/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dex_file.h" #include <fcntl.h> #include <limits.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/file.h> #include <sys/stat.h> #include <memory> #include <sstream> #include "art_field-inl.h" #include "art_method-inl.h" #include "base/file_magic.h" #include "base/hash_map.h" #include "base/logging.h" #include "base/stl_util.h" #include "base/stringprintf.h" #include "base/systrace.h" #include "class_linker-inl.h" #include "dex_file-inl.h" #include "dex_file_verifier.h" #include "globals.h" #include "handle_scope-inl.h" #include "leb128.h" #include "mirror/field.h" #include "mirror/method.h" #include "mirror/string.h" #include "os.h" #include "reflection.h" #include "safe_map.h" #include "thread.h" #include "type_lookup_table.h" #include "utf-inl.h" #include "utils.h" #include "well_known_classes.h" #include "zip_archive.h" #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wshadow" #include "ScopedFd.h" #pragma GCC diagnostic pop namespace art { const uint8_t DexFile::kDexMagic[] = { 'd', 'e', 'x', '\n' }; const uint8_t DexFile::kDexMagicVersions[DexFile::kNumDexVersions][DexFile::kDexVersionLen] = { {'0', '3', '5', '\0'}, // Dex version 036 skipped because of an old dalvik bug on some versions of android where dex // files with that version number would erroneously be accepted and run. {'0', '3', '7', '\0'} }; bool DexFile::GetChecksum(const char* filename, uint32_t* checksum, std::string* error_msg) { CHECK(checksum != nullptr); uint32_t magic; // Strip ":...", which is the location const char* zip_entry_name = kClassesDex; const char* file_part = filename; std::string file_part_storage; if (DexFile::IsMultiDexLocation(filename)) { file_part_storage = GetBaseLocation(filename); file_part = file_part_storage.c_str(); zip_entry_name = filename + file_part_storage.size() + 1; DCHECK_EQ(zip_entry_name[-1], kMultiDexSeparator); } ScopedFd fd(OpenAndReadMagic(file_part, &magic, error_msg)); if (fd.get() == -1) { DCHECK(!error_msg->empty()); return false; } if (IsZipMagic(magic)) { std::unique_ptr<ZipArchive> zip_archive( ZipArchive::OpenFromFd(fd.release(), filename, error_msg)); if (zip_archive.get() == nullptr) { *error_msg = StringPrintf("Failed to open zip archive '%s' (error msg: %s)", file_part, error_msg->c_str()); return false; } std::unique_ptr<ZipEntry> zip_entry(zip_archive->Find(zip_entry_name, error_msg)); if (zip_entry.get() == nullptr) { *error_msg = StringPrintf("Zip archive '%s' doesn't contain %s (error msg: %s)", file_part, zip_entry_name, error_msg->c_str()); return false; } *checksum = zip_entry->GetCrc32(); return true; } if (IsDexMagic(magic)) { std::unique_ptr<const DexFile> dex_file( DexFile::OpenFile(fd.release(), filename, false, error_msg)); if (dex_file.get() == nullptr) { return false; } *checksum = dex_file->GetHeader().checksum_; return true; } *error_msg = StringPrintf("Expected valid zip or dex file: '%s'", filename); return false; } bool DexFile::Open(const char* filename, const char* location, std::string* error_msg, std::vector<std::unique_ptr<const DexFile>>* dex_files) { ScopedTrace trace(std::string("Open dex file ") + location); DCHECK(dex_files != nullptr) << "DexFile::Open: out-param is nullptr"; uint32_t magic; ScopedFd fd(OpenAndReadMagic(filename, &magic, error_msg)); if (fd.get() == -1) { DCHECK(!error_msg->empty()); return false; } if (IsZipMagic(magic)) { return DexFile::OpenZip(fd.release(), location, error_msg, dex_files); } if (IsDexMagic(magic)) { std::unique_ptr<const DexFile> dex_file(DexFile::OpenFile(fd.release(), location, true, error_msg)); if (dex_file.get() != nullptr) { dex_files->push_back(std::move(dex_file)); return true; } else { return false; } } *error_msg = StringPrintf("Expected valid zip or dex file: '%s'", filename); return false; } static bool ContainsClassesDex(int fd, const char* filename) { std::string error_msg; std::unique_ptr<ZipArchive> zip_archive(ZipArchive::OpenFromFd(fd, filename, &error_msg)); if (zip_archive.get() == nullptr) { return false; } std::unique_ptr<ZipEntry> zip_entry(zip_archive->Find(DexFile::kClassesDex, &error_msg)); return (zip_entry.get() != nullptr); } bool DexFile::MaybeDex(const char* filename) { uint32_t magic; std::string error_msg; ScopedFd fd(OpenAndReadMagic(filename, &magic, &error_msg)); if (fd.get() == -1) { return false; } if (IsZipMagic(magic)) { return ContainsClassesDex(fd.release(), filename); } else if (IsDexMagic(magic)) { return true; } return false; } int DexFile::GetPermissions() const { if (mem_map_.get() == nullptr) { return 0; } else { return mem_map_->GetProtect(); } } bool DexFile::IsReadOnly() const { return GetPermissions() == PROT_READ; } bool DexFile::EnableWrite() const { CHECK(IsReadOnly()); if (mem_map_.get() == nullptr) { return false; } else { return mem_map_->Protect(PROT_READ | PROT_WRITE); } } bool DexFile::DisableWrite() const { CHECK(!IsReadOnly()); if (mem_map_.get() == nullptr) { return false; } else { return mem_map_->Protect(PROT_READ); } } std::unique_ptr<const DexFile> DexFile::Open(const uint8_t* base, size_t size, const std::string& location, uint32_t location_checksum, const OatDexFile* oat_dex_file, bool verify, std::string* error_msg) { ScopedTrace trace(std::string("Open dex file from RAM ") + location); std::unique_ptr<const DexFile> dex_file = OpenMemory(base, size, location, location_checksum, nullptr, oat_dex_file, error_msg); if (verify && !DexFileVerifier::Verify(dex_file.get(), dex_file->Begin(), dex_file->Size(), location.c_str(), error_msg)) { return nullptr; } return dex_file; } std::unique_ptr<const DexFile> DexFile::OpenFile(int fd, const char* location, bool verify, std::string* error_msg) { ScopedTrace trace(std::string("Open dex file ") + location); CHECK(location != nullptr); std::unique_ptr<MemMap> map; { ScopedFd delayed_close(fd); struct stat sbuf; memset(&sbuf, 0, sizeof(sbuf)); if (fstat(fd, &sbuf) == -1) { *error_msg = StringPrintf("DexFile: fstat '%s' failed: %s", location, strerror(errno)); return nullptr; } if (S_ISDIR(sbuf.st_mode)) { *error_msg = StringPrintf("Attempt to mmap directory '%s'", location); return nullptr; } size_t length = sbuf.st_size; map.reset(MemMap::MapFile(length, PROT_READ, MAP_PRIVATE, fd, 0, /*low_4gb*/false, location, error_msg)); if (map.get() == nullptr) { DCHECK(!error_msg->empty()); return nullptr; } } if (map->Size() < sizeof(DexFile::Header)) { *error_msg = StringPrintf( "DexFile: failed to open dex file '%s' that is too short to have a header", location); return nullptr; } const Header* dex_header = reinterpret_cast<const Header*>(map->Begin()); std::unique_ptr<const DexFile> dex_file(OpenMemory(location, dex_header->checksum_, map.release(), error_msg)); if (dex_file.get() == nullptr) { *error_msg = StringPrintf("Failed to open dex file '%s' from memory: %s", location, error_msg->c_str()); return nullptr; } if (verify && !DexFileVerifier::Verify(dex_file.get(), dex_file->Begin(), dex_file->Size(), location, error_msg)) { return nullptr; } return dex_file; } const char* DexFile::kClassesDex = "classes.dex"; bool DexFile::OpenZip(int fd, const std::string& location, std::string* error_msg, std::vector<std::unique_ptr<const DexFile>>* dex_files) { ScopedTrace trace("Dex file open Zip " + std::string(location)); DCHECK(dex_files != nullptr) << "DexFile::OpenZip: out-param is nullptr"; std::unique_ptr<ZipArchive> zip_archive(ZipArchive::OpenFromFd(fd, location.c_str(), error_msg)); if (zip_archive.get() == nullptr) { DCHECK(!error_msg->empty()); return false; } return DexFile::OpenFromZip(*zip_archive, location, error_msg, dex_files); } std::unique_ptr<const DexFile> DexFile::OpenMemory(const std::string& location, uint32_t location_checksum, MemMap* mem_map, std::string* error_msg) { return OpenMemory(mem_map->Begin(), mem_map->Size(), location, location_checksum, mem_map, nullptr, error_msg); } std::unique_ptr<const DexFile> DexFile::Open(const ZipArchive& zip_archive, const char* entry_name, const std::string& location, std::string* error_msg, ZipOpenErrorCode* error_code) { ScopedTrace trace("Dex file open from Zip Archive " + std::string(location)); CHECK(!location.empty()); std::unique_ptr<ZipEntry> zip_entry(zip_archive.Find(entry_name, error_msg)); if (zip_entry.get() == nullptr) { *error_code = ZipOpenErrorCode::kEntryNotFound; return nullptr; } std::unique_ptr<MemMap> map(zip_entry->ExtractToMemMap(location.c_str(), entry_name, error_msg)); if (map.get() == nullptr) { *error_msg = StringPrintf("Failed to extract '%s' from '%s': %s", entry_name, location.c_str(), error_msg->c_str()); *error_code = ZipOpenErrorCode::kExtractToMemoryError; return nullptr; } std::unique_ptr<const DexFile> dex_file(OpenMemory(location, zip_entry->GetCrc32(), map.release(), error_msg)); if (dex_file.get() == nullptr) { *error_msg = StringPrintf("Failed to open dex file '%s' from memory: %s", location.c_str(), error_msg->c_str()); *error_code = ZipOpenErrorCode::kDexFileError; return nullptr; } if (!dex_file->DisableWrite()) { *error_msg = StringPrintf("Failed to make dex file '%s' read only", location.c_str()); *error_code = ZipOpenErrorCode::kMakeReadOnlyError; return nullptr; } CHECK(dex_file->IsReadOnly()) << location; if (!DexFileVerifier::Verify(dex_file.get(), dex_file->Begin(), dex_file->Size(), location.c_str(), error_msg)) { *error_code = ZipOpenErrorCode::kVerifyError; return nullptr; } *error_code = ZipOpenErrorCode::kNoError; return dex_file; } // Technically we do not have a limitation with respect to the number of dex files that can be in a // multidex APK. However, it's bad practice, as each dex file requires its own tables for symbols // (types, classes, methods, ...) and dex caches. So warn the user that we open a zip with what // seems an excessive number. static constexpr size_t kWarnOnManyDexFilesThreshold = 100; bool DexFile::OpenFromZip(const ZipArchive& zip_archive, const std::string& location, std::string* error_msg, std::vector<std::unique_ptr<const DexFile>>* dex_files) { ScopedTrace trace("Dex file open from Zip " + std::string(location)); DCHECK(dex_files != nullptr) << "DexFile::OpenFromZip: out-param is nullptr"; ZipOpenErrorCode error_code; std::unique_ptr<const DexFile> dex_file(Open(zip_archive, kClassesDex, location, error_msg, &error_code)); if (dex_file.get() == nullptr) { return false; } else { // Had at least classes.dex. dex_files->push_back(std::move(dex_file)); // Now try some more. // We could try to avoid std::string allocations by working on a char array directly. As we // do not expect a lot of iterations, this seems too involved and brittle. for (size_t i = 1; ; ++i) { std::string name = GetMultiDexClassesDexName(i); std::string fake_location = GetMultiDexLocation(i, location.c_str()); std::unique_ptr<const DexFile> next_dex_file(Open(zip_archive, name.c_str(), fake_location, error_msg, &error_code)); if (next_dex_file.get() == nullptr) { if (error_code != ZipOpenErrorCode::kEntryNotFound) { LOG(WARNING) << error_msg; } break; } else { dex_files->push_back(std::move(next_dex_file)); } if (i == kWarnOnManyDexFilesThreshold) { LOG(WARNING) << location << " has in excess of " << kWarnOnManyDexFilesThreshold << " dex files. Please consider coalescing and shrinking the number to " " avoid runtime overhead."; } if (i == std::numeric_limits<size_t>::max()) { LOG(ERROR) << "Overflow in number of dex files!"; break; } } return true; } } std::unique_ptr<const DexFile> DexFile::OpenMemory(const uint8_t* base, size_t size, const std::string& location, uint32_t location_checksum, MemMap* mem_map, const OatDexFile* oat_dex_file, std::string* error_msg) { CHECK_ALIGNED(base, 4); // various dex file structures must be word aligned std::unique_ptr<DexFile> dex_file( new DexFile(base, size, location, location_checksum, mem_map, oat_dex_file)); if (!dex_file->Init(error_msg)) { dex_file.reset(); } return std::unique_ptr<const DexFile>(dex_file.release()); } DexFile::DexFile(const uint8_t* base, size_t size, const std::string& location, uint32_t location_checksum, MemMap* mem_map, const OatDexFile* oat_dex_file) : begin_(base), size_(size), location_(location), location_checksum_(location_checksum), mem_map_(mem_map), header_(reinterpret_cast<const Header*>(base)), string_ids_(reinterpret_cast<const StringId*>(base + header_->string_ids_off_)), type_ids_(reinterpret_cast<const TypeId*>(base + header_->type_ids_off_)), field_ids_(reinterpret_cast<const FieldId*>(base + header_->field_ids_off_)), method_ids_(reinterpret_cast<const MethodId*>(base + header_->method_ids_off_)), proto_ids_(reinterpret_cast<const ProtoId*>(base + header_->proto_ids_off_)), class_defs_(reinterpret_cast<const ClassDef*>(base + header_->class_defs_off_)), oat_dex_file_(oat_dex_file) { CHECK(begin_ != nullptr) << GetLocation(); CHECK_GT(size_, 0U) << GetLocation(); const uint8_t* lookup_data = (oat_dex_file != nullptr) ? oat_dex_file->GetLookupTableData() : nullptr; if (lookup_data != nullptr) { if (lookup_data + TypeLookupTable::RawDataLength(*this) > oat_dex_file->GetOatFile()->End()) { LOG(WARNING) << "found truncated lookup table in " << GetLocation(); } else { lookup_table_.reset(TypeLookupTable::Open(lookup_data, *this)); } } } DexFile::~DexFile() { // We don't call DeleteGlobalRef on dex_object_ because we're only called by DestroyJavaVM, and // that's only called after DetachCurrentThread, which means there's no JNIEnv. We could // re-attach, but cleaning up these global references is not obviously useful. It's not as if // the global reference table is otherwise empty! } bool DexFile::Init(std::string* error_msg) { if (!CheckMagicAndVersion(error_msg)) { return false; } return true; } bool DexFile::CheckMagicAndVersion(std::string* error_msg) const { if (!IsMagicValid(header_->magic_)) { std::ostringstream oss; oss << "Unrecognized magic number in " << GetLocation() << ":" << " " << header_->magic_[0] << " " << header_->magic_[1] << " " << header_->magic_[2] << " " << header_->magic_[3]; *error_msg = oss.str(); return false; } if (!IsVersionValid(header_->magic_)) { std::ostringstream oss; oss << "Unrecognized version number in " << GetLocation() << ":" << " " << header_->magic_[4] << " " << header_->magic_[5] << " " << header_->magic_[6] << " " << header_->magic_[7]; *error_msg = oss.str(); return false; } return true; } bool DexFile::IsMagicValid(const uint8_t* magic) { return (memcmp(magic, kDexMagic, sizeof(kDexMagic)) == 0); } bool DexFile::IsVersionValid(const uint8_t* magic) { const uint8_t* version = &magic[sizeof(kDexMagic)]; for (uint32_t i = 0; i < kNumDexVersions; i++) { if (memcmp(version, kDexMagicVersions[i], kDexVersionLen) == 