::ERR_NONE) { return nullptr; } if (thread_group == nullptr) { *error = JDWP::ERR_INVALID_OBJECT; return nullptr; } mirror::Class* c = soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_ThreadGroup); CHECK(c != nullptr); if (!c->IsAssignableFrom(thread_group->GetClass())) { // This is not a java.lang.ThreadGroup. *error = JDWP::ERR_INVALID_THREAD_GROUP; return nullptr; } *error = JDWP::ERR_NONE; return thread_group; } JDWP::JdwpError Dbg::GetThreadGroupName(JDWP::ObjectId thread_group_id, JDWP::ExpandBuf* pReply) { ScopedObjectAccessUnchecked soa(Thread::Current()); JDWP::JdwpError error; mirror::Object* thread_group = DecodeThreadGroup(soa, thread_group_id, &error); if (error != JDWP::ERR_NONE) { return error; } ScopedAssertNoThreadSuspension ants(soa.Self(), "Debugger: GetThreadGroupName"); ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name); CHECK(f != nullptr); mirror::String* s = reinterpret_cast<mirror::String*>(f->GetObject(thread_group)); std::string thread_group_name(s->ToModifiedUtf8()); expandBufAddUtf8String(pReply, thread_group_name); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetThreadGroupParent(JDWP::ObjectId thread_group_id, JDWP::ExpandBuf* pReply) { ScopedObjectAccessUnchecked soa(Thread::Current()); JDWP::JdwpError error; mirror::Object* thread_group = DecodeThreadGroup(soa, thread_group_id, &error); if (error != JDWP::ERR_NONE) { return error; } mirror::Object* parent; { ScopedAssertNoThreadSuspension ants(soa.Self(), "Debugger: GetThreadGroupParent"); ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_parent); CHECK(f != nullptr); parent = f->GetObject(thread_group); } JDWP::ObjectId parent_group_id = gRegistry->Add(parent); expandBufAddObjectId(pReply, parent_group_id); return JDWP::ERR_NONE; } static void GetChildThreadGroups(ScopedObjectAccessUnchecked& soa, mirror::Object* thread_group, std::vector<JDWP::ObjectId>* child_thread_group_ids) SHARED_REQUIRES(Locks::mutator_lock_) { CHECK(thread_group != nullptr); // Get the int "ngroups" count of this thread group... ArtField* ngroups_field = soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_ngroups); CHECK(ngroups_field != nullptr); const int32_t size = ngroups_field->GetInt(thread_group); if (size == 0) { return; } // Get the ThreadGroup[] "groups" out of this thread group... ArtField* groups_field = soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_groups); mirror::Object* groups_array = groups_field->GetObject(thread_group); CHECK(groups_array != nullptr); CHECK(groups_array->IsObjectArray()); mirror::ObjectArray<mirror::Object>* groups_array_as_array = groups_array->AsObjectArray<mirror::Object>(); // Copy the first 'size' elements out of the array into the result. ObjectRegistry* registry = Dbg::GetObjectRegistry(); for (int32_t i = 0; i < size; ++i) { child_thread_group_ids->push_back(registry->Add(groups_array_as_array->Get(i))); } } JDWP::JdwpError Dbg::GetThreadGroupChildren(JDWP::ObjectId thread_group_id, JDWP::ExpandBuf* pReply) { ScopedObjectAccessUnchecked soa(Thread::Current()); JDWP::JdwpError error; mirror::Object* thread_group = DecodeThreadGroup(soa, thread_group_id, &error); if (error != JDWP::ERR_NONE) { return error; } // Add child threads. { std::vector<JDWP::ObjectId> child_thread_ids; GetThreads(thread_group, &child_thread_ids); expandBufAdd4BE(pReply, child_thread_ids.size()); for (JDWP::ObjectId child_thread_id : child_thread_ids) { expandBufAddObjectId(pReply, child_thread_id); } } // Add child thread groups. { std::vector<JDWP::ObjectId> child_thread_groups_ids; GetChildThreadGroups(soa, thread_group, &child_thread_groups_ids); expandBufAdd4BE(pReply, child_thread_groups_ids.size()); for (JDWP::ObjectId child_thread_group_id : child_thread_groups_ids) { expandBufAddObjectId(pReply, child_thread_group_id); } } return JDWP::ERR_NONE; } JDWP::ObjectId Dbg::GetSystemThreadGroupId() { ScopedObjectAccessUnchecked soa(Thread::Current()); ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup); mirror::Object* group = f->GetObject(f->GetDeclaringClass()); return gRegistry->Add(group); } JDWP::JdwpThreadStatus Dbg::ToJdwpThreadStatus(ThreadState state) { switch (state) { case kBlocked: return JDWP::TS_MONITOR; case kNative: case kRunnable: case kSuspended: return JDWP::TS_RUNNING; case kSleeping: return JDWP::TS_SLEEPING; case kStarting: case kTerminated: return JDWP::TS_ZOMBIE; case kTimedWaiting: case kWaitingForCheckPointsToRun: case kWaitingForDebuggerSend: case kWaitingForDebuggerSuspension: case kWaitingForDebuggerToAttach: case kWaitingForDeoptimization: case kWaitingForGcToComplete: case kWaitingForGetObjectsAllocated: case kWaitingForJniOnLoad: case kWaitingForMethodTracingStart: case kWaitingForSignalCatcherOutput: case kWaitingForVisitObjects: case kWaitingInMainDebuggerLoop: case kWaitingInMainSignalCatcherLoop: case kWaitingPerformingGc: case kWaitingWeakGcRootRead: case kWaitingForGcThreadFlip: case kWaiting: return JDWP::TS_WAIT; // Don't add a 'default' here so the compiler can spot incompatible enum changes. } LOG(FATAL) << "Unknown thread state: " << state; return JDWP::TS_ZOMBIE; } JDWP::JdwpError Dbg::GetThreadStatus(JDWP::ObjectId thread_id, JDWP::JdwpThreadStatus* pThreadStatus, JDWP::JdwpSuspendStatus* pSuspendStatus) { ScopedObjectAccess soa(Thread::Current()); *pSuspendStatus = JDWP::SUSPEND_STATUS_NOT_SUSPENDED; JDWP::JdwpError error; Thread* thread = DecodeThread(soa, thread_id, &error); if (error != JDWP::ERR_NONE) { if (error == JDWP::ERR_THREAD_NOT_ALIVE) { *pThreadStatus = JDWP::TS_ZOMBIE; return JDWP::ERR_NONE; } return error; } if (IsSuspendedForDebugger(soa, thread)) { *pSuspendStatus = JDWP::SUSPEND_STATUS_SUSPENDED; } *pThreadStatus = ToJdwpThreadStatus(thread->GetState()); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetThreadDebugSuspendCount(JDWP::ObjectId thread_id, JDWP::ExpandBuf* pReply) { ScopedObjectAccess soa(Thread::Current()); JDWP::JdwpError error; Thread* thread = DecodeThread(soa, thread_id, &error); if (error != JDWP::ERR_NONE) { return error; } MutexLock mu2(soa.Self(), *Locks::thread_suspend_count_lock_); expandBufAdd4BE(pReply, thread->GetDebugSuspendCount()); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::Interrupt(JDWP::ObjectId thread_id) { ScopedObjectAccess soa(Thread::Current()); JDWP::JdwpError error; Thread* thread = DecodeThread(soa, thread_id, &error); if (error != JDWP::ERR_NONE) { return error; } thread->Interrupt(soa.Self()); return JDWP::ERR_NONE; } static bool IsInDesiredThreadGroup(ScopedObjectAccessUnchecked& soa, mirror::Object* desired_thread_group, mirror::Object* peer) SHARED_REQUIRES(Locks::mutator_lock_) { // Do we want threads from all thread groups? if (desired_thread_group == nullptr) { return true; } ArtField* thread_group_field = soa.DecodeField(WellKnownClasses::java_lang_Thread_group); DCHECK(thread_group_field != nullptr); mirror::Object* group = thread_group_field->GetObject(peer); return (group == desired_thread_group); } void Dbg::GetThreads(mirror::Object* thread_group, std::vector<JDWP::ObjectId>* thread_ids) { ScopedObjectAccessUnchecked soa(Thread::Current()); std::list<Thread*> all_threads_list; { MutexLock mu(Thread::Current(), *Locks::thread_list_lock_); all_threads_list = Runtime::Current()->GetThreadList()->GetList(); } for (Thread* t : all_threads_list) { if (t == Dbg::GetDebugThread()) { // Skip the JDWP thread. Some debuggers get bent out of shape when they can't suspend and // query all threads, so it's easier if we just don't tell them about this thread. continue; } if (t->IsStillStarting()) { // This thread is being started (and has been registered in the thread list). However, it is // not completely started yet so we must ignore it. continue; } mirror::Object* peer = t->GetPeer(); if (peer == nullptr) { // peer might be null if the thread is still starting up. We can't tell the debugger about // this thread yet. // TODO: if we identified threads to the debugger by their Thread* // rather than their peer's mirror::Object*, we could fix this. // Doing so might help us report ZOMBIE threads too. continue; } if (IsInDesiredThreadGroup(soa, thread_group, peer)) { thread_ids->push_back(gRegistry->Add(peer)); } } } static int GetStackDepth(Thread* thread) SHARED_REQUIRES(Locks::mutator_lock_) { struct CountStackDepthVisitor : public StackVisitor { explicit CountStackDepthVisitor(Thread* thread_in) : StackVisitor(thread_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames), depth(0) {} // TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses // annotalysis. bool VisitFrame() NO_THREAD_SAFETY_ANALYSIS { if (!GetMethod()->IsRuntimeMethod()) { ++depth; } return true; } size_t depth; }; CountStackDepthVisitor visitor(thread); visitor.WalkStack(); return visitor.depth; } JDWP::JdwpError Dbg::GetThreadFrameCount(JDWP::ObjectId thread_id, size_t* result) { ScopedObjectAccess soa(Thread::Current()); JDWP::JdwpError error; *result = 0; Thread* thread = DecodeThread(soa, thread_id, &error); if (error != JDWP::ERR_NONE) { return error; } if (!IsSuspendedForDebugger(soa, thread)) { return JDWP::ERR_THREAD_NOT_SUSPENDED; } *result = GetStackDepth(thread); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetThreadFrames(JDWP::ObjectId thread_id, size_t start_frame, size_t frame_count, JDWP::ExpandBuf* buf) { class GetFrameVisitor : public StackVisitor { public: GetFrameVisitor(Thread* thread, size_t start_frame_in, size_t frame_count_in, JDWP::ExpandBuf* buf_in) SHARED_REQUIRES(Locks::mutator_lock_) : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames), depth_(0), start_frame_(start_frame_in), frame_count_(frame_count_in), buf_(buf_in) { expandBufAdd4BE(buf_, frame_count_); } bool VisitFrame() OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { if (GetMethod()->IsRuntimeMethod()) { return true; // The debugger can't do anything useful with a frame that has no Method*. } if (depth_ >= start_frame_ + frame_count_) { return false; } if (depth_ >= start_frame_) { JDWP::FrameId frame_id(GetFrameId()); JDWP::JdwpLocation location; SetJdwpLocation(&location, GetMethod(), GetDexPc()); VLOG(jdwp) << StringPrintf(" Frame %3zd: id=%3" PRIu64 " ", depth_, frame_id) << location; expandBufAdd8BE(buf_, frame_id); expandBufAddLocation(buf_, location); } ++depth_; return true; } private: size_t depth_; const size_t start_frame_; const size_t frame_count_; JDWP::ExpandBuf* buf_; }; ScopedObjectAccessUnchecked soa(Thread::Current()); JDWP::JdwpError error; Thread* thread = DecodeThread(soa, thread_id, &error); if (error != JDWP::ERR_NONE) { return error; } if (!IsSuspendedForDebugger(soa, thread)) { return JDWP::ERR_THREAD_NOT_SUSPENDED; } GetFrameVisitor visitor(thread, start_frame, frame_count, buf); visitor.WalkStack(); return JDWP::ERR_NONE; } JDWP::ObjectId Dbg::GetThreadSelfId() { return GetThreadId(Thread::Current()); } JDWP::ObjectId Dbg::GetThreadId(Thread* thread) { ScopedObjectAccessUnchecked soa(Thread::Current()); return gRegistry->Add(thread->GetPeer()); } void Dbg::SuspendVM() { Runtime::Current()->GetThreadList()->SuspendAllForDebugger(); } void Dbg::ResumeVM() { Runtime::Current()->GetThreadList()->ResumeAllForDebugger(); } JDWP::JdwpError Dbg::SuspendThread(JDWP::ObjectId thread_id, bool request_suspension) { Thread* self = Thread::Current(); ScopedLocalRef<jobject> peer(self->GetJniEnv(), nullptr); { ScopedObjectAccess soa(self); JDWP::JdwpError error; peer.reset(soa.AddLocalReference<jobject>(gRegistry->Get<mirror::Object*>(thread_id, &error))); } if (peer.get() == nullptr) { return JDWP::ERR_THREAD_NOT_ALIVE; } // Suspend thread to build stack trace. bool timed_out; ThreadList* thread_list = Runtime::Current()->GetThreadList(); Thread* thread = thread_list->SuspendThreadByPeer(peer.get(), request_suspension, true, &timed_out); if (thread != nullptr) { return JDWP::ERR_NONE; } else if (timed_out) { return JDWP::ERR_INTERNAL; } else { return JDWP::ERR_THREAD_NOT_ALIVE; } } void Dbg::ResumeThread(JDWP::ObjectId thread_id) { ScopedObjectAccessUnchecked soa(Thread::Current()); JDWP::JdwpError error; mirror::Object* peer = gRegistry->Get<mirror::Object*>(thread_id, &error); CHECK(peer != nullptr) << error; Thread* thread; { MutexLock mu(soa.Self(), *Locks::thread_list_lock_); thread = Thread::FromManagedThread(soa, peer); } if (thread == nullptr) { LOG(WARNING) << "No such thread for resume: " << peer; return; } bool needs_resume; { MutexLock mu2(soa.Self(), *Locks::thread_suspend_count_lock_); needs_resume = thread->GetSuspendCount() > 0; } if (needs_resume) { Runtime::Current()->GetThreadList()->Resume(thread, true); } } void Dbg::SuspendSelf() { Runtime::Current()->GetThreadList()->SuspendSelfForDebugger(); } struct GetThisVisitor : public StackVisitor { GetThisVisitor(Thread* thread, Context* context, JDWP::FrameId frame_id_in) SHARED_REQUIRES(Locks::mutator_lock_) : StackVisitor(thread, context, StackVisitor::StackWalkKind::kIncludeInlinedFrames), this_object(nullptr), frame_id(frame_id_in) {} // TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses // annotalysis. virtual bool VisitFrame() NO_THREAD_SAFETY_ANALYSIS { if (frame_id != GetFrameId()) { return true; // continue } else { this_object = GetThisObject(); return false; } } mirror::Object* this_object; JDWP::FrameId frame_id; }; JDWP::JdwpError Dbg::GetThisObject(JDWP::ObjectId thread_id, JDWP::FrameId frame_id, JDWP::ObjectId* result) { ScopedObjectAccessUnchecked soa(Thread::Current()); JDWP::JdwpError error; Thread* thread = DecodeThread(soa, thread_id, &error); if (error != JDWP::ERR_NONE) { return error; } if (!IsSuspendedForDebugger(soa, thread)) { return JDWP::ERR_THREAD_NOT_SUSPENDED; } std::unique_ptr<Context> context(Context::Create()); GetThisVisitor visitor(thread, context.get(), frame_id); visitor.WalkStack(); *result = gRegistry->Add(visitor.this_object); return JDWP::ERR_NONE; } // Walks the stack until we find the frame with the given FrameId. class FindFrameVisitor FINAL : public StackVisitor { public: FindFrameVisitor(Thread* thread, Context* context, JDWP::FrameId frame_id) SHARED_REQUIRES(Locks::mutator_lock_) : StackVisitor(thread, context, StackVisitor::StackWalkKind::kIncludeInlinedFrames), frame_id_(frame_id), error_(JDWP::ERR_INVALID_FRAMEID) {} // TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses // annotalysis. bool VisitFrame() NO_THREAD_SAFETY_ANALYSIS { if (GetFrameId() != frame_id_) { return true; // Not our frame, carry on. } ArtMethod* m = GetMethod(); if (m->IsNative()) { // We can't read/write local value from/into native method. error_ = JDWP::ERR_OPAQUE_FRAME; } else { // We found our frame. error_ = JDWP::ERR_NONE; } return false; } JDWP::JdwpError GetError() const { return error_; } private: const JDWP::FrameId frame_id_; JDWP::JdwpError error_; DISALLOW_COPY_AND_ASSIGN(FindFrameVisitor); }; JDWP::JdwpError Dbg::GetLocalValues(JDWP::Request* request, JDWP::ExpandBuf* pReply) { JDWP::ObjectId thread_id = request->ReadThreadId(); JDWP::FrameId frame_id = request->ReadFrameId(); ScopedObjectAccessUnchecked soa(Thread::Current()); JDWP::JdwpError error; Thread* thread = DecodeThread(soa, thread_id, &error); if (error != JDWP::ERR_NONE) { return error; } if (!IsSuspendedForDebugger(soa, thread)) { return JDWP::ERR_THREAD_NOT_SUSPENDED; } // Find the frame with the given frame_id. std::unique_ptr<Context> context(Context::Create()); FindFrameVisitor visitor(thread, context.get(), frame_id); visitor.WalkStack(); if (visitor.GetError() != JDWP::ERR_NONE) { return visitor.GetError(); } // Read the values from visitor's context. int32_t slot_count = request->ReadSigned32("slot count"); expandBufAdd4BE(pReply, slot_count); /* "int values" */ for (int32_t i = 0; i < slot_count; ++i) { uint32_t slot = request->ReadUnsigned32("slot"); JDWP::JdwpTag reqSigByte = request->ReadTag(); VLOG(jdwp) << " --> slot " << slot << " " << reqSigByte; size_t width = Dbg::GetTagWidth(reqSigByte); uint8_t* ptr = expandBufAddSpace(pReply, width + 1); error = Dbg::GetLocalValue(visitor, soa, slot, reqSigByte, ptr, width); if (error != JDWP::ERR_NONE) { return error; } } return JDWP::ERR_NONE; } constexpr JDWP::JdwpError kStackFrameLocalAccessError = JDWP::ERR_ABSENT_INFORMATION; static std::string GetStackContextAsString(const StackVisitor& visitor) SHARED_REQUIRES(Locks::mutator_lock_) { return StringPrintf(" at DEX pc 0x%08x in method %s", visitor.GetDexPc(false), PrettyMethod(visitor.GetMethod()).c_str()); } static JDWP::JdwpError FailGetLocalValue(const StackVisitor& visitor, uint16_t vreg, JDWP::JdwpTag tag) SHARED_REQUIRES(Locks::mutator_lock_) { LOG(ERROR) << "Failed to read " << tag << " local from register v" << vreg << GetStackContextAsString(visitor); return kStackFrameLocalAccessError; } JDWP::JdwpError Dbg::GetLocalValue(const StackVisitor& visitor, ScopedObjectAccessUnchecked& soa, int slot, JDWP::JdwpTag tag, uint8_t* buf, size_t width) { ArtMethod* m = visitor.GetMethod(); JDWP::JdwpError error = JDWP::ERR_NONE; uint16_t vreg = DemangleSlot(slot, m, &error); if (error != JDWP::ERR_NONE) { return error; } // TODO: check that the tag is compatible with the actual type of the slot! switch (tag) { case JDWP::JT_BOOLEAN: { CHECK_EQ(width, 1U); uint32_t intVal; if (!visitor.GetVReg(m, vreg, kIntVReg, &intVal)) { return FailGetLocalValue(visitor, vreg, tag); } VLOG(jdwp) << "get boolean local " << vreg << " = " << intVal; JDWP::Set1(buf + 1, intVal != 0); break; } case JDWP::JT_BYTE: { CHECK_EQ(width, 1U); uint32_t intVal; if (!visitor.GetVReg(m, vreg, kIntVReg, &intVal)) { return FailGetLocalValue(visitor, vreg, tag); } VLOG(jdwp) << "get byte local " << vreg << " = " << intVal; JDWP::Set1(buf + 1, intVal); break; } case JDWP::JT_SHORT: case JDWP::JT_CHAR: { CHECK_EQ(width, 2U); uint32_t intVal; if (!visitor.GetVReg(m, vreg, kIntVReg, &intVal)) { return FailGetLocalValue(visitor, vreg, tag); } VLOG(jdwp) << "get short/char local " << vreg << " = " << intVal; JDWP::Set2BE(buf + 1, intVal); break; } case JDWP::JT_INT: { CHECK_EQ(width, 4U); uint32_t intVal; if (!visitor.GetVReg(m, vreg, kIntVReg, &intVal)) { return FailGetLocalValue(visitor, vreg, tag); } VLOG(jdwp) << "get int local " << vreg << " = " << intVal; JDWP::Set4BE(buf + 1, intVal); break; } case JDWP::JT_FLOAT: { CHECK_EQ(width, 4U); uint32_t intVal; if (!visitor.GetVReg(m, vreg, kFloatVReg, &intVal)) { return FailGetLocalValue(visitor, vreg, tag); } VLOG(jdwp) << "get float local " << vreg << " = " << intVal; JDWP::Set4BE(buf + 1, intVal); break; } case JDWP::JT_ARRAY: case JDWP::JT_CLASS_LOADER: case JDWP::JT_CLASS_OBJECT: case JDWP::JT_OBJECT: case JDWP::JT_STRING: case JDWP::JT_THREAD: case JDWP::JT_THREAD_GROUP: { CHECK_EQ(width, sizeof(JDWP::ObjectId)); uint32_t intVal; if (!visitor.GetVReg(m, vreg, kReferenceVReg, &intVal)) { return FailGetLocalValue(visitor, vreg, tag); } mirror::Object* o = reinterpret_cast<mirror::Object*>(intVal); VLOG(jdwp) << "get " << tag << " object local " << vreg << " = " << o; if (!Runtime::Current()->GetHeap()->IsValidObjectAddress(o)) { LOG(FATAL) << StringPrintf("Found invalid object %#" PRIxPTR " in register v%u", reinterpret_cast<uintptr_t>(o), vreg) << GetStackContextAsString(visitor); UNREACHABLE(); } tag = TagFromObject(soa, o); JDWP::SetObjectId(buf + 1, gRegistry->Add(o)); break; } case JDWP::JT_DOUBLE: { CHECK_EQ(width, 8U); uint64_t longVal; if (!visitor.GetVRegPair(m, vreg, kDoubleLoVReg, kDoubleHiVReg, &longVal)) { return FailGetLocalValue(visitor, vreg, tag); } VLOG(jdwp) << "get double local " << vreg << " = " << longVal; JDWP::Set8BE(buf + 1, longVal); break; } case JDWP::JT_LONG: { CHECK_EQ(width, 8U); uint64_t longVal; if (!visitor.GetVRegPair(m, vreg, kLongLoVReg, kLongHiVReg, &longVal)) { return FailGetLocalValue(visitor, vreg, tag); } VLOG(jdwp) << "get long local " << vreg << " = " << longVal; JDWP::Set8BE(buf + 1, longVal); break; } default: LOG(FATAL) << "Unknown tag " << tag; UNREACHABLE(); } // Prepend tag, which may have been updated. JDWP::Set1(buf, tag); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::SetLocalValues(JDWP::Request* request) { JDWP::ObjectId thread_id = request->ReadThreadId(); JDWP::FrameId frame_id = request->ReadFrameId(); ScopedObjectAccessUnchecked soa(Thread::Current()); JDWP::JdwpError error; Thread* thread = DecodeThread(soa, thread_id, &error); if (error != JDWP::ERR_NONE) { return error; } if (!IsSuspendedForDebugger(soa, thread)) { return JDWP::ERR_THREAD_NOT_SUSPENDED; } // Find the frame with the given frame_id. std::unique_ptr<Context> context(Context::Create()); FindFrameVisitor visitor(thread, context.get(), frame_id); visitor.WalkStack(); if (visitor.GetError() != JDWP::ERR_NONE) { return visitor.GetError(); } // Writes the values into visitor's context. int32_t slot_count = request->ReadSigned32("slot count"); for (int32_t i = 0; i < slot_count; ++i) { uint32_t slot = request->ReadUnsigned32("slot"); JDWP::JdwpTag sigByte = request->ReadTag(); size_t width = Dbg::GetTagWidth(sigByte); uint64_t value = request->ReadValue(width); VLOG(jdwp) << " --> slot " << slot << " " << sigByte << " " << value; error = Dbg::SetLocalValue(thread, visitor, slot, sigByte, value, width); if (error != JDWP::ERR_NONE) { return error; } } return JDWP::ERR_NONE; } template<typename T> static JDWP::JdwpError FailSetLocalValue(const StackVisitor& visitor, uint16_t vreg, JDWP::JdwpTag tag, T value) SHARED_REQUIRES(Locks::mutator_lock_) { LOG(ERROR) << "Failed to write " << tag << " local " << value << " (0x" << std::hex << value << ") into register v" << vreg << GetStackContextAsString(visitor); return kStackFrameLocalAccessError; } JDWP::JdwpError Dbg::SetLocalValue(Thread* thread, StackVisitor& visitor, int slot, JDWP::JdwpTag tag, uint64_t value, size_t width) { ArtMethod* m = visitor.GetMethod(); JDWP::JdwpError error = JDWP::ERR_NONE; uint16_t vreg = DemangleSlot(slot, m, &error); if (error != JDWP::ERR_NONE) { return error; } // TODO: check that the tag is compatible with the actual type of the slot! switch (tag) { case JDWP::JT_BOOLEAN: case JDWP::JT_BYTE: CHECK_EQ(width, 1U); if (!visitor.SetVReg(m, vreg, static_cast<uint32_t>(value), kIntVReg)) { return FailSetLocalValue(visitor, vreg, tag, static_cast<uint32_t>(value)); } break; case JDWP::JT_SHORT: case JDWP::JT_CHAR: CHECK_EQ(width, 2U); if (!visitor.SetVReg(m, vreg, static_cast<uint32_t>(value), kIntVReg)) { return FailSetLocalValue(visitor, vreg, tag, static_cast<uint32_t>(value)); } break; case JDWP::JT_INT: CHECK_EQ(width, 4U); if (!visitor.SetVReg(m, vreg, static_cast<uint32_t>(value), kIntVReg)) { return FailSetLocalValue(visitor, vreg, tag, static_cast<uint32_t>(value)); } break; case JDWP::JT_FLOAT: CHECK_EQ(width, 4U); if (!visitor.SetVReg(m, vreg, static_cast<uint32_t>(value), kFloatVReg)) { return FailSetLocalValue(visitor, vreg, tag, static_cast<uint32_t>(value)); } break; case JDWP::JT_ARRAY: case JDWP::JT_CLASS_LOADER: case JDWP::JT_CLASS_OBJECT: case JDWP::JT_OBJECT: case JDWP::JT_STRING: case JDWP::JT_THREAD: case JDWP::JT_THREAD_GROUP: { CHECK_EQ(width, sizeof(JDWP::ObjectId)); mirror::Object* o = gRegistry->Get<mirror::Object*>(static_cast<JDWP::ObjectId>(value), &error); if (error != JDWP::ERR_NONE) { VLOG(jdwp) << tag << " object " << o << " is an invalid object"; return JDWP::ERR_INVALID_OBJECT; } if (!visitor.SetVReg(m, vreg, static_cast<uint32_t>(reinterpret_cast<uintptr_t>(o)), kReferenceVReg)) { return FailSetLocalValue(visitor, vreg, tag, reinterpret_cast<uintptr_t>(o)); } break; } case JDWP::JT_DOUBLE: { CHECK_EQ(width, 8U); if (!visitor.SetVRegPair(m, vreg, value, kDoubleLoVReg, kDoubleHiVReg)) { return FailSetLocalValue(visitor, vreg, tag, value); } break; } case JDWP::JT_LONG: { CHECK_EQ(width, 8U); if (!visitor.SetVRegPair(m, vreg, value, kLongLoVReg, kLongHiVReg)) { return FailSetLocalValue(visitor, vreg, tag, value); } break; } default: LOG(FATAL) << "Unknown tag " << tag; UNREACHABLE(); } // If we set the local variable in a compiled frame, we need to trigger a deoptimization of // the stack so we continue execution with the interpreter using the new value(s) of the updated // local variable(s). To achieve this, we install instrumentation exit stub on each method of the // thread's stack. The stub will cause the deoptimization to happen. if (!visitor.IsShadowFrame() && thread->HasDebuggerShadowFrames()) { Runtime::Current()->GetInstrumentation()->InstrumentThreadStack(thread); } return JDWP::ERR_NONE; } static void SetEventLocation(JDWP::EventLocation* location, ArtMethod* m, uint32_t dex_pc) SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(location != nullptr); if (m == nullptr) { memset(location, 0, sizeof(*location)); } else { location->method = GetCanonicalMethod(m); location->dex_pc = (m->IsNative() || m->IsProxyMethod()) ? static_cast<uint32_t>(-1) : dex_pc; } } void Dbg::PostLocationEvent(ArtMethod* m, int dex_pc, mirror::Object* this_object, int event_flags, const JValue* return_value) { if (!IsDebuggerActive()) { return; } DCHECK(m != nullptr); DCHECK_EQ(m->IsStatic(), this_object == nullptr); JDWP::EventLocation location; SetEventLocation(&location, m, dex_pc); // We need to be sure no exception is pending when calling JdwpState::PostLocationEvent. // This is required to be able to call JNI functions to create JDWP ids. To achieve this, // we temporarily clear the current thread's exception (if any) and will restore it after // the call. // Note: the only way to get a pending exception here is to suspend on a move-exception // instruction. Thread* const self = Thread::Current(); StackHandleScope<1> hs(self); Handle<mirror::Throwable> pending_exception(hs.NewHandle(self->GetException())); self->ClearException(); if (kIsDebugBuild && pending_exception.Get() != nullptr) { const DexFile::CodeItem* code_item = location.method->GetCodeItem(); const