0) { return true; } } return false; } uint32_t DexFile::Header::GetVersion() const { const char* version = reinterpret_cast<const char*>(&magic_[sizeof(kDexMagic)]); return atoi(version); } const DexFile::ClassDef* DexFile::FindClassDef(const char* descriptor, size_t hash) const { DCHECK_EQ(ComputeModifiedUtf8Hash(descriptor), hash); if (LIKELY(lookup_table_ != nullptr)) { const uint32_t class_def_idx = lookup_table_->Lookup(descriptor, hash); return (class_def_idx != DexFile::kDexNoIndex) ? &GetClassDef(class_def_idx) : nullptr; } // Fast path for rate no class defs case. const uint32_t num_class_defs = NumClassDefs(); if (num_class_defs == 0) { return nullptr; } const TypeId* type_id = FindTypeId(descriptor); if (type_id != nullptr) { uint16_t type_idx = GetIndexForTypeId(*type_id); for (size_t i = 0; i < num_class_defs; ++i) { const ClassDef& class_def = GetClassDef(i); if (class_def.class_idx_ == type_idx) { return &class_def; } } } return nullptr; } const DexFile::ClassDef* DexFile::FindClassDef(uint16_t type_idx) const { size_t num_class_defs = NumClassDefs(); for (size_t i = 0; i < num_class_defs; ++i) { const ClassDef& class_def = GetClassDef(i); if (class_def.class_idx_ == type_idx) { return &class_def; } } return nullptr; } const DexFile::FieldId* DexFile::FindFieldId(const DexFile::TypeId& declaring_klass, const DexFile::StringId& name, const DexFile::TypeId& type) const { // Binary search MethodIds knowing that they are sorted by class_idx, name_idx then proto_idx const uint16_t class_idx = GetIndexForTypeId(declaring_klass); const uint32_t name_idx = GetIndexForStringId(name); const uint16_t type_idx = GetIndexForTypeId(type); int32_t lo = 0; int32_t hi = NumFieldIds() - 1; while (hi >= lo) { int32_t mid = (hi + lo) / 2; const DexFile::FieldId& field = GetFieldId(mid); if (class_idx > field.class_idx_) { lo = mid + 1; } else if (class_idx < field.class_idx_) { hi = mid - 1; } else { if (name_idx > field.name_idx_) { lo = mid + 1; } else if (name_idx < field.name_idx_) { hi = mid - 1; } else { if (type_idx > field.type_idx_) { lo = mid + 1; } else if (type_idx < field.type_idx_) { hi = mid - 1; } else { return &field; } } } } return nullptr; } const DexFile::MethodId* DexFile::FindMethodId(const DexFile::TypeId& declaring_klass, const DexFile::StringId& name, const DexFile::ProtoId& signature) const { // Binary search MethodIds knowing that they are sorted by class_idx, name_idx then proto_idx const uint16_t class_idx = GetIndexForTypeId(declaring_klass); const uint32_t name_idx = GetIndexForStringId(name); const uint16_t proto_idx = GetIndexForProtoId(signature); int32_t lo = 0; int32_t hi = NumMethodIds() - 1; while (hi >= lo) { int32_t mid = (hi + lo) / 2; const DexFile::MethodId& method = GetMethodId(mid); if (class_idx > method.class_idx_) { lo = mid + 1; } else if (class_idx < method.class_idx_) { hi = mid - 1; } else { if (name_idx > method.name_idx_) { lo = mid + 1; } else if (name_idx < method.name_idx_) { hi = mid - 1; } else { if (proto_idx > method.proto_idx_) { lo = mid + 1; } else if (proto_idx < method.proto_idx_) { hi = mid - 1; } else { return &method; } } } } return nullptr; } const DexFile::StringId* DexFile::FindStringId(const char* string) const { int32_t lo = 0; int32_t hi = NumStringIds() - 1; while (hi >= lo) { int32_t mid = (hi + lo) / 2; const DexFile::StringId& str_id = GetStringId(mid); const char* str = GetStringData(str_id); int compare = CompareModifiedUtf8ToModifiedUtf8AsUtf16CodePointValues(string, str); if (compare > 0) { lo = mid + 1; } else if (compare < 0) { hi = mid - 1; } else { return &str_id; } } return nullptr; } const DexFile::TypeId* DexFile::FindTypeId(const char* string) const { int32_t lo = 0; int32_t hi = NumTypeIds() - 1; while (hi >= lo) { int32_t mid = (hi + lo) / 2; const TypeId& type_id = GetTypeId(mid); const DexFile::StringId& str_id = GetStringId(type_id.descriptor_idx_); const char* str = GetStringData(str_id); int compare = CompareModifiedUtf8ToModifiedUtf8AsUtf16CodePointValues(string, str); if (compare > 0) { lo = mid + 1; } else if (compare < 0) { hi = mid - 1; } else { return &type_id; } } return nullptr; } const DexFile::StringId* DexFile::FindStringId(const uint16_t* string, size_t length) const { int32_t lo = 0; int32_t hi = NumStringIds() - 1; while (hi >= lo) { int32_t mid = (hi + lo) / 2; const DexFile::StringId& str_id = GetStringId(mid); const char* str = GetStringData(str_id); int compare = CompareModifiedUtf8ToUtf16AsCodePointValues(str, string, length); if (compare > 0) { lo = mid + 1; } else if (compare < 0) { hi = mid - 1; } else { return &str_id; } } return nullptr; } const DexFile::TypeId* DexFile::FindTypeId(uint32_t string_idx) const { int32_t lo = 0; int32_t hi = NumTypeIds() - 1; while (hi >= lo) { int32_t mid = (hi + lo) / 2; const TypeId& type_id = GetTypeId(mid); if (string_idx > type_id.descriptor_idx_) { lo = mid + 1; } else if (string_idx < type_id.descriptor_idx_) { hi = mid - 1; } else { return &type_id; } } return nullptr; } const DexFile::ProtoId* DexFile::FindProtoId(uint16_t return_type_idx, const uint16_t* signature_type_idxs, uint32_t signature_length) const { int32_t lo = 0; int32_t hi = NumProtoIds() - 1; while (hi >= lo) { int32_t mid = (hi + lo) / 2; const DexFile::ProtoId& proto = GetProtoId(mid); int compare = return_type_idx - proto.return_type_idx_; if (compare == 0) { DexFileParameterIterator it(*this, proto); size_t i = 0; while (it.HasNext() && i < signature_length && compare == 0) { compare = signature_type_idxs[i] - it.GetTypeIdx(); it.Next(); i++; } if (compare == 0) { if (it.HasNext()) { compare = -1; } else if (i < signature_length) { compare = 1; } } } if (compare > 0) { lo = mid + 1; } else if (compare < 0) { hi = mid - 1; } else { return &proto; } } return nullptr; } void DexFile::CreateTypeLookupTable(uint8_t* storage) const { lookup_table_.reset(TypeLookupTable::Create(*this, storage)); } // Given a signature place the type ids into the given vector bool DexFile::CreateTypeList(const StringPiece& signature, uint16_t* return_type_idx, std::vector<uint16_t>* param_type_idxs) const { if (signature[0] != '(') { return false; } size_t offset = 1; size_t end = signature.size(); bool process_return = false; while (offset < end) { size_t start_offset = offset; char c = signature[offset]; offset++; if (c == ')') { process_return = true; continue; } while (c == '[') { // process array prefix if (offset >= end) { // expect some descriptor following [ return false; } c = signature[offset]; offset++; } if (c == 'L') { // process type descriptors do { if (offset >= end) { // unexpected early termination of descriptor return false; } c = signature[offset]; offset++; } while (c != ';'); } // TODO: avoid creating a std::string just to get a 0-terminated char array std::string descriptor(signature.data() + start_offset, offset - start_offset); const DexFile::TypeId* type_id = FindTypeId(descriptor.c_str()); if (type_id == nullptr) { return false; } uint16_t type_idx = GetIndexForTypeId(*type_id); if (!process_return) { param_type_idxs->push_back(type_idx); } else { *return_type_idx = type_idx; return offset == end; // return true if the signature had reached a sensible end } } return false; // failed to correctly parse return type } const Signature DexFile::CreateSignature(const