Instruction* instr = Instruction::At(&code_item->insns_[location.dex_pc]); CHECK_EQ(Instruction::MOVE_EXCEPTION, instr->Opcode()); } gJdwpState->PostLocationEvent(&location, this_object, event_flags, return_value); if (pending_exception.Get() != nullptr) { self->SetException(pending_exception.Get()); } } void Dbg::PostFieldAccessEvent(ArtMethod* m, int dex_pc, mirror::Object* this_object, ArtField* f) { if (!IsDebuggerActive()) { return; } DCHECK(m != nullptr); DCHECK(f != nullptr); JDWP::EventLocation location; SetEventLocation(&location, m, dex_pc); gJdwpState->PostFieldEvent(&location, f, this_object, nullptr, false); } void Dbg::PostFieldModificationEvent(ArtMethod* m, int dex_pc, mirror::Object* this_object, ArtField* f, const JValue* field_value) { if (!IsDebuggerActive()) { return; } DCHECK(m != nullptr); DCHECK(f != nullptr); DCHECK(field_value != nullptr); JDWP::EventLocation location; SetEventLocation(&location, m, dex_pc); gJdwpState->PostFieldEvent(&location, f, this_object, field_value, true); } /** * Finds the location where this exception will be caught. We search until we reach the top * frame, in which case this exception is considered uncaught. */ class CatchLocationFinder : public StackVisitor { public: CatchLocationFinder(Thread* self, const Handle<mirror::Throwable>& exception, Context* context) SHARED_REQUIRES(Locks::mutator_lock_) : StackVisitor(self, context, StackVisitor::StackWalkKind::kIncludeInlinedFrames), exception_(exception), handle_scope_(self), this_at_throw_(handle_scope_.NewHandle<mirror::Object>(nullptr)), catch_method_(nullptr), throw_method_(nullptr), catch_dex_pc_(DexFile::kDexNoIndex), throw_dex_pc_(DexFile::kDexNoIndex) { } bool VisitFrame() OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { ArtMethod* method = GetMethod(); DCHECK(method != nullptr); if (method->IsRuntimeMethod()) { // Ignore callee save method. DCHECK(method->IsCalleeSaveMethod()); return true; } uint32_t dex_pc = GetDexPc(); if (throw_method_ == nullptr) { // First Java method found. It is either the method that threw the exception, // or the Java native method that is reporting an exception thrown by // native code. this_at_throw_.Assign(GetThisObject()); throw_method_ = method; throw_dex_pc_ = dex_pc; } if (dex_pc != DexFile::kDexNoIndex) { StackHandleScope<1> hs(GetThread()); uint32_t found_dex_pc; Handle<mirror::Class> exception_class(hs.NewHandle(exception_->GetClass())); bool unused_clear_exception; found_dex_pc = method->FindCatchBlock(exception_class, dex_pc, &unused_clear_exception); if (found_dex_pc != DexFile::kDexNoIndex) { catch_method_ = method; catch_dex_pc_ = found_dex_pc; return false; // End stack walk. } } return true; // Continue stack walk. } ArtMethod* GetCatchMethod() SHARED_REQUIRES(Locks::mutator_lock_) { return catch_method_; } ArtMethod* GetThrowMethod() SHARED_REQUIRES(Locks::mutator_lock_) { return throw_method_; } mirror::Object* GetThisAtThrow() SHARED_REQUIRES(Locks::mutator_lock_) { return this_at_throw_.Get(); } uint32_t GetCatchDexPc() const { return catch_dex_pc_; } uint32_t GetThrowDexPc() const { return throw_dex_pc_; } private: const Handle<mirror::Throwable>& exception_; StackHandleScope<1> handle_scope_; MutableHandle<mirror::Object> this_at_throw_; ArtMethod* catch_method_; ArtMethod* throw_method_; uint32_t catch_dex_pc_; uint32_t throw_dex_pc_; DISALLOW_COPY_AND_ASSIGN(CatchLocationFinder); }; void Dbg::PostException(mirror::Throwable* exception_object) { if (!IsDebuggerActive()) { return; } Thread* const self = Thread::Current(); StackHandleScope<1> handle_scope(self); Handle<mirror::Throwable> h_exception(handle_scope.NewHandle(exception_object)); std::unique_ptr<Context> context(Context::Create()); CatchLocationFinder clf(self, h_exception, context.get()); clf.WalkStack(/* include_transitions */ false); JDWP::EventLocation exception_throw_location; SetEventLocation(&exception_throw_location, clf.GetThrowMethod(), clf.GetThrowDexPc()); JDWP::EventLocation exception_catch_location; SetEventLocation(&exception_catch_location, clf.GetCatchMethod(), clf.GetCatchDexPc()); gJdwpState->PostException(&exception_throw_location, h_exception.Get(), &exception_catch_location, clf.GetThisAtThrow()); } void Dbg::PostClassPrepare(mirror::Class* c) { if (!IsDebuggerActive()) { return; } gJdwpState->PostClassPrepare(c); } void Dbg::UpdateDebugger(Thread* thread, mirror::Object* this_object, ArtMethod* m, uint32_t dex_pc, int event_flags, const JValue* return_value) { if (!IsDebuggerActive() || dex_pc == static_cast<uint32_t>(-2) /* fake method exit */) { return; } if (IsBreakpoint(m, dex_pc)) { event_flags |= kBreakpoint; } // If the debugger is single-stepping one of our threads, check to // see if we're that thread and we've reached a step point. const SingleStepControl* single_step_control = thread->GetSingleStepControl(); if (single_step_control != nullptr) { CHECK(!m->IsNative()); if (single_step_control->GetStepDepth() == JDWP::SD_INTO) { // Step into method calls. We break when the line number // or method pointer changes. If we're in SS_MIN mode, we // always stop. if (single_step_control->GetMethod() != m) { event_flags |= kSingleStep; VLOG(jdwp) << "SS new method"; } else if (single_step_control->GetStepSize() == JDWP::SS_MIN) { event_flags |= kSingleStep; VLOG(jdwp) << "SS new instruction"; } else if (single_step_control->ContainsDexPc(dex_pc)) { event_flags |= kSingleStep; VLOG(jdwp) << "SS new line"; } } else if (single_step_control->GetStepDepth() == JDWP::SD_OVER) { // Step over method calls. We break when the line number is // different and the frame depth is <= the original frame // depth. (We can't just compare on the method, because we // might get unrolled past it by an exception, and it's tricky // to identify recursion.) int stack_depth = GetStackDepth(thread); if (stack_depth < single_step_control->GetStackDepth()) { // Popped up one or more frames, always trigger. event_flags |= kSingleStep; VLOG(jdwp) << "SS method pop"; } else if (stack_depth == single_step_control->GetStackDepth()) { // Same depth, see if we moved. if (single_step_control->GetStepSize() == JDWP::SS_MIN) { event_flags |= kSingleStep; VLOG(jdwp) << "SS new instruction"; } else if (single_step_control->ContainsDexPc(dex_pc)) { event_flags |= kSingleStep; VLOG(jdwp) << "SS new line"; } } } else { CHECK_EQ(single_step_control->GetStepDepth(), JDWP::SD_OUT); // Return from the current method. We break when the frame // depth pops up. // This differs from the "method exit" break in that it stops // with the PC at the next instruction in the returned-to // function, rather than the end of the returning function. int stack_depth = GetStackDepth(thread); if (stack_depth < single_step_control->GetStackDepth()) { event_flags |= kSingleStep; VLOG(jdwp) << "SS method pop"; } } } // If there's something interesting going on, see if it matches one // of the debugger filters. if (event_flags != 0) { Dbg::PostLocationEvent(m, dex_pc, this_object, event_flags, return_value); } } size_t* Dbg::GetReferenceCounterForEvent(uint32_t instrumentation_event) { switch (instrumentation_event) { case instrumentation::Instrumentation::kMethodEntered: return &method_enter_event_ref_count_; case instrumentation::Instrumentation::kMethodExited: return &method_exit_event_ref_count_; case instrumentation::Instrumentation::kDexPcMoved: return &dex_pc_change_event_ref_count_; case instrumentation::Instrumentation::kFieldRead: return &field_read_event_ref_count_; case instrumentation::Instrumentation::kFieldWritten: return &field_write_event_ref_count_; case instrumentation::Instrumentation::kExceptionCaught: return &exception_catch_event_ref_count_; default: return nullptr; } } // Process request while all mutator threads are suspended. void Dbg::ProcessDeoptimizationRequest(const DeoptimizationRequest& request) { instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); switch (request.GetKind()) { case DeoptimizationRequest::kNothing: LOG(WARNING) << "Ignoring empty deoptimization request."; break; case DeoptimizationRequest::kRegisterForEvent: VLOG(jdwp) << StringPrintf("Add debugger as listener for instrumentation event 0x%x", request.InstrumentationEvent()); instrumentation->AddListener(&gDebugInstrumentationListener, request.InstrumentationEvent()); instrumentation_events_ |= request.InstrumentationEvent(); break; case DeoptimizationRequest::kUnregisterForEvent: VLOG(jdwp) << StringPrintf("Remove debugger as listener for instrumentation event 0x%x", request.InstrumentationEvent()); instrumentation->RemoveListener(&gDebugInstrumentationListener, request.InstrumentationEvent()); instrumentation_events_ &= ~request.InstrumentationEvent(); break; case DeoptimizationRequest::kFullDeoptimization: VLOG(jdwp) << "Deoptimize the world ..."; instrumentation->DeoptimizeEverything(kDbgInstrumentationKey); VLOG(jdwp) << "Deoptimize the world DONE"; break; case DeoptimizationRequest::kFullUndeoptimization: VLOG(jdwp) << "Undeoptimize the world ..."; instrumentation->UndeoptimizeEverything(kDbgInstrumentationKey); VLOG(jdwp) << "Undeoptimize the world DONE"; break; case DeoptimizationRequest::kSelectiveDeoptimization: VLOG(jdwp) << "Deoptimize method " << PrettyMethod(request.Method()) << " ..."; instrumentation->Deoptimize(request.Method()); VLOG(jdwp) << "Deoptimize method " << PrettyMethod(request.Method()) << " DONE"; break; case DeoptimizationRequest::kSelectiveUndeoptimization: VLOG(jdwp) << "Undeoptimize method " << PrettyMethod(request.Method()) << " ..."; instrumentation->Undeoptimize(request.Method()); VLOG(jdwp) << "Undeoptimize method " << PrettyMethod(request.Method()) << " DONE"; break; default: LOG(FATAL) << "Unsupported deoptimization request kind " << request.GetKind(); break; } } void Dbg::RequestDeoptimization(const DeoptimizationRequest& req) { if (req.GetKind() == DeoptimizationRequest::kNothing) { // Nothing to do. return; } MutexLock mu(Thread::Current(), *Locks::deoptimization_lock_); RequestDeoptimizationLocked(req); } void Dbg::RequestDeoptimizationLocked(const DeoptimizationRequest& req) { switch (req.GetKind()) { case DeoptimizationRequest::kRegisterForEvent: { DCHECK_NE(req.InstrumentationEvent(), 0u); size_t* counter = GetReferenceCounterForEvent(req.InstrumentationEvent()); CHECK(counter != nullptr) << StringPrintf("No counter for instrumentation event 0x%x", req.InstrumentationEvent()); if (*counter == 0) { VLOG(jdwp) << StringPrintf("Queue request #%zd to start listening to instrumentation event 0x%x", deoptimization_requests_.size(), req.InstrumentationEvent()); deoptimization_requests_.push_back(req); } *counter = *counter + 1; break; } case DeoptimizationRequest::kUnregisterForEvent: { DCHECK_NE(req.InstrumentationEvent(), 0u); size_t* counter = GetReferenceCounterForEvent(req.InstrumentationEvent()); CHECK(counter != nullptr) << StringPrintf("No counter for instrumentation event 0x%x", req.InstrumentationEvent()); *counter = *counter - 1; if (*counter == 0) { VLOG(jdwp) << StringPrintf("Queue request #%zd to stop listening to instrumentation event 0x%x", deoptimization_requests_.size(), req.InstrumentationEvent()); deoptimization_requests_.push_back(req); } break; } case DeoptimizationRequest::kFullDeoptimization: { DCHECK(req.Method() == nullptr); if (full_deoptimization_event_count_ == 0) { VLOG(jdwp) << "Queue request #" << deoptimization_requests_.size() << " for full deoptimization"; deoptimization_requests_.push_back(req); } ++full_deoptimization_event_count_; break; } case DeoptimizationRequest::kFullUndeoptimization: { DCHECK(req.Method() == nullptr); DCHECK_GT(full_deoptimization_event_count_, 0U); --full_deoptimization_event_count_; if (full_deoptimization_event_count_ == 0) { VLOG(jdwp) << "Queue request #" << deoptimization_requests_.size() << " for full undeoptimization"; deoptimization_requests_.push_back(req); } break; } case DeoptimizationRequest::kSelectiveDeoptimization: { DCHECK(req.Method() != nullptr); VLOG(jdwp) << "Queue request #" << deoptimization_requests_.size() << " for deoptimization of " << PrettyMethod(req.Method()); deoptimization_requests_.push_back(req); break; } case DeoptimizationRequest::kSelectiveUndeoptimization: { DCHECK(req.Method() != nullptr); VLOG(jdwp) << "Queue request #" << deoptimization_requests_.size() << " for undeoptimization of " << PrettyMethod(req.Method()); deoptimization_requests_.push_back(req); break; } default: { LOG(FATAL) << "Unknown deoptimization request kind " << req.GetKind(); break; } } } void Dbg::ManageDeoptimization() { Thread* const self = Thread::Current(); { // Avoid suspend/resume if there is no pending request. MutexLock mu(self, *Locks::deoptimization_lock_); if (deoptimization_requests_.empty()) { return; } } CHECK_EQ(self->GetState(), kRunnable); ScopedThreadSuspension sts(self, kWaitingForDeoptimization); // Required for ProcessDeoptimizationRequest. gc::ScopedGCCriticalSection gcs(self, gc::kGcCauseInstrumentation, gc::kCollectorTypeInstrumentation); // We need to suspend mutator threads first. ScopedSuspendAll ssa(__FUNCTION__); const ThreadState old_state = self->SetStateUnsafe(kRunnable); { MutexLock mu(self, *Locks::deoptimization_lock_); size_t req_index = 0; for (DeoptimizationRequest& request : deoptimization_requests_) { VLOG(jdwp) << "Process deoptimization request #" << req_index++; ProcessDeoptimizationRequest(request); } deoptimization_requests_.clear(); } CHECK_EQ(self->SetStateUnsafe(old_state), kRunnable); } static const Breakpoint* FindFirstBreakpointForMethod(ArtMethod* m) SHARED_REQUIRES(Locks::mutator_lock_, Locks::breakpoint_lock_) { for (Breakpoint& breakpoint : gBreakpoints) { if (breakpoint.IsInMethod(m)) { return &breakpoint; } } return nullptr; } bool Dbg::MethodHasAnyBreakpoints(ArtMethod* method) { ReaderMutexLock mu(Thread::Current(), *Locks::breakpoint_lock_); return FindFirstBreakpointForMethod(method) != nullptr; } // Sanity checks all existing breakpoints on the same method. static void SanityCheckExistingBreakpoints(ArtMethod* m, DeoptimizationRequest::Kind deoptimization_kind) SHARED_REQUIRES(Locks::mutator_lock_, Locks::breakpoint_lock_) { for (const Breakpoint& breakpoint : gBreakpoints) { if (breakpoint.IsInMethod(m)) { CHECK_EQ(deoptimization_kind, breakpoint.GetDeoptimizationKind()); } } instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); if (deoptimization_kind == DeoptimizationRequest::kFullDeoptimization) { // We should have deoptimized everything but not "selectively" deoptimized this method. CHECK(instrumentation->AreAllMethodsDeoptimized()); CHECK(!instrumentation->IsDeoptimized(m)); } else if (deoptimization_kind == DeoptimizationRequest::kSelectiveDeoptimization) { // We should have "selectively" deoptimized this method. // Note: while we have not deoptimized everything for this method, we may have done it for // another event. CHECK(instrumentation->IsDeoptimized(m)); } else { // This method does not require deoptimization. CHECK_EQ(deoptimization_kind, DeoptimizationRequest::kNothing); CHECK(!instrumentation->IsDeoptimized(m)); } } // Returns the deoptimization kind required to set a breakpoint in a method. // If a breakpoint has already been set, we also return the first breakpoint // through the given 'existing_brkpt' pointer. static DeoptimizationRequest::Kind GetRequiredDeoptimizationKind(Thread* self, ArtMethod* m, const Breakpoint** existing_brkpt) SHARED_REQUIRES(Locks::mutator_lock_) { if (!Dbg::RequiresDeoptimization()) { // We already run in interpreter-only mode so we don't need to deoptimize anything. VLOG(jdwp) << "No need for deoptimization when fully running with interpreter for method " << PrettyMethod(m); return DeoptimizationRequest::kNothing; } const Breakpoint* first_breakpoint; { ReaderMutexLock mu(self, *Locks::breakpoint_lock_); first_breakpoint = FindFirstBreakpointForMethod(m); *existing_brkpt = first_breakpoint; } if (first_breakpoint == nullptr) { // There is no breakpoint on this method yet: we need to deoptimize. If this method is default, // we deoptimize everything; otherwise we deoptimize only this method. We // deoptimize with defaults because we do not know everywhere they are used. It is possible some // of the copies could be missed. // TODO Deoptimizing on default methods might not be necessary in all cases. bool need_full_deoptimization = m->IsDefault(); if (need_full_deoptimization) { VLOG(jdwp) << "Need full deoptimization because of copying of method " << PrettyMethod(m); return DeoptimizationRequest::kFullDeoptimization; } else { // We don't need to deoptimize if the method has not been compiled. const bool is_compiled = m->HasAnyCompiledCode(); if (is_compiled) { VLOG(jdwp) << "Need selective deoptimization for compiled method " << PrettyMethod(m); return DeoptimizationRequest::kSelectiveDeoptimization; } else { // Method is not compiled: we don't need to deoptimize. VLOG(jdwp) << "No need for deoptimization for non-compiled method " << PrettyMethod(m); return DeoptimizationRequest::kNothing; } } } else { // There is at least one breakpoint for this method: we don't need to deoptimize. // Let's check that all breakpoints are configured the same way for deoptimization. VLOG(jdwp) << "Breakpoint already set: no deoptimization is required"; DeoptimizationRequest::Kind deoptimization_kind = first_breakpoint->GetDeoptimizationKind(); if (kIsDebugBuild) { ReaderMutexLock mu(self, *Locks::breakpoint_lock_); SanityCheckExistingBreakpoints(m, deoptimization_kind); } return DeoptimizationRequest::kNothing; } } // Installs a breakpoint at the specified location. Also indicates through the deoptimization // request if we need to deoptimize. void Dbg::WatchLocation(const JDWP::JdwpLocation* location, DeoptimizationRequest* req) { Thread* const self = Thread::Current(); ArtMethod* m = FromMethodId(location->method_id); DCHECK(m != nullptr) << "No method for method id " << location->method_id; const Breakpoint* existing_breakpoint = nullptr; const DeoptimizationRequest::Kind deoptimization_kind = GetRequiredDeoptimizationKind(self, m, &existing_breakpoint); req->SetKind(deoptimization_kind); if (deoptimization_kind == DeoptimizationRequest::kSelectiveDeoptimization) { req->SetMethod(m); } else { CHECK(deoptimization_kind == DeoptimizationRequest::kNothing || deoptimization_kind == DeoptimizationRequest::kFullDeoptimization); req->SetMethod(nullptr); } { WriterMutexLock mu(self, *Locks::breakpoint_lock_); // If there is at least one existing breakpoint on the same method, the new breakpoint // must have the same deoptimization kind than the existing breakpoint(s). DeoptimizationRequest::Kind breakpoint_deoptimization_kind; if (existing_breakpoint != nullptr) { breakpoint_deoptimization_kind = existing_breakpoint->GetDeoptimizationKind(); } else { breakpoint_deoptimization_kind = deoptimization_kind; } gBreakpoints.push_back(Breakpoint(m, location->dex_pc, breakpoint_deoptimization_kind)); VLOG(jdwp) << "Set breakpoint #" << (gBreakpoints.size() - 1) << ": " << gBreakpoints[gBreakpoints.size() - 1]; } } // Uninstalls a breakpoint at the specified location. Also indicates through the deoptimization // request if we need to undeoptimize. void Dbg::UnwatchLocation(const JDWP::JdwpLocation* location, DeoptimizationRequest* req) { WriterMutexLock mu(Thread::Current(), *Locks::breakpoint_lock_); ArtMethod* m = FromMethodId(location->method_id); DCHECK(m != nullptr) << "No method for method id " << location->method_id; DeoptimizationRequest::Kind deoptimization_kind = DeoptimizationRequest::kNothing; for (size_t i = 0, e = gBreakpoints.size(); i < e; ++i) { if (gBreakpoints[i].DexPc() == location->dex_pc && gBreakpoints[i].IsInMethod(m)) { VLOG(jdwp) << "Removed breakpoint #" << i << ": " << gBreakpoints[i]; deoptimization_kind = gBreakpoints[i].GetDeoptimizationKind(); DCHECK_EQ(deoptimization_kind == DeoptimizationRequest::kSelectiveDeoptimization, Runtime::Current()->GetInstrumentation()->IsDeoptimized(m)); gBreakpoints.erase(gBreakpoints.begin() + i); break; } } const Breakpoint* const existing_breakpoint = FindFirstBreakpointForMethod(m); if (existing_breakpoint == nullptr) { // There is no more breakpoint on this method: we need to undeoptimize. if (deoptimization_kind == DeoptimizationRequest::kFullDeoptimization) { // This method required full deoptimization: we need to undeoptimize everything. req->SetKind(DeoptimizationRequest::kFullUndeoptimization); req->SetMethod(nullptr); } else if (deoptimization_kind == DeoptimizationRequest::kSelectiveDeoptimization) { // This method required selective deoptimization: we need to undeoptimize only that method. req->SetKind(DeoptimizationRequest::kSelectiveUndeoptimization); req->SetMethod(m); } else { // This method had no need for deoptimization: do nothing. CHECK_EQ(deoptimization_kind, DeoptimizationRequest::kNothing); req->SetKind(DeoptimizationRequest::kNothing); req->SetMethod(nullptr); } } else { // There is at least one breakpoint for this method: we don't need to undeoptimize. req->SetKind(DeoptimizationRequest::kNothing); req->SetMethod(nullptr); if (kIsDebugBuild) { SanityCheckExistingBreakpoints(m, deoptimization_kind); } } } bool Dbg::IsForcedInterpreterNeededForCallingImpl(Thread* thread, ArtMethod* m) { const SingleStepControl* const ssc = thread->GetSingleStepControl(); if (ssc == nullptr) { // If we are not single-stepping, then we don't have to force interpreter. return false; } if (Runtime::Current()->GetInstrumentation()->InterpretOnly()) { // If we are in interpreter only mode, then we don't have to force interpreter. return false; } if (!m->IsNative() && !m->IsProxyMethod()) { // If we want to step into a method, then we have to force interpreter on that call. if (ssc->GetStepDepth() == JDWP::SD_INTO) { return true; } } return false; } bool Dbg::IsForcedInterpreterNeededForResolutionImpl(Thread* thread, ArtMethod* m) { instrumentation::Instrumentation* const instrumentation = Runtime::Current()->GetInstrumentation(); // If we are in interpreter only mode, then we don't have to force interpreter. if (instrumentation->InterpretOnly()) { return false; } // We can only interpret pure Java method. if (m->IsNative() || m->IsProxyMethod()) { return false; } const SingleStepControl* const ssc = thread->GetSingleStepControl(); if (ssc != nullptr) { // If we want to step into a method, then we have to force interpreter on that call. if (ssc->GetStepDepth() == JDWP::SD_INTO) { return true; } // If we are stepping out from a static initializer, by issuing a step // in or step over, that was implicitly invoked by calling a static method, // then we need to step into that method. Having a lower stack depth than // the one the single step control has indicates that the step originates // from the static initializer. if (ssc->GetStepDepth() != JDWP::SD_OUT && ssc->GetStackDepth() > GetStackDepth(thread)) { return true; } } // There are cases where we have to force interpreter on deoptimized methods, // because in some cases the call will not be performed by invoking an entry // point that has been replaced by the deoptimization, but instead by directly // invoking the compiled code of the method, for example. return instrumentation->IsDeoptimized(m); } bool Dbg::IsForcedInstrumentationNeededForResolutionImpl(Thread* thread, ArtMethod* m) { // The upcall can be null and in that case we don't need to do anything. if (m == nullptr) { return false; } instrumentation::Instrumentation* const instrumentation = Runtime::Current()->GetInstrumentation(); // If we are in interpreter only mode, then we don't have to force interpreter. if (instrumentation->InterpretOnly()) { return false; } // We can only interpret pure Java method. if (m->IsNative() || m->IsProxyMethod()) { return false; } const SingleStepControl* const ssc = thread->GetSingleStepControl(); if (ssc != nullptr) { // If we are stepping out from a static initializer, by issuing a step // out, that was implicitly invoked by calling a static method, then we // need to step into the caller of that method. Having a lower stack // depth than the one the single step control has indicates that the // step originates from the static initializer. if (ssc->GetStepDepth() == JDWP::SD_OUT && ssc->GetStackDepth() > GetStackDepth(thread)) { return true; } } // If we are returning from a static intializer, that was implicitly // invoked by calling a static method and the caller is deoptimized, // then we have to deoptimize the stack without forcing interpreter // on the static method that was called originally. This problem can // be solved easily by forcing instrumentation on the called method, // because the instrumentation exit hook will recognise the need of // stack deoptimization by calling IsForcedInterpreterNeededForUpcall. return instrumentation->IsDeoptimized(m); } bool Dbg::IsForcedInterpreterNeededForUpcallImpl(Thread* thread, ArtMethod* m) { // The upcall can be null and in that case we don't need to do anything. if (m == nullptr) { return false; } instrumentation::Instrumentation* const instrumentation = Runtime::Current()->GetInstrumentation(); // If we are in interpreter only mode, then we don't have to force interpreter. if (instrumentation->InterpretOnly()) { return false; } // We can only interpret pure Java method. if (m->IsNative() || m->IsProxyMethod()) { return false; } const SingleStepControl* const ssc = thread->GetSingleStepControl(); if (ssc != nullptr) { // The debugger is not interested in what is happening under the level // of the step, thus we only force interpreter when we are not below of // the step. if (ssc->GetStackDepth() >= GetStackDepth(thread)) { return true; } } if (thread->HasDebuggerShadowFrames()) { // We need to deoptimize the stack for the exception handling flow so that // we don't miss any