StringPiece& signature) const { uint16_t return_type_idx; std::vector<uint16_t> param_type_indices; bool success = CreateTypeList(signature, &return_type_idx, ¶m_type_indices); if (!success) { return Signature::NoSignature(); } const ProtoId* proto_id = FindProtoId(return_type_idx, param_type_indices); if (proto_id == nullptr) { return Signature::NoSignature(); } return Signature(this, *proto_id); } int32_t DexFile::GetLineNumFromPC(ArtMethod* method, uint32_t rel_pc) const { // For native method, lineno should be -2 to indicate it is native. Note that // "line number == -2" is how libcore tells from StackTraceElement. if (method->GetCodeItemOffset() == 0) { return -2; } const CodeItem* code_item = GetCodeItem(method->GetCodeItemOffset()); DCHECK(code_item != nullptr) << PrettyMethod(method) << " " << GetLocation(); // A method with no line number info should return -1 LineNumFromPcContext context(rel_pc, -1); DecodeDebugPositionInfo(code_item, LineNumForPcCb, &context); return context.line_num_; } int32_t DexFile::FindTryItem(const CodeItem &code_item, uint32_t address) { // Note: Signed type is important for max and min. int32_t min = 0; int32_t max = code_item.tries_size_ - 1; while (min <= max) { int32_t mid = min + ((max - min) / 2); const art::DexFile::TryItem* ti = GetTryItems(code_item, mid); uint32_t start = ti->start_addr_; uint32_t end = start + ti->insn_count_; if (address < start) { max = mid - 1; } else if (address >= end) { min = mid + 1; } else { // We have a winner! return mid; } } // No match. return -1; } int32_t DexFile::FindCatchHandlerOffset(const CodeItem &code_item, uint32_t address) { int32_t try_item = FindTryItem(code_item, address); if (try_item == -1) { return -1; } else { return DexFile::GetTryItems(code_item, try_item)->handler_off_; } } bool DexFile::DecodeDebugLocalInfo(const CodeItem* code_item, bool is_static, uint32_t method_idx, DexDebugNewLocalCb local_cb, void* context) const { DCHECK(local_cb != nullptr); if (code_item == nullptr) { return false; } const uint8_t* stream = GetDebugInfoStream(code_item); if (stream == nullptr) { return false; } std::vector<LocalInfo> local_in_reg(code_item->registers_size_); uint16_t arg_reg = code_item->registers_size_ - code_item->ins_size_; if (!is_static) { const char* descriptor = GetMethodDeclaringClassDescriptor(GetMethodId(method_idx)); local_in_reg[arg_reg].name_ = "this"; local_in_reg[arg_reg].descriptor_ = descriptor; local_in_reg[arg_reg].signature_ = nullptr; local_in_reg[arg_reg].start_address_ = 0; local_in_reg[arg_reg].reg_ = arg_reg; local_in_reg[arg_reg].is_live_ = true; arg_reg++; } DexFileParameterIterator it(*this, GetMethodPrototype(GetMethodId(method_idx))); DecodeUnsignedLeb128(&stream); // Line. uint32_t parameters_size = DecodeUnsignedLeb128(&stream); uint32_t i; for (i = 0; i < parameters_size && it.HasNext(); ++i, it.Next()) { if (arg_reg >= code_item->registers_size_) { LOG(ERROR) << "invalid stream - arg reg >= reg size (" << arg_reg << " >= " << code_item->registers_size_ << ") in " << GetLocation(); return false; } uint32_t name_idx = DecodeUnsignedLeb128P1(&stream); const char* descriptor = it.GetDescriptor(); local_in_reg[arg_reg].name_ = StringDataByIdx(name_idx); local_in_reg[arg_reg].descriptor_ = descriptor; local_in_reg[arg_reg].signature_ = nullptr; local_in_reg[arg_reg].start_address_ = 0; local_in_reg[arg_reg].reg_ = arg_reg; local_in_reg[arg_reg].is_live_ = true; switch (*descriptor) { case 'D': case 'J': arg_reg += 2; break; default: arg_reg += 1; break; } } if (i != parameters_size || it.HasNext()) { LOG(ERROR) << "invalid stream - problem with parameter iterator in " << GetLocation() << " for method " << PrettyMethod(method_idx, *this); return false; } uint32_t address = 0; for (;;) { uint8_t opcode = *stream++; switch (opcode) { case DBG_END_SEQUENCE: // Emit all variables which are still alive at the end of the method. for (uint16_t reg = 0; reg < code_item->registers_size_; reg++) { if (local_in_reg[reg].is_live_) { local_in_reg[reg].end_address_ = code_item->insns_size_in_code_units_; local_cb(context, local_in_reg[reg]); } } return true; case DBG_ADVANCE_PC: address += DecodeUnsignedLeb128(&stream); break; case DBG_ADVANCE_LINE: DecodeSignedLeb128(&stream); // Line. break; case DBG_START_LOCAL: case DBG_START_LOCAL_EXTENDED: { uint16_t reg = DecodeUnsignedLeb128(&stream); if (reg >= code_item->registers_size_) { LOG(ERROR) << "invalid stream - reg >= reg size (" << reg << " >= " << code_item->registers_size_ << ") in " << GetLocation(); return false; } uint32_t name_idx = DecodeUnsignedLeb128P1(&stream); uint32_t descriptor_idx = DecodeUnsignedLeb128P1(&stream); uint32_t signature_idx = kDexNoIndex; if (opcode == DBG_START_LOCAL_EXTENDED) { signature_idx = DecodeUnsignedLeb128P1(&stream); } // Emit what was previously there, if anything if (local_in_reg[reg].is_live_) { local_in_reg[reg].end_address_ = address; local_cb(context, local_in_reg[reg]); } local_in_reg[reg].name_ = StringDataByIdx(name_idx); local_in_reg[reg].descriptor_ = StringByTypeIdx(descriptor_idx); local_in_reg[reg].signature_ = StringDataByIdx(signature_idx); local_in_reg[reg].start_address_ = address; local_in_reg[reg].reg_ = reg; local_in_reg[reg].is_live_ = true; break; } case DBG_END_LOCAL: { uint16_t reg = DecodeUnsignedLeb128(&stream); if (reg >= code_item->registers_size_) { LOG(ERROR) << "invalid stream - reg >= reg size (" << reg << " >= " << code_item->registers_size_ << ") in " << GetLocation(); return false; } if (!local_in_reg[reg].is_live_) { LOG(ERROR) << "invalid stream - end without start in " << GetLocation(); return false; } local_in_reg[reg].end_address_ = address; local_cb(context, local_in_reg[reg]); local_in_reg[reg].is_live_ = false; break; } case DBG_RESTART_LOCAL: { uint16_t reg = DecodeUnsignedLeb128(&stream); if (reg >= code_item->registers_size_) { LOG(ERROR) << "invalid stream - reg >= reg size (" << reg << " >= " << code_item->registers_size_ << ") in " << GetLocation(); return false; } // If the register is live, the "restart" is superfluous, // and we don't want to mess with the existing start address. if (!local_in_reg[reg].is_live_) { local_in_reg[reg].start_address_ = address; local_in_reg[reg].is_live_ = true; } break; } case DBG_SET_PROLOGUE_END: case DBG_SET_EPILOGUE_BEGIN: break; case DBG_SET_FILE: DecodeUnsignedLeb128P1(&stream); // name. break; default: address += (opcode - DBG_FIRST_SPECIAL) / DBG_LINE_RANGE; break; } } } bool DexFile::DecodeDebugPositionInfo(const CodeItem* code_item, DexDebugNewPositionCb position_cb, void* context) const { DCHECK(position_cb != nullptr); if (code_item == nullptr) { return false; } const uint8_t* stream = GetDebugInfoStream(code_item); if (stream == nullptr) { return false; } PositionInfo entry = PositionInfo(); entry.line_ = DecodeUnsignedLeb128(&stream); uint32_t parameters_size = DecodeUnsignedLeb128(&stream); for (uint32_t i = 0; i < parameters_size; ++i) { DecodeUnsignedLeb128P1(&stream); // Parameter name. } for (;;) { uint8_t opcode = *stream++; switch (opcode) { case DBG_END_SEQUENCE: return true; // end of stream. case DBG_ADVANCE_PC: entry.address_ += DecodeUnsignedLeb128(&stream); break; case DBG_ADVANCE_LINE: entry.line_ += DecodeSignedLeb128(&stream); break; case DBG_START_LOCAL: DecodeUnsignedLeb128(&stream); // reg. DecodeUnsignedLeb128P1(&stream); // name. DecodeUnsignedLeb128P1(&stream); // descriptor. break; case DBG_START_LOCAL_EXTENDED: DecodeUnsignedLeb128(&stream); // reg. DecodeUnsignedLeb128P1(&stream); // name. DecodeUnsignedLeb128P1(&stream); // descriptor. DecodeUnsignedLeb128P1(&stream); // signature. break; case DBG_END_LOCAL: case DBG_RESTART_LOCAL: DecodeUnsignedLeb128(&stream); // reg. break; case DBG_SET_PROLOGUE_END: entry.prologue_end_ = true; break; case DBG_SET_EPILOGUE_BEGIN: entry.epilogue_begin_ = true; break; case DBG_SET_FILE: { uint32_t name_idx = DecodeUnsignedLeb128P1(&stream); entry.source_file_ = StringDataByIdx(name_idx); break; } default: { int adjopcode = opcode - DBG_FIRST_SPECIAL; entry.address_ += adjopcode / DBG_LINE_RANGE; entry.line_ += DBG_LINE_BASE + (adjopcode % DBG_LINE_RANGE); if (position_cb(context, entry)) { return true; // early exit. } entry.prologue_end_ = false; entry.epilogue_begin_ = false; break; } } } } bool DexFile::LineNumForPcCb(void* raw_context, const PositionInfo& entry) { LineNumFromPcContext* context = reinterpret_cast<LineNumFromPcContext*>(raw_context); // We know that this callback will be called in // ascending address order, so keep going until we find // a match or we've just gone past it. if (entry.address_ > context->address_) { // The line number from the previous positions callback // wil be the final result. return true; } else { context->line_num_ = entry.line_; return entry.address_ == context->address_; } } bool DexFile::IsMultiDexLocation(const char* location) { return strrchr(location, kMultiDexSeparator) != nullptr; } std::string DexFile::GetMultiDexClassesDexName(size_t index) { if (index == 0) { return "classes.dex"; } else { return StringPrintf("classes%zu.dex", index + 1); } } std::string DexFile::GetMultiDexLocation(size_t index, const char* dex_location) { if (index == 0) { return dex_location; } else { return StringPrintf("%s" kMultiDexSeparatorString "classes%zu.dex", dex_location, index + 1); } } std::string DexFile::GetDexCanonicalLocation(const char* dex_location) { CHECK_NE(dex_location, static_cast<const char*>(nullptr)); std::string base_location = GetBaseLocation(dex_location); const char* suffix = dex_location + base_location.size(); DCHECK(suffix[0] == 0 || suffix[0] == kMultiDexSeparator); UniqueCPtr<const char[]> path(realpath(base_location.c_str(), nullptr)); if (path != nullptr && path.get() != base_location) { return std::string(path.get()) + suffix; } else if (suffix[0] == 0) { return base_location; } else { return dex_location; } } // Read a signed integer. "zwidth" is the zero-based byte count. static int32_t ReadSignedInt(const uint8_t* ptr, int zwidth) { int32_t val = 0; for (int i = zwidth; i >= 0; --i) { val = ((uint32_t)val >> 8) | (((int32_t)*ptr++) << 24); } val >>= (3 - zwidth) * 8; return val; } // Read an unsigned integer. "zwidth" is the zero-based byte count, // "fill_on_right" indicates which side we want to zero-fill from. static uint32_t ReadUnsignedInt(const uint8_t* ptr, int zwidth, bool fill_on_right) { uint32_t val = 0; for (int i = zwidth; i >= 0; --i) { val = (val >> 8) | (((uint32_t)*ptr++) << 24); } if (!fill_on_right) { val >>= (3 - zwidth) * 8; } return val; } // Read a signed long. "zwidth" is the zero-based byte count. static int64_t ReadSignedLong(const uint8_t* ptr, int zwidth) { int64_t val = 0; for (int i = zwidth; i >= 0; --i) { val = ((uint64_t)val >> 8) | (((int64_t)*ptr++) << 56); } val >>= (7 - zwidth) * 8; return val; } // Read an unsigned long. "zwidth" is the zero-based byte count, // "fill_on_right" indicates which side we want to zero-fill from. static uint64_t ReadUnsignedLong(const uint8_t* ptr, int zwidth, bool fill_on_right) { uint64_t val = 0; for (int i = zwidth; i >= 0; --i) { val = (val >> 8) | (((uint64_t)*ptr++) << 56); } if (!fill_on_right) { val >>= (7 - zwidth) * 8; } return val; } // Checks that visibility is as expected. Includes special behavior for M and // before to allow runtime and build visibility when expecting runtime. static bool IsVisibilityCompatible(uint32_t actual, uint32_t expected) { if (expected == DexFile::kDexVisibilityRuntime) { int32_t sdk_version = Runtime::Current()->GetTargetSdkVersion(); if (sdk_version > 0 && sdk_version <= 23) { return actual == DexFile::kDexVisibilityRuntime || actual == DexFile::kDexVisibilityBuild; } } return actual == expected; } const DexFile::AnnotationSetItem* DexFile::FindAnnotationSetForField(ArtField* field) const { mirror::Class* klass = field->GetDeclaringClass(); const AnnotationsDirectoryItem* annotations_dir = GetAnnotationsDirectory(*klass->GetClassDef()); if (annotations_dir == nullptr) { return nullptr; } const FieldAnnotationsItem* field_annotations = GetFieldAnnotations(annotations_dir); if (field_annotations == nullptr) { return nullptr; } uint32_t field_index = field->GetDexFieldIndex(); uint32_t field_count = annotations_dir->fields_size_; for (uint32_t i = 0; i < field_count; ++i) { if (field_annotations[i].field_idx_ == field_index) { return GetFieldAnnotationSetItem(field_annotations[i]); } } return nullptr; } mirror::Object* DexFile::GetAnnotationForField(ArtField* field, Handle<mirror::Class> annotation_class) const { const AnnotationSetItem* annotation_set = FindAnnotationSetForField(field); if (annotation_set == nullptr) { return nullptr; } StackHandleScope<1> hs(Thread::Current()); Handle<mirror::Class> field_class(hs.NewHandle(field->GetDeclaringClass())); return GetAnnotationObjectFromAnnotationSet( field_class, annotation_set, kDexVisibilityRuntime, annotation_class); } mirror::ObjectArray<mirror::Object>* DexFile::GetAnnotationsForField(ArtField* field) const { const AnnotationSetItem* annotation_set = FindAnnotationSetForField(field); StackHandleScope<1> hs(Thread::Current()); Handle<mirror::Class> field_class(hs.NewHandle(field->GetDeclaringClass())); return ProcessAnnotationSet(field_class, annotation_set, kDexVisibilityRuntime); } mirror::ObjectArray<mirror::String>* DexFile::GetSignatureAnnotationForField(ArtField* field) const { const AnnotationSetItem* annotation_set = FindAnnotationSetForField(field); if (annotation_set == nullptr) { return nullptr; } StackHandleScope<1> hs(Thread::Current()); Handle<mirror::Class> field_class(hs.NewHandle(field->GetDeclaringClass())); return GetSignatureValue(field_class, annotation_set); } bool DexFile::IsFieldAnnotationPresent(ArtField* field, Handle<mirror::Class> annotation_class) const { const AnnotationSetItem* annotation_set = FindAnnotationSetForField(field); if (annotation_set == nullptr) { return false; } StackHandleScope<1> hs(Thread::Current()); Handle<mirror::Class> field_class(hs.NewHandle(field->GetDeclaringClass())); const AnnotationItem* annotation_item = GetAnnotationItemFromAnnotationSet( field_class, annotation_set, kDexVisibilityRuntime, annotation_class); return annotation_item != nullptr; } const DexFile::AnnotationSetItem* DexFile::FindAnnotationSetForMethod(ArtMethod* method) const { mirror::Class* klass = method->GetDeclaringClass(); const AnnotationsDirectoryItem* annotations_dir = GetAnnotationsDirectory(*klass->GetClassDef()); if (annotations_dir == nullptr) { return nullptr; } const MethodAnnotationsItem* method_annotations = GetMethodAnnotations(annotations_dir); if (method_annotations == nullptr) { return nullptr; } uint32_t method_index = method->GetDexMethodIndex(); uint32_t method_count = annotations_dir->methods_size_; for (uint32_t i = 0; i < method_count; ++i) { if (method_annotations[i].method_idx_ == method_index) { return GetMethodAnnotationSetItem(method_annotations[i]); } } return nullptr; } const DexFile::ParameterAnnotationsItem* DexFile::FindAnnotationsItemForMethod(ArtMethod* method) const { mirror::Class* klass = method->GetDeclaringClass(); const AnnotationsDirectoryItem* annotations_dir = GetAnnotationsDirectory(*klass->GetClassDef()); if (annotations_dir == nullptr) { return nullptr; } const ParameterAnnotationsItem* parameter_annotations = GetParameterAnnotations(annotations_dir); if (parameter_annotations == nullptr) { return nullptr; } uint32_t method_index = method->GetDexMethodIndex(); uint32_t parameter_count = annotations_dir->parameters_size_; for (uint32_t i = 0; i < parameter_count; ++i) { if (parameter_annotations[i].method_idx_ == method_index) { return ¶meter_annotations[i]; } } return nullptr; } mirror::Object* DexFile::GetAnnotationDefaultValue(ArtMethod* method) const { mirror::Class* klass = method->GetDeclaringClass(); const AnnotationsDirectoryItem* annotations_dir = GetAnnotationsDirectory(*klass->GetClassDef()); if (annotations_dir == nullptr) { return nullptr; } const AnnotationSetItem* annotation_set = GetClassAnnotationSet(annotations_dir); if (annotation_set == nullptr) { return nullptr; } const AnnotationItem* annotation_item = SearchAnnotationSet(annotation_set, "Ldalvik/annotation/AnnotationDefault;", kDexVisibilitySystem); if (annotation_item == nullptr) { return nullptr; } const uint8_t* annotation = SearchEncodedAnnotation(annotation_item->annotation_, "value"); if (annotation == nullptr) { return nullptr; } uint8_t header_byte = *(annotation++); if ((header_byte & kDexAnnotationValueTypeMask) != kDexAnnotationAnnotation) { return nullptr; } annotation = SearchEncodedAnnotation(annotation, method->GetName()); if (annotation == nullptr) { return nullptr; } AnnotationValue annotation_value; StackHandleScope<2> hs(Thread::Current()); Handle<mirror::Class> h_klass(hs.NewHandle(klass)); size_t pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); Handle<mirror::Class> return_type(hs.NewHandle( method->GetReturnType(true /* resolve */, pointer_size))); if (!ProcessAnnotationValue(h_klass, &annotation, &annotation_value, return_type, kAllObjects)) { return nullptr; } return annotation_value.value_.GetL(); } mirror::Object* DexFile::GetAnnotationForMethod(ArtMethod* method, Handle<mirror::Class> annotation_class) const { const AnnotationSetItem* annotation_set = FindAnnotationSetForMethod(method); if (annotation_set == nullptr) { return nullptr; } StackHandleScope<1> hs(Thread::Current()); Handle<mirror::Class> method_class(hs.NewHandle(method->GetDeclaringClass())); return GetAnnotationObjectFromAnnotationSet(method_class, annotation_set, kDexVisibilityRuntime, annotation_class); } mirror::ObjectArray<mirror::Object>* DexFile::GetAnnotationsForMethod(ArtMethod* method) const { const AnnotationSetItem* annotation_set = FindAnnotationSetForMethod(method); StackHandleScope<1> hs(Thread::Current()); Handle<mirror::Class> method_class(hs.NewHandle(method->GetDeclaringClass())); return ProcessAnnotationSet(method_class, annotation_set, kDexVisibilityRuntime); } mirror::ObjectArray<mirror::Class>* DexFile::GetExceptionTypesForMethod(ArtMethod* method) const { const AnnotationSetItem* annotation_set = FindAnnotationSetForMethod(method); if (annotation_set == nullptr) { return nullptr; } StackHandleScope<1> hs(Thread::Current()); Handle<mirror::Class> method_class(hs.NewHandle(method->GetDeclaringClass())); return GetThrowsValue(method_class, annotation_set); } mirror::ObjectArray<mirror::Object>* DexFile::GetParameterAnnotations(ArtMethod* method) const { const ParameterAnnotationsItem* parameter_annotations = FindAnnotationsItemForMethod(method); if (parameter_annotations == nullptr) { return nullptr; } const AnnotationSetRefList* set_ref_list = GetParameterAnnotationSetRefList(parameter_annotations); if (set_ref_list == nullptr) { return nullptr; } uint32_t size = set_ref_list->size_; StackHandleScope<1> hs(Thread::Current()); Handle<mirror::Class> method_class(hs.NewHandle(method->GetDeclaringClass())); return ProcessAnnotationSetRefList(method_class, set_ref_list, size); } mirror::ObjectArray<mirror::String>* DexFile::GetSignatureAnnotationForMethod(ArtMethod* method) const { const AnnotationSetItem* annotation_set = FindAnnotationSetForMethod(method); if (annotation_set == nullptr) { return nullptr; } StackHandleScope<1> hs(Thread::Current()); Handle<mirror::Class> method_class(hs.NewHandle(method->GetDeclaringClass())); return GetSignatureValue(method_class, annotation_set); } bool DexFile::IsMethodAnnotationPresent(ArtMethod* method, Handle<mirror::Class> annotation_class) const { const AnnotationSetItem* annotation_set = FindAnnotationSetForMethod(method); if (annotation_set == nullptr) { return false; } StackHandleScope<1> hs(Thread::Current()); Handle<mirror::Class> method_class(hs.NewHandle(method->GetDeclaringClass())); const AnnotationItem* annotation_item = GetAnnotationItemFromAnnotationSet( method_class, annotation_set, kDexVisibilityRuntime, annotation_class); return annotation_item != nullptr; } const DexFile::AnnotationSetItem* DexFile::FindAnnotationSetForClass(Handle<mirror::Class> klass) const { const AnnotationsDirectoryItem* annotations_dir = GetAnnotationsDirectory(*klass->GetClassDef()); if (annotations_dir == nullptr) { return nullptr; } return GetClassAnnotationSet(annotations_dir); } mirror::Object* DexFile::GetAnnotationForClass(Handle<mirror::Class> klass, Handle<mirror::Class> annotation_class) const { const AnnotationSetItem* annotation_set = FindAnnotationSetForClass(klass); if (annotation_set == nullptr) { return nullptr; } return GetAnnotationObjectFromAnnotationSet(klass, annotation_set, kDexVisibilityRuntime, annotation_class); } mirror::ObjectArray<mirror::Object>* DexFile::GetAnnotationsForClass(Handle<mirror::Class> klass) const { const AnnotationSetItem* annotation_set = FindAnnotationSetForClass(klass); return ProcessAnnotationSet(klass, annotation_set, kDexVisibilityRuntime); } mirror::ObjectArray<mirror::Class>* DexFile::GetDeclaredClasses(Handle<mirror::Class> klass) const { const AnnotationSetItem* annotation_set = FindAnnotationSetForClass(klass); if (annotation_set == nullptr) { return nullptr; } const AnnotationItem* annotation_item = SearchAnnotationSet( annotation_set, "Ldalvik/annotation/MemberClasses;", kDexVisibilitySystem); if (annotation_item == nullptr) { return nullptr; } StackHandleScope<1> hs(Thread::Current()); mirror::Class* class_class = mirror::Class::GetJavaLangClass(); Handle<mirror::Class> class_array_class(hs.NewHandle( Runtime::Current()->GetClassLinker()->FindArrayClass(hs.Self(), &class_class))); if (class_array_class.Get() == nullptr) { return nullptr; } mirror::Object* obj = GetAnnotationValue( klass, annotation_item, "value", class_array_class, kDexAnnotationArray); if (obj == nullptr) { return nullptr; } return obj->AsObjectArray<mirror::Class>(); } mirror::Class* DexFile::GetDeclaringClass(Handle<mirror::Class> klass) const { const AnnotationSetItem* annotation_set = FindAnnotationSetForClass(klass); if (annotation_set == nullptr) { return nullptr; } const AnnotationItem* annotation_item = SearchAnnotationSet( annotation_set, "Ldalvik/annotation/EnclosingClass;", kDexVisibilitySystem); if (annotation_item == nullptr) { return nullptr; } mirror::Object* obj = GetAnnotationValue(klass, annotation_item, "value", ScopedNullHandle<mirror::Class>(), kDexAnnotationType); if (obj == nullptr) { return nullptr; } return obj->AsClass(); } mirror::Class* DexFile::GetEnclosingClass(Handle<mirror::Class> klass) const { mirror::Class* declaring_class = GetDeclaringClass(klass); if (declaring_class != nullptr) { return declaring_class; } const AnnotationSetItem* annotation_set = FindAnnotationSetForClass(klass); if (annotation_set == nullptr) { return nullptr; } const AnnotationItem* annotation_item = SearchAnnotationSet( annotation_set, "Ldalvik/annotation/EnclosingMethod;", kDexVisibilitySystem); if (annotation_item == nullptr) { return nullptr; } const uint8_t* annotation = SearchEncodedAnnotation(annotation_item->annotation_, "value"); if (annotation == nullptr) { return nullptr; } AnnotationValue annotation_value; if (!ProcessAnnotationValue(klass, &annotation, &annotation_value, ScopedNullHandle<mirror::Class>(), kAllRaw)) { return nullptr; } if (annotation_value.type_ != kDexAnnotationMethod) { return nullptr; } StackHandleScope<2> hs(Thread::Current()); Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache())); Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader())); ArtMethod* method = Runtime::Current()->GetClassLinker()->ResolveMethodWithoutInvokeType( klass->GetDexFile(), annotation_value.value_.GetI(), dex_cache, class_loader); if (method == nullptr) { return nullptr; } return method->GetDeclaringClass(); } mirror::Object* DexFile::GetEnclosingMethod(Handle<mirror::Class> klass) const { const AnnotationSetItem* annotation_set = FindAnnotationSetForClass(klass); if (annotation_set == nullptr) { return nullptr; } const AnnotationItem* annotation_item = SearchAnnotationSet( annotation_set, "Ldalvik/annotation/EnclosingMethod;", kDexVisibilitySystem); if (annotation_item == nullptr) { return nullptr; } return GetAnnotationValue( klass, annotation_item, "value", ScopedNullHandle<mirror::Class>(), kDexAnnotationMethod); } bool DexFile::GetInnerClass(Handle<mirror::Class> klass, mirror::String** name) const { const AnnotationSetItem* annotation_set = FindAnnotationSetForClass(klass); if (annotation_set == nullptr) { return false; } const AnnotationItem* annotation_item = SearchAnnotationSet( annotation_set, "Ldalvik/annotation/InnerClass;", kDexVisibilitySystem); if (annotation_item == nullptr) { return false; } const uint8_t* annotation = SearchEncodedAnnotation(annotation_item->annotation_, "name"); if (annotation == nullptr) { return false; } AnnotationValue annotation_value; if (!ProcessAnnotationValue(klass, &annotation, &annotation_value, ScopedNullHandle<mirror::Class>(), kAllObjects)) { return false; } if (annotation_value.type_ != kDexAnnotationNull && annotation_value.type_ != kDexAnnotationString) { return false; } *name = down_cast<mirror::String*>(annotation_value.value_.GetL()); return true; } bool DexFile::GetInnerClassFlags(Handle<mirror::Class> klass, uint32_t* flags) const { const AnnotationSetItem* annotation_set = FindAnnotationSetForClass(klass); if (annotation_set == nullptr) { return false; } const AnnotationItem* annotation_item = SearchAnnotationSet( annotation_set, "Ldalvik/annotation/InnerClass;", kDexVisibilitySystem); if (annotation_item == nullptr) { return false; } const uint8_t* annotation = SearchEncodedAnnotation(annotation_item->annotation_, "accessFlags"); if (annotation == nullptr) { return false; } AnnotationValue annotation_value; if (!ProcessAnnotationValue(klass, &annotation, &annotation_value, ScopedNullHandle<mirror::Class>(), kAllRaw)) { return false; } if (annotation_value.type_ != kDexAnnotationInt) { return false; } *flags = annotation_value.value_.GetI(); return true; } mirror::ObjectArray<mirror::String>* DexFile::GetSignatureAnnotationForClass( Handle<mirror::Class> klass) const { const AnnotationSetItem* annotation_set = FindAnnotationSetForClass(klass); if (annotation_set == nullptr) { return nullptr; } return GetSignatureValue(klass, annotation_set); } bool DexFile::IsClassAnnotationPresent(Handle<mirror::Class> klass, Handle<mirror::Class> annotation_class) const { const AnnotationSetItem* annotation_set = FindAnnotationSetForClass(klass); if (annotation_set == nullptr) { return false; } const AnnotationItem* annotation_item = GetAnnotationItemFromAnnotationSet( klass, annotation_set, kDexVisibilityRuntime, annotation_class); return annotation_item != nullptr; } mirror::Object* DexFile::CreateAnnotationMember(Handle<mirror::Class> klass, Handle<mirror::Class> annotation_class, const uint8_t** annotation) const { Thread* self = Thread::Current(); ScopedObjectAccessUnchecked soa(self); StackHandleScope<5> hs(self); uint32_t element_name_index = DecodeUnsignedLeb128(annotation); const char* name = StringDataByIdx(element_name_index); Handle<mirror::String> string_name( hs.NewHandle(mirror::String::AllocFromModifiedUtf8(self, name))); ArtMethod* annotation_method = annotation_class->FindDeclaredVirtualMethodByName(name, sizeof(void*)); if (annotation_method == nullptr) { return nullptr; } size_t pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); Handle<mirror::Class> method_return(hs.NewHandle( annotation_method->GetReturnType(true /* resolve */, pointer_size))); AnnotationValue annotation_value; if (!ProcessAnnotationValue(klass, annotation, &annotation_value, method_return, kAllObjects)) { return nullptr; } Handle<mirror::Object> value_object(hs.NewHandle(annotation_value.value_.GetL())); mirror::Class* annotation_member_class = WellKnownClasses::ToClass(WellKnownClasses::libcore_reflect_AnnotationMember); Handle<mirror::Object> new_member(hs.NewHandle(annotation_member_class->AllocObject(self))); Handle<mirror::Method> method_object( hs.NewHandle(mirror::Method::CreateFromArtMethod(self, annotation_method))); if (new_member.Get() == nullptr || string_name.Get() == nullptr || method_object.Get() == nullptr || method_return.Get() == nullptr) { LOG(ERROR) << StringPrintf("Failed creating annotation element (m=%p n=%p a=%p r=%p", new_member.Get(), string_name.Get(), method_object.Get(), method_return.Get()); return nullptr; } JValue result; ArtMethod* annotation_member_init = soa.DecodeMethod(WellKnownClasses::libcore_reflect_AnnotationMember_init); uint32_t args[5] = { static_cast<uint32_t>(reinterpret_cast<uintptr_t>(new_member.Get())), static_cast<uint32_t>(reinterpret_cast<uintptr_t>(string_name.Get())), static_cast<uint32_t>(reinterpret_cast<uintptr_t>(value_object.Get())), static_cast<uint32_t>(reinterpret_cast<uintptr_t>(method_return.Get())), static_cast<uint32_t>(reinterpret_cast<uintptr_t>(method_object.Get())) }; annotation_member_init->Invoke(self, args, sizeof(args), &result, "VLLLL"); if (self->IsExceptionPending()) { LOG(INFO) << "Exception in AnnotationMember.