deoptimization that should be done when there are // debugger shadow frames. return true; } // We have to require stack deoptimization if the upcall is deoptimized. return instrumentation->IsDeoptimized(m); } class NeedsDeoptimizationVisitor : public StackVisitor { public: explicit NeedsDeoptimizationVisitor(Thread* self) SHARED_REQUIRES(Locks::mutator_lock_) : StackVisitor(self, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames), needs_deoptimization_(false) {} bool VisitFrame() OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { // The visitor is meant to be used when handling exception from compiled code only. CHECK(!IsShadowFrame()) << "We only expect to visit compiled frame: " << PrettyMethod(GetMethod()); ArtMethod* method = GetMethod(); if (method == nullptr) { // We reach an upcall and don't need to deoptimize this part of the stack (ManagedFragment) // so we can stop the visit. DCHECK(!needs_deoptimization_); return false; } if (Runtime::Current()->GetInstrumentation()->InterpretOnly()) { // We found a compiled frame in the stack but instrumentation is set to interpret // everything: we need to deoptimize. needs_deoptimization_ = true; return false; } if (Runtime::Current()->GetInstrumentation()->IsDeoptimized(method)) { // We found a deoptimized method in the stack. needs_deoptimization_ = true; return false; } ShadowFrame* frame = GetThread()->FindDebuggerShadowFrame(GetFrameId()); if (frame != nullptr) { // The debugger allocated a ShadowFrame to update a variable in the stack: we need to // deoptimize the stack to execute (and deallocate) this frame. needs_deoptimization_ = true; return false; } return true; } bool NeedsDeoptimization() const { return needs_deoptimization_; } private: // Do we need to deoptimize the stack? bool needs_deoptimization_; DISALLOW_COPY_AND_ASSIGN(NeedsDeoptimizationVisitor); }; // Do we need to deoptimize the stack to handle an exception? bool Dbg::IsForcedInterpreterNeededForExceptionImpl(Thread* thread) { const SingleStepControl* const ssc = thread->GetSingleStepControl(); if (ssc != nullptr) { // We deopt to step into the catch handler. return true; } // Deoptimization is required if at least one method in the stack needs it. However we // skip frames that will be unwound (thus not executed). NeedsDeoptimizationVisitor visitor(thread); visitor.WalkStack(true); // includes upcall. return visitor.NeedsDeoptimization(); } // Scoped utility class to suspend a thread so that we may do tasks such as walk its stack. Doesn't // cause suspension if the thread is the current thread. class ScopedDebuggerThreadSuspension { public: ScopedDebuggerThreadSuspension(Thread* self, JDWP::ObjectId thread_id) REQUIRES(!Locks::thread_list_lock_) SHARED_REQUIRES(Locks::mutator_lock_) : thread_(nullptr), error_(JDWP::ERR_NONE), self_suspend_(false), other_suspend_(false) { ScopedObjectAccessUnchecked soa(self); thread_ = DecodeThread(soa, thread_id, &error_); if (error_ == JDWP::ERR_NONE) { if (thread_ == soa.Self()) { self_suspend_ = true; } else { Thread* suspended_thread; { ScopedThreadSuspension sts(self, kWaitingForDebuggerSuspension); jobject thread_peer = Dbg::GetObjectRegistry()->GetJObject(thread_id); bool timed_out; ThreadList* const thread_list = Runtime::Current()->GetThreadList(); suspended_thread = thread_list->SuspendThreadByPeer(thread_peer, true, true, &timed_out); } if (suspended_thread == nullptr) { // Thread terminated from under us while suspending. error_ = JDWP::ERR_INVALID_THREAD; } else { CHECK_EQ(suspended_thread, thread_); other_suspend_ = true; } } } } Thread* GetThread() const { return thread_; } JDWP::JdwpError GetError() const { return error_; } ~ScopedDebuggerThreadSuspension() { if (other_suspend_) { Runtime::Current()->GetThreadList()->Resume(thread_, true); } } private: Thread* thread_; JDWP::JdwpError error_; bool self_suspend_; bool other_suspend_; }; JDWP::JdwpError Dbg::ConfigureStep(JDWP::ObjectId thread_id, JDWP::JdwpStepSize step_size, JDWP::JdwpStepDepth step_depth) { Thread* self = Thread::Current(); ScopedDebuggerThreadSuspension sts(self, thread_id); if (sts.GetError() != JDWP::ERR_NONE) { return sts.GetError(); } // Work out what ArtMethod* we're in, the current line number, and how deep the stack currently // is for step-out. struct SingleStepStackVisitor : public StackVisitor { explicit SingleStepStackVisitor(Thread* thread) SHARED_REQUIRES(Locks::mutator_lock_) : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames), stack_depth(0), method(nullptr), line_number(-1) {} // TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses // annotalysis. bool VisitFrame() NO_THREAD_SAFETY_ANALYSIS { ArtMethod* m = GetMethod(); if (!m->IsRuntimeMethod()) { ++stack_depth; if (method == nullptr) { mirror::DexCache* dex_cache = m->GetDeclaringClass()->GetDexCache(); method = m; if (dex_cache != nullptr) { const DexFile& dex_file = *dex_cache->GetDexFile(); line_number = dex_file.GetLineNumFromPC(m, GetDexPc()); } } } return true; } int stack_depth; ArtMethod* method; int32_t line_number; }; Thread* const thread = sts.GetThread(); SingleStepStackVisitor visitor(thread); visitor.WalkStack(); // Find the dex_pc values that correspond to the current line, for line-based single-stepping. struct DebugCallbackContext { DebugCallbackContext(SingleStepControl* single_step_control_cb, int32_t line_number_cb, const DexFile::CodeItem* code_item) : single_step_control_(single_step_control_cb), line_number_(line_number_cb), code_item_(code_item), last_pc_valid(false), last_pc(0) { } static bool Callback(void* raw_context, const DexFile::PositionInfo& entry) { DebugCallbackContext* context = reinterpret_cast<DebugCallbackContext*>(raw_context); if (static_cast<int32_t>(entry.line_) == context->line_number_) { if (!context->last_pc_valid) { // Everything from this address until the next line change is ours. context->last_pc = entry.address_; context->last_pc_valid = true; } // Otherwise, if we're already in a valid range for this line, // just keep going (shouldn't really happen)... } else if (context->last_pc_valid) { // and the line number is new // Add everything from the last entry up until here to the set for (uint32_t dex_pc = context->last_pc; dex_pc < entry.address_; ++dex_pc) { context->single_step_control_->AddDexPc(dex_pc); } context->last_pc_valid = false; } return false; // There may be multiple entries for any given line. } ~DebugCallbackContext() { // If the line number was the last in the position table... if (last_pc_valid) { size_t end = code_item_->insns_size_in_code_units_; for (uint32_t dex_pc = last_pc; dex_pc < end; ++dex_pc) { single_step_control_->AddDexPc(dex_pc); } } } SingleStepControl* const single_step_control_; const int32_t line_number_; const DexFile::CodeItem* const code_item_; bool last_pc_valid; uint32_t last_pc; }; // Allocate single step. SingleStepControl* single_step_control = new (std::nothrow) SingleStepControl(step_size, step_depth, visitor.stack_depth, visitor.method); if (single_step_control == nullptr) { LOG(ERROR) << "Failed to allocate SingleStepControl"; return JDWP::ERR_OUT_OF_MEMORY; } ArtMethod* m = single_step_control->GetMethod(); const int32_t line_number = visitor.line_number; // Note: if the thread is not running Java code (pure native thread), there is no "current" // method on the stack (and no line number either). if (m != nullptr && !m->IsNative()) { const DexFile::CodeItem* const code_item = m->GetCodeItem(); DebugCallbackContext context(single_step_control, line_number, code_item); m->GetDexFile()->DecodeDebugPositionInfo(code_item, DebugCallbackContext::Callback, &context); } // Activate single-step in the thread. thread->ActivateSingleStepControl(single_step_control); if (VLOG_IS_ON(jdwp)) { VLOG(jdwp) << "Single-step thread: " << *thread; VLOG(jdwp) << "Single-step step size: " << single_step_control->GetStepSize(); VLOG(jdwp) << "Single-step step depth: " << single_step_control->GetStepDepth(); VLOG(jdwp) << "Single-step current method: " << PrettyMethod(single_step_control->GetMethod()); VLOG(jdwp) << "Single-step current line: " << line_number; VLOG(jdwp) << "Single-step current stack depth: " << single_step_control->GetStackDepth(); VLOG(jdwp) << "Single-step dex_pc values:"; for (uint32_t dex_pc : single_step_control->GetDexPcs()) { VLOG(jdwp) << StringPrintf(" %#x", dex_pc); } } return JDWP::ERR_NONE; } void Dbg::UnconfigureStep(JDWP::ObjectId thread_id) { ScopedObjectAccessUnchecked soa(Thread::Current()); JDWP::JdwpError error; Thread* thread = DecodeThread(soa, thread_id, &error); if (error == JDWP::ERR_NONE) { thread->DeactivateSingleStepControl(); } } static char JdwpTagToShortyChar(JDWP::JdwpTag tag) { switch (tag) { default: LOG(FATAL) << "unknown JDWP tag: " << PrintableChar(tag); UNREACHABLE(); // Primitives. case JDWP::JT_BYTE: return 'B'; case JDWP::JT_CHAR: return 'C'; case JDWP::JT_FLOAT: return 'F'; case JDWP::JT_DOUBLE: return 'D'; case JDWP::JT_INT: return 'I'; case JDWP::JT_LONG: return 'J'; case JDWP::JT_SHORT: return 'S'; case JDWP::JT_VOID: return 'V'; case JDWP::JT_BOOLEAN: return 'Z'; // Reference types. case JDWP::JT_ARRAY: case JDWP::JT_OBJECT: case JDWP::JT_STRING: case JDWP::JT_THREAD: case JDWP::JT_THREAD_GROUP: case JDWP::JT_CLASS_LOADER: case JDWP::JT_CLASS_OBJECT: return 'L'; } } JDWP::JdwpError Dbg::PrepareInvokeMethod(uint32_t request_id, JDWP::ObjectId thread_id, JDWP::ObjectId object_id, JDWP::RefTypeId class_id, JDWP::MethodId method_id, uint32_t arg_count, uint64_t arg_values[], JDWP::JdwpTag* arg_types, uint32_t options) { Thread* const self = Thread::Current(); CHECK_EQ(self, GetDebugThread()) << "This must be called by the JDWP thread"; const bool resume_all_threads = ((options & JDWP::INVOKE_SINGLE_THREADED) == 0); ThreadList* thread_list = Runtime::Current()->GetThreadList(); Thread* targetThread = nullptr; { ScopedObjectAccessUnchecked soa(self); JDWP::JdwpError error; targetThread = DecodeThread(soa, thread_id, &error); if (error != JDWP::ERR_NONE) { LOG(ERROR) << "InvokeMethod request for invalid thread id " << thread_id; return error; } if (targetThread->GetInvokeReq() != nullptr) { // Thread is already invoking a method on behalf of the debugger. LOG(ERROR) << "InvokeMethod request for thread already invoking a method: " << *targetThread; return JDWP::ERR_ALREADY_INVOKING; } if (!targetThread->IsReadyForDebugInvoke()) { // Thread is not suspended by an event so it cannot invoke a method. LOG(ERROR) << "InvokeMethod request for thread not stopped by event: " << *targetThread; return JDWP::ERR_INVALID_THREAD; } /* * According to the JDWP specs, we are expected to resume all threads (or only the * target thread) once. So if a thread has been suspended more than once (either by * the debugger for an event or by the runtime for GC), it will remain suspended before * the invoke is executed. This means the debugger is responsible to properly resume all * the threads it has suspended so the target thread can execute the method. * * However, for compatibility reason with older versions of debuggers (like Eclipse), we * fully resume all threads (by canceling *all* debugger suspensions) when the debugger * wants us to resume all threads. This is to avoid ending up in deadlock situation. * * On the other hand, if we are asked to only resume the target thread, then we follow the * JDWP specs by resuming that thread only once. This means the thread will remain suspended * if it has been suspended more than once before the invoke (and again, this is the * responsibility of the debugger to properly resume that thread before invoking a method). */ int suspend_count; { MutexLock mu2(soa.Self(), *Locks::thread_suspend_count_lock_); suspend_count = targetThread->GetSuspendCount(); } if (suspend_count > 1 && resume_all_threads) { // The target thread will remain suspended even after we resume it. Let's emit a warning // to indicate the invoke won't be executed until the thread is resumed. LOG(WARNING) << *targetThread << " suspended more than once (suspend count == " << suspend_count << "). This thread will invoke the method only once " << "it is fully resumed."; } mirror::Object* receiver = gRegistry->Get<mirror::Object*>(object_id, &error); if (error != JDWP::ERR_NONE) { return JDWP::ERR_INVALID_OBJECT; } gRegistry->Get<mirror::Object*>(thread_id, &error); if (error != JDWP::ERR_NONE) { return JDWP::ERR_INVALID_OBJECT; } mirror::Class* c = DecodeClass(class_id, &error); if (c == nullptr) { return error; } ArtMethod* m = FromMethodId(method_id); if (m->IsStatic() != (receiver == nullptr)) { return JDWP::ERR_INVALID_METHODID; } if (m->IsStatic()) { if (m->GetDeclaringClass() != c) { return JDWP::ERR_INVALID_METHODID; } } else { if (!m->GetDeclaringClass()->IsAssignableFrom(c)) { return JDWP::ERR_INVALID_METHODID; } } // Check the argument list matches the method. uint32_t shorty_len = 0; const char* shorty = m->GetShorty(&shorty_len); if (shorty_len - 1 != arg_count) { return JDWP::ERR_ILLEGAL_ARGUMENT; } { StackHandleScope<2> hs(soa.Self()); HandleWrapper<mirror::Object> h_obj(hs.NewHandleWrapper(&receiver)); HandleWrapper<mirror::Class> h_klass(hs.NewHandleWrapper(&c)); const DexFile::TypeList* types = m->GetParameterTypeList(); for (size_t i = 0; i < arg_count; ++i) { if (shorty[i + 1] != JdwpTagToShortyChar(arg_types[i])) { return JDWP::ERR_ILLEGAL_ARGUMENT; } if (shorty[i + 1] == 'L') { // Did we really get an argument of an appropriate reference type? mirror::Class* parameter_type = m->GetClassFromTypeIndex(types->GetTypeItem(i).type_idx_, true /* resolve */, sizeof(void*)); mirror::Object* argument = gRegistry->Get<mirror::Object*>(arg_values[i], &error); if (error != JDWP::ERR_NONE) { return JDWP::ERR_INVALID_OBJECT; } if (argument != nullptr && !argument->InstanceOf(parameter_type)) { return JDWP::ERR_ILLEGAL_ARGUMENT; } // Turn the on-the-wire ObjectId into a jobject. jvalue& v = reinterpret_cast<jvalue&>(arg_values[i]); v.l = gRegistry->GetJObject(arg_values[i]); } } } // Allocates a DebugInvokeReq. DebugInvokeReq* req = new (std::nothrow) DebugInvokeReq(request_id, thread_id, receiver, c, m, options, arg_values, arg_count); if (req == nullptr) { LOG(ERROR) << "Failed to allocate DebugInvokeReq"; return JDWP::ERR_OUT_OF_MEMORY; } // Attaches the DebugInvokeReq to the target thread so it executes the method when // it is resumed. Once the invocation completes, the target thread will delete it before // suspending itself (see ThreadList::SuspendSelfForDebugger). targetThread->SetDebugInvokeReq(req); } // The fact that we've released the thread list lock is a bit risky --- if the thread goes // away we're sitting high and dry -- but we must release this before the UndoDebuggerSuspensions // call. if (resume_all_threads) { VLOG(jdwp) << " Resuming all threads"; thread_list->UndoDebuggerSuspensions(); } else { VLOG(jdwp) << " Resuming event thread only"; thread_list->Resume(targetThread, true); } return JDWP::ERR_NONE; } void Dbg::ExecuteMethod(DebugInvokeReq* pReq) { Thread* const self = Thread::Current(); CHECK_NE(self, GetDebugThread()) << "This must be called by the event thread"; ScopedObjectAccess soa(self); // We can be called while an exception is pending. We need // to preserve that across the method invocation. StackHandleScope<1> hs(soa.Self()); Handle<mirror::Throwable> old_exception = hs.NewHandle(soa.Self()->GetException()); soa.Self()->ClearException(); // Execute the method then sends reply to the debugger. ExecuteMethodWithoutPendingException(soa, pReq); // If an exception was pending before the invoke, restore it now. if (old_exception.Get() != nullptr) { soa.Self()->SetException(old_exception.Get()); } } // Helper function: write a variable-width value into the output input buffer. static void WriteValue(JDWP::ExpandBuf* pReply, int width, uint64_t value) { switch (width) { case 1: expandBufAdd1(pReply, value); break; case 2: expandBufAdd2BE(pReply, value); break; case 4: expandBufAdd4BE(pReply, value); break; case 8: expandBufAdd8BE(pReply, value); break; default: LOG(FATAL) << width; UNREACHABLE(); } } void Dbg::ExecuteMethodWithoutPendingException(ScopedObjectAccess& soa, DebugInvokeReq* pReq) { soa.Self()->AssertNoPendingException(); // Translate the method through the vtable, unless the debugger wants to suppress it. ArtMethod* m = pReq->method; size_t image_pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); if ((pReq->options & JDWP::INVOKE_NONVIRTUAL) == 0 && pReq->receiver.Read() != nullptr) { ArtMethod* actual_method = pReq->klass.Read()->FindVirtualMethodForVirtualOrInterface(m, image_pointer_size); if (actual_method != m) { VLOG(jdwp) << "ExecuteMethod translated " << PrettyMethod(m) << " to " << PrettyMethod(actual_method); m = actual_method; } } VLOG(jdwp) << "ExecuteMethod " << PrettyMethod(m) << " receiver=" << pReq->receiver.Read() << " arg_count=" << pReq->arg_count; CHECK(m != nullptr); static_assert(sizeof(jvalue) == sizeof(uint64_t), "jvalue and uint64_t have different sizes."); // Invoke the method. ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(pReq->receiver.Read())); JValue result = InvokeWithJValues(soa, ref.get(), soa.EncodeMethod(m), reinterpret_cast<jvalue*>(pReq->arg_values.get())); // Prepare JDWP ids for the reply. JDWP::JdwpTag result_tag = BasicTagFromDescriptor(m->GetShorty()); const bool is_object_result = (result_tag == JDWP::JT_OBJECT); StackHandleScope<2> hs(soa.Self()); Handle<mirror::Object> object_result = hs.NewHandle(is_object_result ? result.GetL() : nullptr); Handle<mirror::Throwable> exception = hs.NewHandle(soa.Self()->GetException()); soa.Self()->ClearException(); if (!IsDebuggerActive()) { // The debugger detached: we must not re-suspend threads. We also don't need to fill the reply // because it won't be sent either. return; } JDWP::ObjectId exceptionObjectId = gRegistry->Add(exception); uint64_t result_value = 0; if (exceptionObjectId != 0) { VLOG(jdwp) << " JDWP invocation returning with exception=" << exception.Get() << " " << exception->Dump(); result_value = 0; } else if (is_object_result) { /* if no exception was thrown, examine object result more closely */ JDWP::JdwpTag new_tag = TagFromObject(soa, object_result.Get()); if (new_tag != result_tag) { VLOG(jdwp) << " JDWP promoted result from " << result_tag << " to " << new_tag; result_tag = new_tag; } // Register the object in the registry and reference its ObjectId. This ensures // GC safety and prevents from accessing stale reference if the object is moved. result_value = gRegistry->Add(object_result.Get()); } else { // Primitive result. DCHECK(IsPrimitiveTag(result_tag)); result_value = result.GetJ(); } const bool is_constructor = m->IsConstructor() && !m->IsStatic(); if (is_constructor) { // If we invoked a constructor (which actually returns void), return the receiver, // unless we threw, in which case we return null. DCHECK_EQ(JDWP::JT_VOID, result_tag); if (exceptionObjectId == 0) { // TODO we could keep the receiver ObjectId in the DebugInvokeReq to avoid looking into the // object registry. result_value = GetObjectRegistry()->Add(pReq->receiver.Read()); result_tag = TagFromObject(soa, pReq->receiver.Read()); } else { result_value = 0; result_tag = JDWP::JT_OBJECT; } } // Suspend other threads if the invoke is not single-threaded. if ((pReq->options & JDWP::INVOKE_SINGLE_THREADED) == 0) { ScopedThreadSuspension sts(soa.Self(), kWaitingForDebuggerSuspension); VLOG(jdwp) << " Suspending all threads"; Runtime::Current()->GetThreadList()->SuspendAllForDebugger(); } VLOG(jdwp) << " --> returned " << result_tag << StringPrintf(" %#" PRIx64 " (except=%#" PRIx64 ")", result_value, exceptionObjectId); // Show detailed debug output. if (result_tag == JDWP::JT_STRING && exceptionObjectId == 0) { if (result_value != 0) { if (VLOG_IS_ON(jdwp)) { std::string result_string; JDWP::JdwpError error = Dbg::StringToUtf8(result_value, &result_string); CHECK_EQ(error, JDWP::ERR_NONE); VLOG(jdwp) << " string '" << result_string << "'"; } } else { VLOG(jdwp) << " string (null)"; } } // Attach the reply to DebugInvokeReq so it can be sent to the debugger when the event thread // is ready to suspend. BuildInvokeReply(pReq->reply, pReq->request_id, result_tag, result_value, exceptionObjectId); } void Dbg::BuildInvokeReply(JDWP::ExpandBuf* pReply, uint32_t request_id, JDWP::JdwpTag result_tag, uint64_t result_value, JDWP::ObjectId exception) { // Make room for the JDWP header since we do not know the size of the reply yet. JDWP::expandBufAddSpace(pReply, kJDWPHeaderLen); size_t width = GetTagWidth(result_tag); JDWP::expandBufAdd1(pReply, result_tag); if (width != 0) { WriteValue(pReply, width, result_value); } JDWP::expandBufAdd1(pReply, JDWP::JT_OBJECT); JDWP::expandBufAddObjectId(pReply, exception); // Now we know the size, we can complete the JDWP header. uint8_t* buf = expandBufGetBuffer(pReply); JDWP::Set4BE(buf + kJDWPHeaderSizeOffset, expandBufGetLength(pReply)); JDWP::Set4BE(buf + kJDWPHeaderIdOffset, request_id); JDWP::Set1(buf + kJDWPHeaderFlagsOffset, kJDWPFlagReply); // flags JDWP::Set2BE(buf + kJDWPHeaderErrorCodeOffset, JDWP::ERR_NONE); } void Dbg::FinishInvokeMethod(DebugInvokeReq* pReq) { CHECK_NE(Thread::Current(), GetDebugThread()) << "This must be called by the event thread"; JDWP::ExpandBuf* const pReply = pReq->reply; CHECK(pReply != nullptr) << "No reply attached to DebugInvokeReq"; // We need to prevent other threads (including JDWP thread) from interacting with the debugger // while we send the reply but are not yet suspended. The JDWP token will be released just before // we suspend ourself again (see ThreadList::SuspendSelfForDebugger). gJdwpState->AcquireJdwpTokenForEvent(pReq->thread_id); // Send the reply unless the debugger detached before the completion of the method. if (IsDebuggerActive()) { const size_t replyDataLength = expandBufGetLength(pReply) - kJDWPHeaderLen; VLOG(jdwp) << StringPrintf("REPLY INVOKE id=0x%06x (length=%zu)", pReq->request_id, replyDataLength); gJdwpState->SendRequest(pReply); } else { VLOG(jdwp) << "Not sending invoke reply because debugger detached"; } } /* * "request" contains a full JDWP packet, possibly with multiple chunks. We * need to process each, accumulate the replies, and ship the whole thing * back. * * Returns "true" if we have a reply. The reply buffer is newly allocated, * and includes the chunk type/length, followed by the data. * * OLD-TODO: we currently assume that the request and reply include a single * chunk. If this becomes inconvenient we will need to adapt. */ bool Dbg::DdmHandlePacket(JDWP::Request* request, uint8_t** pReplyBuf, int* pReplyLen) { Thread* self = Thread::Current(); JNIEnv* env = self->GetJniEnv(); uint32_t type = request->ReadUnsigned32("type"); uint32_t length = request->ReadUnsigned32("length"); // Create a byte[] corresponding to 'request'. size_t request_length = request->size(); ScopedLocalRef<jbyteArray> dataArray(env, env->NewByteArray(request_length)); if (dataArray.get() == nullptr) { LOG(WARNING) << "byte[] allocation failed: " << request_length; env->ExceptionClear(); return false; } env->SetByteArrayRegion(dataArray.get(), 0, request_length, reinterpret_cast<const jbyte*>(request->data())); request->Skip(request_length); // Run through and find all chunks. [Currently just find the first.] ScopedByteArrayRO contents(env, dataArray.get()); if (length != request_length) { LOG(WARNING) << StringPrintf("bad chunk found (len=%u pktLen=%zd)", length, request_length); return false; } // Call "private static Chunk dispatch(int type, byte[] data, int offset, int length)". ScopedLocalRef<jobject> chunk(env, env->CallStaticObjectMethod(WellKnownClasses::org_apache_harmony_dalvik_ddmc_DdmServer, WellKnownClasses::org_apache_harmony_dalvik_ddmc_DdmServer_dispatch, type, dataArray.get(), 0, length)); if (env->ExceptionCheck()) { LOG(INFO) << StringPrintf("Exception thrown by dispatcher for 0x%08x", type); env->ExceptionDescribe(); env->ExceptionClear(); return false; } if (chunk.get() == nullptr) { return false; } /* * Pull the pieces out of the chunk. We copy the results into a * newly-allocated buffer that the caller can free. We don't want to * continue using the Chunk object because nothing has a reference to it. * * We could avoid this by returning type/data/offset/length and having * the caller be aware of the object lifetime issues, but that * integrates the JDWP code more tightly into the rest of the runtime, and doesn't work * if we have responses for multiple chunks. * * So we're pretty much stuck with copying data around multiple times. */ ScopedLocalRef<jbyteArray> replyData(env, reinterpret_cast<jbyteArray>(env->GetObjectField(chunk.get(), WellKnownClasses::org_apache_harmony_dalvik_ddmc_Chunk_data))); jint offset = env->GetIntField(chunk.get(), WellKnownClasses::org_apache_harmony_dalvik_ddmc_Chunk_offset); length = env->GetIntField(chunk.get(), WellKnownClasses::org_apache_harmony_dalvik_ddmc_Chunk_length); type = env->GetIntField(chunk.get(), WellKnownClasses::org_apache_harmony_dalvik_ddmc_Chunk_type); VLOG(jdwp) << StringPrintf("DDM reply: type=0x%08x data=%p offset=%d length=%d", type, replyData.get(), offset, length); if (length == 0 || replyData.get() == nullptr) { return false; } const int kChunkHdrLen = 8; uint8_t* reply = new uint8_t[length + kChunkHdrLen]; if (reply == nullptr) { LOG(WARNING) << "malloc failed: " << (length + kChunkHdrLen); return false; } JDWP::Set4BE(reply + 0, type); JDWP::Set4BE(reply + 4, length); env->GetByteArrayRegion(replyData.get(), offset, length, reinterpret_cast<jbyte*>(reply + kChunkHdrLen)); *pReplyBuf = reply; *pReplyLen = length + kChunkHdrLen; VLOG(jdwp) << StringPrintf("dvmHandleDdm returning type=%.4s %p len=%d", reinterpret_cast<char*>(reply), reply, length); return true; } void Dbg::DdmBroadcast(bool connect) { VLOG(jdwp) << "Broadcasting DDM " << (connect ? "connect" : "disconnect") << "..."; Thread* self = Thread::Current(); if (self->GetState() != kRunnable) { LOG(ERROR) << "DDM broadcast in thread state " << self->GetState(); /* try anyway? */ } JNIEnv* env = self->GetJniEnv(); jint event = connect ? 1 /*DdmServer.CONNECTED*/ : 2 /*DdmServer.DISCONNECTED*/; env->CallStaticVoidMethod(WellKnownClasses::org_apache_harmony_dalvik_ddmc_DdmServer, WellKnownClasses::org_apache_harmony_dalvik_ddmc_DdmServer_broadcast, event); if (env->ExceptionCheck()) { LOG(ERROR) << "DdmServer.broadcast " << event << " failed"; env->ExceptionDescribe(); env->ExceptionClear(); } } void Dbg::DdmConnected() { Dbg::DdmBroadcast(true); } void Dbg::DdmDisconnected() { Dbg::DdmBroadcast(false); gDdmThreadNotification = false; } /* * Send a notification when a thread starts, stops, or changes its name. * * Because we broadcast the full set of threads when the notifications are * first enabled, it's possible for "thread" to be actively executing. */ void Dbg::DdmSendThreadNotification(Thread* t, uint32_t type) { if (!gDdmThreadNotification) { return; } if (type == CHUNK_TYPE("THDE")) { uint8_t buf[4]; JDWP::Set4BE(&buf[0], t->GetThreadId()); Dbg::DdmSendChunk(CHUNK_TYPE("THDE"), 4, buf); } else { CHECK(type == CHUNK_TYPE("THCR") || type == CHUNK_TYPE("THNM")) << type; ScopedObjectAccessUnchecked soa(Thread::Current()); StackHandleScope<1> hs(soa.Self()); Handle<mirror::String> name(hs.NewHandle(t->GetThreadName(soa))); size_t char_count = (name.Get() != nullptr) ? name->GetLength() : 0; const jchar* chars = (name.Get() != nullptr) ? name->GetValue() : nullptr; std::vector<uint8_t> bytes; JDWP::Append4BE(bytes, t->GetThreadId()); JDWP::AppendUtf16BE(bytes, chars, char_count); CHECK_EQ(bytes.size(), char_count*2 + sizeof(uint32_t)*2); Dbg::DdmSendChunk(type, bytes); } } void Dbg::DdmSetThreadNotification(bool enable) { // Enable/disable thread notifications. gDdmThreadNotification = enable; if (enable) { // Suspend the VM then post thread start notifications for all threads. Threads attaching will // see a suspension in progress and block until that ends. They then post their own start // notification. SuspendVM(); std::list<Thread*> threads; Thread* self = Thread::Current(); { MutexLock mu(self, *Locks::thread_list_lock_); threads = Runtime::Current()->GetThreadList()->GetList(); } { ScopedObjectAccess soa(self); for (Thread* thread : threads) { Dbg::DdmSendThreadNotification(thread, CHUNK_TYPE("THCR")); } } ResumeVM(); } } void Dbg::PostThreadStartOrStop(Thread* t, uint32_t type) { if (IsDebuggerActive()) { gJdwpState->PostThreadChange(t, type == CHUNK_TYPE("THCR")); } Dbg::DdmSendThreadNotification(t, type); } void Dbg::PostThreadStart(Thread* t) { Dbg::PostThreadStartOrStop(t, CHUNK_TYPE("THCR")); } void Dbg::PostThreadDeath(Thread* t) { Dbg::PostThreadStartOrStop(t, CHUNK_TYPE("THDE")); } void Dbg::DdmSendChunk(uint32_t type, size_t byte_count, const uint8_t* buf) { CHECK(buf != nullptr); iovec vec[1]; vec[0].iov_base = reinterpret_cast<void*>(const_cast<uint8_t*>(buf)); vec[0].iov_len = byte_count; Dbg::DdmSendChunkV(type, vec, 1); } void Dbg::DdmSendChunk(uint32_t type, const std::vector<uint8_t>& bytes) { DdmSendChunk(type, bytes.size(), &bytes[0]); } void Dbg::DdmSendChunkV(uint32_t type, const iovec* iov, int iov_count) { if (gJdwpState == nullptr) { VLOG(jdwp) << "Debugger thread not active, ignoring DDM send: " << type; } else { gJdwpState->DdmSendChunkV(type, iov, iov_count); } } JDWP::JdwpState* Dbg::GetJdwpState() { return gJdwpState; } int Dbg::DdmHandleHpifChunk(HpifWhen when) { if (when == HPIF_WHEN_NOW) { DdmSendHeapInfo(when); return true; } if (when != HPIF_WHEN_NEVER && when != HPIF_WHEN_NEXT_GC && when != HPIF_WHEN_EVERY_GC) { LOG(ERROR) << "invalid HpifWhen value: " << static_cast<int>(when); return false; } gDdmHpifWhen = when; return true; } bool Dbg::DdmHandleHpsgNhsgChunk(Dbg::HpsgWhen when, Dbg::HpsgWhat what, bool native) { if (when != HPSG_WHEN_NEVER && when != HPSG_WHEN_EVERY_GC) { LOG(ERROR) << "invalid HpsgWhen value: " << static_cast<int>(when); return false; } if (what != HPSG_WHAT_MERGED_OBJECTS && what != HPSG_WHAT_DISTINCT_OBJECTS) { LOG(ERROR) << "invalid HpsgWhat value: " << static_cast<int>(what); return false; } if (native) { gDdmNhsgWhen = when; gDdmNhsgWhat = what; } else { gDdmHpsgWhen = when; gDdmHpsgWhat = what; } return true; } void Dbg::DdmSendHeapInfo(HpifWhen reason) { // If there's a one-shot 'when', reset it. if (reason == gDdmHpifWhen) { if (gDdmHpifWhen == HPIF_WHEN_NEXT_GC) { gDdmHpifWhen = HPIF_WHEN_NEVER; } } /* * Chunk HPIF (client --> server) * * Heap Info. General information about the heap, * suitable for a summary display. * * [u4]: number of heaps * * For each heap: * [u4]: heap ID * [u8]: timestamp in ms since Unix epoch * [u1]: capture reason (same as 'when' value from server) * [u4]: max heap size in bytes (-Xmx) * [u4]: current heap size in bytes * [u4]: current number of bytes allocated * [u4]: current number of objects allocated */ uint8_t heap_count = 1; gc::Heap* heap = Runtime::Current()->GetHeap(); std::vector<uint8_t> bytes; JDWP::Append4BE(bytes, heap_count); JDWP::Append4BE(bytes, 1); // Heap id (bogus; we only have one heap). JDWP::Append8BE(bytes, MilliTime()); JDWP::Append1BE(bytes, reason); JDWP::Append4BE(bytes, heap->GetMaxMemory()); // Max allowed heap size in bytes. JDWP::Append4BE(bytes, heap->GetTotalMemory()); // Current heap size in bytes. JDWP::Append4BE(bytes, heap->GetBytesAllocated()); JDWP::Append4BE(bytes, heap->GetObjectsAllocated()); CHECK_EQ(bytes.size(), 4U + (heap_count * (4 + 8 + 1 + 4 + 4 + 4 + 4))); Dbg::DdmSendChunk(CHUNK_TYPE("HPIF"), bytes); } enum HpsgSolidity { SOLIDITY_FREE = 0, SOLIDITY_HARD = 1, SOLIDITY_SOFT = 2, SOLIDITY_WEAK = 3, SOLIDITY_PHANTOM = 4, SOLIDITY_FINALIZABLE = 5, SOLIDITY_SWEEP = 6, }; enum HpsgKind { KIND_OBJECT = 0, KIND_CLASS_OBJECT = 1, KIND_ARRAY_1 = 2, KIND_ARRAY_2 = 3, KIND_ARRAY_4 = 4, KIND_ARRAY_8 = 5, KIND_UNKNOWN = 6, KIND_NATIVE = 7, }; #define HPSG_PARTIAL (1<<7) #define HPSG_STATE(solidity, kind) ((uint8_t)((((kind) & 0x7) << 3) | ((solidity) & 0x7))) class HeapChunkContext { public: // Maximum chunk size. Obtain this from the formula: // (((maximum_heap_size / ALLOCATION_UNIT_SIZE) + 255) / 256) * 2 HeapChunkContext(bool merge, bool native) : buf_(16384 - 16), type_(0), chunk_overhead_(0) { Reset(); if (native) { type_ = CHUNK_TYPE("NHSG"); } else { type_ = merge ? CHUNK_TYPE("HPSG") : CHUNK_TYPE("HPSO"); } } ~HeapChunkContext() { if (p_ > &buf_[0]) { Flush(); } } void SetChunkOverhead(size_t chunk_overhead) { chunk_overhead_ = chunk_overhead; } void ResetStartOfNextChunk() { startOfNextMemoryChunk_ = nullptr; } void EnsureHeader(const void* chunk_ptr) { if (!needHeader_) { return; } // Start a new HPSx chunk. JDWP::Write4BE(&p_, 1); // Heap id (bogus; we only have one heap). JDWP::Write1BE(&p_, 8); // Size of allocation unit, in bytes. JDWP::Write4BE(&p_, reinterpret_cast<uintptr_t>(chunk_ptr)); // virtual address of segment start. JDWP::Write4BE(&p_, 0); // offset of this piece (relative to the virtual address). // [u4]: length of piece, in allocation units // We won't know this until we're done, so save the offset and stuff in a dummy value. pieceLenField_ = p_; JDWP::Write4BE(&p_, 0x55555555); needHeader_ = false; } void Flush() SHARED_REQUIRES(Locks::mutator_lock_) { if (pieceLenField_ == nullptr) { // Flush immediately post Reset (maybe back-to-back Flush). Ignore. CHECK(needHeader_); return; } // Patch the "length of piece" field. CHECK_LE(&buf_[0], pieceLenField_); CHECK_LE(pieceLenField_, p_); JDWP::Set4BE(pieceLenField_, totalAllocationUnits_); Dbg::DdmSendChunk(type_, p_ - &buf_[0], &buf_[0]); Reset(); } static void HeapChunkJavaCallback(void* start, void* end, size_t used_bytes, void* arg) SHARED_REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_) { reinterpret_cast<HeapChunkContext*>(arg)->HeapChunkJavaCallback(start, end, used_bytes); } static void HeapChunkNativeCallback(void* start, void* end, size_t used_bytes, void* arg) SHARED_REQUIRES(Locks::mutator_lock_) { reinterpret_cast<HeapChunkContext*>(arg)->HeapChunkNativeCallback(start, end, used_bytes); } private: enum { ALLOCATION_UNIT_SIZE = 8 }; void Reset() { p_ = &buf_[0]; ResetStartOfNextChunk(); totalAllocationUnits_ = 0; needHeader_ = true; pieceLenField_ = nullptr; } bool IsNative() const { return type_ == CHUNK_TYPE("NHSG"); } // Returns true if the object is not an empty chunk. bool ProcessRecord(void* start, size_t used_bytes) SHARED_REQUIRES(Locks::mutator_lock_) { // Note: heap call backs cannot manipulate the heap upon which they are crawling, care is taken // in the following code not to allocate memory, by ensuring buf_ is of the correct size if (used_bytes == 0) { if (start == nullptr) { // Reset for start of new heap. startOfNextMemoryChunk_ = nullptr; Flush(); } // Only process in use memory so that free region information // also includes dlmalloc book keeping. return false; } if (startOfNextMemoryChunk_ != nullptr) { // Transmit any pending free memory. Native free memory of over kMaxFreeLen could be because // of the use of mmaps, so don't report. If not free memory then start a new segment. bool flush = true; if (start > startOfNextMemoryChunk_) { const size_t kMaxFreeLen = 2 * kPageSize; void* free_start = startOfNextMemoryChunk_; void* free_end = start; const size_t free_len = reinterpret_cast<uintptr_t>(free_end) - reinterpret_cast<uintptr_t>(free_start); if (!IsNative() || free_len < kMaxFreeLen) { AppendChunk(HPSG_STATE(SOLIDITY_FREE, 0), free_start, free_len, IsNative()); flush = false; } } if (flush) { startOfNextMemoryChunk_ = nullptr; Flush(); } } return true; } void HeapChunkNativeCallback(void* start, void* /*end*/, size_t used_bytes) SHARED_REQUIRES(Locks::mutator_lock_) { if (ProcessRecord(start, used_bytes)) { uint8_t state = ExamineNativeObject(start); AppendChunk(state, start, used_bytes + chunk_overhead_, true /*is_native*/); startOfNextMemoryChunk_ = reinterpret_cast<char*>(start) + used_bytes + chunk_overhead_; } } void HeapChunkJavaCallback(void* start, void* /*end*/, size_t used_bytes) SHARED_REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_) { if (ProcessRecord(start, used_bytes)) { // Determine the type of this chunk. // OLD-TODO: if context.merge, see if this chunk is different from the last chunk. // If it's the same, we should combine them. uint8_t state = ExamineJavaObject(reinterpret_cast<mirror::Object*>(start)); AppendChunk(state, start, used_bytes + chunk_overhead_, false /*is_native*/); startOfNextMemoryChunk_ = reinterpret_cast<char*>(start) + used_bytes + chunk_overhead_; } } void AppendChunk(uint8_t state, void* ptr, size_t length, bool is_native) SHARED_REQUIRES(Locks::mutator_lock_) { // Make sure there's enough room left in the buffer. // We need to use two bytes for every fractional 256 allocation units used by the chunk plus // 17 bytes for any header. const size_t needed = ((RoundUp(length / ALLOCATION_UNIT_SIZE, 256) / 256) * 2) + 17; size_t byte_left = &buf_.back() - p_; if (byte_left < needed) { if (is_native) { // Cannot trigger memory allocation while walking native heap. return; } Flush(); } byte_left = &buf_.back() - p_; if (byte_left < needed) { LOG(WARNING) << "Chunk is too big to transmit (chunk_len=" << length << ", " << needed << " bytes)"; return; } EnsureHeader(ptr); // Write out the chunk description. length /= ALLOCATION_UNIT_SIZE; // Convert to allocation units. totalAllocationUnits_ += length; while (length > 256) { *p_++ = state | HPSG_PARTIAL; *p_++ = 255; // length - 1 length -= 256; } *p_++ = state; *p_++ = length - 1; } uint8_t ExamineNativeObject(const void* p) SHARED_REQUIRES(Locks::mutator_lock_) { return p == nullptr ? HPSG_STATE(SOLIDITY_FREE, 0) : HPSG_STATE(SOLIDITY_HARD, KIND_NATIVE); } uint8_t ExamineJavaObject(mirror::Object* o) SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { if (o == nullptr) { return HPSG_STATE(SOLIDITY_FREE, 0); } // It's an allocated chunk. Figure out what it is. gc::Heap* heap = Runtime::Current()->GetHeap(); if (!heap->IsLiveObjectLocked(o)) { LOG(ERROR) << "Invalid object in managed heap: " << o; return HPSG_STATE(SOLIDITY_HARD, KIND_NATIVE); } mirror::Class* c = o->GetClass(); if (c == nullptr) { // The object was probably just created but hasn't been initialized yet. return HPSG_STATE(SOLIDITY_HARD, KIND_OBJECT); } if (!heap->IsValidObjectAddress(c)) { LOG(ERROR) << "Invalid class for managed heap object: " << o << " " << c; return HPSG_STATE(SOLIDITY_HARD, KIND_UNKNOWN); } if (c->GetClass() == nullptr) { LOG(ERROR) << "Null class of class " << c << " for object " << o; return HPSG_STATE(SOLIDITY_HARD, KIND_UNKNOWN); } if (c->IsClassClass()) { return HPSG_STATE(SOLIDITY_HARD, KIND_CLASS_OBJECT); } if (c->IsArrayClass()) { switch (c->GetComponentSize()) { case 1: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_1); case 2: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_2); case 4: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_4); case 8: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_8); } } return HPSG_STATE(SOLIDITY_HARD, KIND_OBJECT); } std::vector<uint8_t> buf_; uint8_t* p_; uint8_t* pieceLenField_; void* startOfNextMemoryChunk_; size_t totalAllocationUnits_; uint32_t type_; bool needHeader_; size_t chunk_overhead_; DISALLOW_COPY_AND_ASSIGN(HeapChunkContext); }; static void BumpPointerSpaceCallback(mirror::Object* obj, void* arg) SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { const size_t size = RoundUp(obj->SizeOf(), kObjectAlignment); HeapChunkContext::HeapChunkJavaCallback( obj, reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(obj) + size), size, arg); } void Dbg::DdmSendHeapSegments(bool native) { Dbg::HpsgWhen when = native ? gDdmNhsgWhen : gDdmHpsgWhen; Dbg::HpsgWhat what = native ? gDdmNhsgWhat : gDdmHpsgWhat; if (when == HPSG_WHEN_NEVER) { return; } // Figure out what kind of chunks we'll be sending. CHECK(what == HPSG_WHAT_MERGED_OBJECTS || what == HPSG_WHAT_DISTINCT_OBJECTS) << static_cast<int>(what); // First, send a heap start chunk. uint8_t heap_id[4]; JDWP::Set4BE(&heap_id[0], 1); // Heap id (bogus; we only have one heap). Dbg::DdmSendChunk(native ? CHUNK_TYPE("NHST") : CHUNK_TYPE("HPST"), sizeof(heap_id), heap_id); Thread* self = Thread::Current(); Locks::mutator_lock_->AssertSharedHeld(self); // Send a series of heap segment chunks. HeapChunkContext context(what == HPSG_WHAT_MERGED_OBJECTS, native); if (native) { UNIMPLEMENTED(WARNING) << "Native heap inspection is not supported"; } else { gc::Heap* heap = Runtime::Current()->GetHeap(); for (const auto& space : heap->GetContinuousSpaces()) { if (space->IsDlMallocSpace()) { ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); // dlmalloc's chunk header is 2 * sizeof(size_t), but if the previous chunk is in use for an // allocation then the first sizeof(size_t) may belong to it. context.SetChunkOverhead(sizeof(size_t)); space->AsDlMallocSpace()->Walk(HeapChunkContext::HeapChunkJavaCallback, &context); } else if (space->IsRosAllocSpace()) { context.SetChunkOverhead(0); // Need to acquire the mutator lock before the heap bitmap lock with exclusive access since // RosAlloc's internal logic doesn't know to release and reacquire the heap bitmap lock. ScopedThreadSuspension sts(self, kSuspended); ScopedSuspendAll ssa(__FUNCTION__); ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); space->AsRosAllocSpace()->Walk(HeapChunkContext::HeapChunkJavaCallback, &context); } else if (space->IsBumpPointerSpace()) { ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); context.SetChunkOverhead(0); space->AsBumpPointerSpace()->Walk(BumpPointerSpaceCallback, &context); HeapChunkContext::HeapChunkJavaCallback(nullptr, nullptr, 0, &context); } else if (space->IsRegionSpace()) { heap->IncrementDisableMovingGC(self); { ScopedThreadSuspension sts(self, kSuspended); ScopedSuspendAll ssa(__FUNCTION__); ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); context.SetChunkOverhead(0); space->AsRegionSpace()->Walk(BumpPointerSpaceCallback, &context); HeapChunkContext::HeapChunkJavaCallback(nullptr, nullptr, 0, &context); } heap->DecrementDisableMovingGC(self); } else { UNIMPLEMENTED(WARNING) << "Not counting objects in space " << *space; } context.ResetStartOfNextChunk(); } ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); // Walk the large objects, these are not in the AllocSpace. context.SetChunkOverhead(0); heap->GetLargeObjectsSpace()->Walk(HeapChunkContext::HeapChunkJavaCallback, &context); } // Finally, send a heap end chunk. Dbg::DdmSendChunk(native ? CHUNK_TYPE("NHEN") : CHUNK_TYPE("HPEN"), sizeof(heap_id), heap_id); } void Dbg::SetAllocTrackingEnabled(bool enable) { gc::AllocRecordObjectMap::SetAllocTrackingEnabled(enable); } void Dbg::DumpRecentAllocations() { ScopedObjectAccess soa(Thread::Current()); MutexLock mu(soa.Self(), *Locks::alloc_tracker_lock_); if (!Runtime::Current()->GetHeap()->IsAllocTrackingEnabled()) { LOG(INFO) << "Not recording tracked allocations"; return; } gc::AllocRecordObjectMap* records = Runtime::Current()->GetHeap()->GetAllocationRecords(); CHECK(records != nullptr); const uint16_t capped_count = CappedAllocRecordCount(records->GetRecentAllocationSize()); uint16_t count = capped_count; LOG(INFO) << "Tracked allocations, (count=" << count << ")"; for (auto it = records->RBegin(), end = records->REnd(); count > 0 && it != end; count--, it++) { const gc::AllocRecord* record = &it->second; LOG(INFO) << StringPrintf(" Thread %-2d %6zd bytes ", record->GetTid(), record->ByteCount()) << PrettyClass(record->GetClass()); for (size_t stack_frame = 0, depth = record->GetDepth(); stack_frame < depth; ++stack_frame) { const gc::AllocRecordStackTraceElement& stack_element = record->StackElement(stack_frame); ArtMethod* m = stack_element.GetMethod(); LOG(INFO) << " " << PrettyMethod(m) << " line " << stack_element.ComputeLineNumber(); } // pause periodically to help logcat catch up if ((count % 5) == 0) { usleep(40000); } } } class StringTable { public: StringTable() { } void Add(const std::string& str) { table_.insert(str); } void Add(const char* str) { table_.insert(str); } size_t IndexOf(const char* s) const { auto it = table_.find(s); if (it == table_.end()) { LOG(FATAL) << "IndexOf(\"" << s << "\") failed"; } return std::distance(table_.begin(), it); } size_t Size() const { return table_.size(); } void WriteTo(std::vector<uint8_t>& bytes) const { for (const std::string& str : table_) { const char* s = str.c_str(); size_t s_len = CountModifiedUtf8Chars(s); std::unique_ptr<uint16_t[]> s_utf16(new uint16_t[s_len]); ConvertModifiedUtf8ToUtf16(s_utf16.get(), s); JDWP::AppendUtf16BE(bytes, s_utf16.get(), s_len); } } private: std::set<std::string> table_; DISALLOW_COPY_AND_ASSIGN(StringTable); }; static const char* GetMethodSourceFile(ArtMethod* method) SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(method != nullptr); const char* source_file = method->GetDeclaringClassSourceFile(); return (source_file != nullptr) ? source_file : ""; } /* * The data we send to DDMS contains everything we have recorded. * * Message header (all values big-endian): * (1b) message header len (to allow future expansion); includes itself * (1b) entry header len * (1b) stack frame len * (2b) number of entries * (4b) offset to string table from start of message * (2b) number of class name strings * (2b) number of method name strings * (2b) number of source file name strings * For each entry: * (4b) total allocation size * (2b) thread id * (2b) allocated object's class name index * (1b) stack depth * For each stack frame: * (2b) method's class name * (2b) method name * (2b) method source file * (2b) line number, clipped to 32767; -2 if native; -1 if no source * (xb) class name strings * (xb) method name strings * (xb) source file strings * * As with other DDM traffic, strings are sent as a 4-byte length * followed by UTF-16 data. * * We send up 16-bit unsigned indexes into string tables. In theory there * can be (kMaxAllocRecordStackDepth * alloc_record_max_) unique strings in * each table, but in practice there should be far fewer. * * The chief reason for using a string table here is to keep the size of * the DDMS message to a minimum. This is partly to make the protocol * efficient, but also because we have to form the whole thing up all at * once in a memory buffer. * * We use separate string tables for class names, method names, and source * files to keep the indexes small. There will generally be no overlap * between the contents of these tables. */ jbyteArray Dbg::GetRecentAllocations() { if ((false)) { DumpRecentAllocations(); } Thread* self = Thread::Current(); std::vector<uint8_t> bytes; { MutexLock mu(self, *Locks::alloc_tracker_lock_); gc::AllocRecordObjectMap* records = Runtime::Current()->GetHeap()->GetAllocationRecords(); // In case this method is called when allocation tracker is disabled, // we should still send some data back. gc::AllocRecordObjectMap dummy; if (records == nullptr) { CHECK(!Runtime::Current()->GetHeap()->IsAllocTrackingEnabled()); records = &dummy; } // We don't need to wait on the condition variable records->new_record_condition_, because this // function only reads the class objects, which are already marked so it doesn't change their // reachability. // // Part 1: generate string tables. // StringTable class_names; StringTable method_names; StringTable filenames; const uint16_t capped_count = CappedAllocRecordCount(records->GetRecentAllocationSize()); uint16_t count = capped_count; for (auto it = records->RBegin(), end = records->REnd(); count > 0 && it != end; count--, it++) { const gc::AllocRecord* record = &it->second; std::string temp; class_names.Add(record->GetClassDescriptor(&temp)); for (size_t i = 0, depth = record->GetDepth(); i < depth; i++) { ArtMethod* m = record->StackElement(i).GetMethod(); class_names.Add(m->GetDeclaringClassDescriptor()); method_names.Add(m->GetName()); filenames.Add(GetMethodSourceFile(m)); } } LOG(INFO) << "recent allocation records: " << capped_count; LOG(INFO) << "allocation records all objects: " << records->Size(); // // Part 2: Generate the output and store it in the buffer. // // (1b) message header len (to allow future expansion); includes itself // (1b) entry header len // (1b) stack frame len const int kMessageHeaderLen = 15; const int kEntryHeaderLen = 9; const int kStackFrameLen = 8; JDWP::Append1BE(bytes, kMessageHeaderLen); JDWP::Append1BE(bytes, kEntryHeaderLen); JDWP::Append1BE(bytes, kStackFrameLen); // (2b) number of entries // (4b) offset to string table from start of message // (2b) number of class name strings // (2b) number of method name strings // (2b) number of source file name strings JDWP::Append2BE(bytes, capped_count); size_t string_table_offset = bytes.size(); JDWP::Append4BE(bytes, 0); // We'll patch this later... JDWP::Append2BE(bytes, class_names.Size()); JDWP::Append2BE(bytes, method_names.Size()); JDWP::Append2BE(bytes, filenames.Size()); std::string temp; count = capped_count; // The last "count" number of allocation records in "records" are the most recent "count" number // of allocations. Reverse iterate to get them. The most recent allocation is sent first. for (auto it = records->RBegin(), end = records->REnd(); count > 0 && it != end; count--, it++) { // For each entry: // (4b) total allocation size // (2b) thread id // (2b) allocated object's class name index // (1b) stack depth const gc::AllocRecord* record = &it->second; size_t stack_depth = record->GetDepth(); size_t allocated_object_class_name_index = class_names.IndexOf(record->GetClassDescriptor(&temp)); JDWP::Append4BE(bytes, record->ByteCount()); JDWP::Append2BE(bytes, static_cast<uint16_t>(record->GetTid())); JDWP::Append2BE(bytes, allocated_object_class_name_index); JDWP::Append1BE(bytes, stack_depth); for (size_t stack_frame = 0; stack_frame < stack_depth; ++stack_frame) { // For each stack frame: // (2b) method's class name // (2b) method name // (2b) method source file // (2b) line number, clipped to 32767; -2 if native; -1 if no source ArtMethod* m = record->StackElement(stack_frame).GetMethod(); size_t class_name_index = class_names.IndexOf(m->GetDeclaringClassDescriptor()); size_t method_name_index = method_names.IndexOf(m->GetName()); size_t file_name_index = filenames.IndexOf(GetMethodSourceFile(m)); JDWP::Append2BE(bytes, class_name_index); JDWP::Append2BE(bytes, method_name_index); JDWP::Append2BE(bytes, file_name_index); JDWP::Append2BE(bytes, record->StackElement(stack_frame).ComputeLineNumber()); } } // (xb) class name strings // (xb) method name strings // (xb) source file strings JDWP::Set4BE(&bytes[string_table_offset], bytes.size()); class_names.WriteTo(bytes); method_names.WriteTo(bytes); filenames.WriteTo(bytes); } JNIEnv* env = self->GetJniEnv(); jbyteArray result = env->NewByteArray(bytes.size()); if (result != nullptr) { env->SetByteArrayRegion(result, 0, bytes.size(), reinterpret_cast<const jbyte*>(&bytes[0])); } return result; } ArtMethod* DeoptimizationRequest::Method() const { ScopedObjectAccessUnchecked soa(Thread::Current()); return soa.DecodeMethod(method_); } void DeoptimizationRequest::SetMethod(ArtMethod* m) { ScopedObjectAccessUnchecked soa(Thread::Current()); method_ = soa.EncodeMethod(m); } void Dbg::VisitRoots(RootVisitor* visitor) { // Visit breakpoint roots, used to prevent unloading of methods with breakpoints. ReaderMutexLock mu(Thread::Current(), *Locks::breakpoint_lock_); BufferedRootVisitor<128> root_visitor(visitor, RootInfo(kRootVMInternal)); for (Breakpoint& breakpoint : gBreakpoints) { breakpoint.Method()->VisitRoots(root_visitor, sizeof(void*)); } } } // namespace art