<init>"; return nullptr; } return new_member.Get(); } const DexFile::AnnotationItem* DexFile::GetAnnotationItemFromAnnotationSet( Handle<mirror::Class> klass, const AnnotationSetItem* annotation_set, uint32_t visibility, Handle<mirror::Class> annotation_class) const { for (uint32_t i = 0; i < annotation_set->size_; ++i) { const AnnotationItem* annotation_item = GetAnnotationItem(annotation_set, i); if (!IsVisibilityCompatible(annotation_item->visibility_, visibility)) { continue; } const uint8_t* annotation = annotation_item->annotation_; uint32_t type_index = DecodeUnsignedLeb128(&annotation); mirror::Class* resolved_class = Runtime::Current()->GetClassLinker()->ResolveType( klass->GetDexFile(), type_index, klass.Get()); if (resolved_class == nullptr) { std::string temp; LOG(WARNING) << StringPrintf("Unable to resolve %s annotation class %d", klass->GetDescriptor(&temp), type_index); CHECK(Thread::Current()->IsExceptionPending()); Thread::Current()->ClearException(); continue; } if (resolved_class == annotation_class.Get()) { return annotation_item; } } return nullptr; } mirror::Object* DexFile::GetAnnotationObjectFromAnnotationSet(Handle<mirror::Class> klass, const AnnotationSetItem* annotation_set, uint32_t visibility, Handle<mirror::Class> annotation_class) const { const AnnotationItem* annotation_item = GetAnnotationItemFromAnnotationSet(klass, annotation_set, visibility, annotation_class); if (annotation_item == nullptr) { return nullptr; } const uint8_t* annotation = annotation_item->annotation_; return ProcessEncodedAnnotation(klass, &annotation); } mirror::Object* DexFile::GetAnnotationValue(Handle<mirror::Class> klass, const AnnotationItem* annotation_item, const char* annotation_name, Handle<mirror::Class> array_class, uint32_t expected_type) const { const uint8_t* annotation = SearchEncodedAnnotation(annotation_item->annotation_, annotation_name); if (annotation == nullptr) { return nullptr; } AnnotationValue annotation_value; if (!ProcessAnnotationValue(klass, &annotation, &annotation_value, array_class, kAllObjects)) { return nullptr; } if (annotation_value.type_ != expected_type) { return nullptr; } return annotation_value.value_.GetL(); } mirror::ObjectArray<mirror::String>* DexFile::GetSignatureValue(Handle<mirror::Class> klass, const AnnotationSetItem* annotation_set) const { StackHandleScope<1> hs(Thread::Current()); const AnnotationItem* annotation_item = SearchAnnotationSet(annotation_set, "Ldalvik/annotation/Signature;", kDexVisibilitySystem); if (annotation_item == nullptr) { return nullptr; } mirror::Class* string_class = mirror::String::GetJavaLangString(); Handle<mirror::Class> string_array_class(hs.NewHandle( Runtime::Current()->GetClassLinker()->FindArrayClass(Thread::Current(), &string_class))); if (string_array_class.Get() == nullptr) { return nullptr; } mirror::Object* obj = GetAnnotationValue(klass, annotation_item, "value", string_array_class, kDexAnnotationArray); if (obj == nullptr) { return nullptr; } return obj->AsObjectArray<mirror::String>(); } mirror::ObjectArray<mirror::Class>* DexFile::GetThrowsValue(Handle<mirror::Class> klass, const AnnotationSetItem* annotation_set) const { StackHandleScope<1> hs(Thread::Current()); const AnnotationItem* annotation_item = SearchAnnotationSet(annotation_set, "Ldalvik/annotation/Throws;", kDexVisibilitySystem); if (annotation_item == nullptr) { return nullptr; } mirror::Class* class_class = mirror::Class::GetJavaLangClass(); Handle<mirror::Class> class_array_class(hs.NewHandle( Runtime::Current()->GetClassLinker()->FindArrayClass(Thread::Current(), &class_class))); if (class_array_class.Get() == nullptr) { return nullptr; } mirror::Object* obj = GetAnnotationValue(klass, annotation_item, "value", class_array_class, kDexAnnotationArray); if (obj == nullptr) { return nullptr; } return obj->AsObjectArray<mirror::Class>(); } mirror::ObjectArray<mirror::Object>* DexFile::ProcessAnnotationSet(Handle<mirror::Class> klass, const AnnotationSetItem* annotation_set, uint32_t visibility) const { Thread* self = Thread::Current(); ScopedObjectAccessUnchecked soa(self); StackHandleScope<2> hs(self); Handle<mirror::Class> annotation_array_class(hs.NewHandle( soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_annotation_Annotation__array))); if (annotation_set == nullptr) { return mirror::ObjectArray<mirror::Object>::Alloc(self, annotation_array_class.Get(), 0); } uint32_t size = annotation_set->size_; Handle<mirror::ObjectArray<mirror::Object>> result(hs.NewHandle( mirror::ObjectArray<mirror::Object>::Alloc(self, annotation_array_class.Get(), size))); if (result.Get() == nullptr) { return nullptr; } uint32_t dest_index = 0; for (uint32_t i = 0; i < size; ++i) { const AnnotationItem* annotation_item = GetAnnotationItem(annotation_set, i); // Note that we do not use IsVisibilityCompatible here because older code // was correct for this case. if (annotation_item->visibility_ != visibility) { continue; } const uint8_t* annotation = annotation_item->annotation_; mirror::Object* annotation_obj = ProcessEncodedAnnotation(klass, &annotation); if (annotation_obj != nullptr) { result->SetWithoutChecks<false>(dest_index, annotation_obj); ++dest_index; } else if (self->IsExceptionPending()) { return nullptr; } } if (dest_index == size) { return result.Get(); } mirror::ObjectArray<mirror::Object>* trimmed_result = mirror::ObjectArray<mirror::Object>::Alloc(self, annotation_array_class.Get(), dest_index); if (trimmed_result == nullptr) { return nullptr; } for (uint32_t i = 0; i < dest_index; ++i) { mirror::Object* obj = result->GetWithoutChecks(i); trimmed_result->SetWithoutChecks<false>(i, obj); } return trimmed_result; } mirror::ObjectArray<mirror::Object>* DexFile::ProcessAnnotationSetRefList( Handle<mirror::Class> klass, const AnnotationSetRefList* set_ref_list, uint32_t size) const { Thread* self = Thread::Current(); ScopedObjectAccessUnchecked soa(self); StackHandleScope<1> hs(self); mirror::Class* annotation_array_class = soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_annotation_Annotation__array); mirror::Class* annotation_array_array_class = Runtime::Current()->GetClassLinker()->FindArrayClass(self, &annotation_array_class); if (annotation_array_array_class == nullptr) { return nullptr; } Handle<mirror::ObjectArray<mirror::Object>> annotation_array_array(hs.NewHandle( mirror::ObjectArray<mirror::Object>::Alloc(self, annotation_array_array_class, size))); if (annotation_array_array.Get() == nullptr) { LOG(ERROR) << "Annotation set ref array allocation failed"; return nullptr; } for (uint32_t index = 0; index < size; ++index) { const AnnotationSetRefItem* set_ref_item = &set_ref_list->list_[index]; const AnnotationSetItem* set_item = GetSetRefItemItem(set_ref_item); mirror::Object* annotation_set = ProcessAnnotationSet(klass, set_item, kDexVisibilityRuntime); if (annotation_set == nullptr) { return nullptr; } annotation_array_array->SetWithoutChecks<false>(index, annotation_set); } return annotation_array_array.Get(); } bool DexFile::ProcessAnnotationValue(Handle<mirror::Class> klass, const uint8_t** annotation_ptr, AnnotationValue* annotation_value, Handle<mirror::Class> array_class, DexFile::AnnotationResultStyle result_style) const { Thread* self = Thread::Current(); mirror::Object* element_object = nullptr; bool set_object = false; Primitive::Type primitive_type = Primitive::kPrimVoid; const uint8_t* annotation = *annotation_ptr; uint8_t header_byte = *(annotation++); uint8_t value_type = header_byte & kDexAnnotationValueTypeMask; uint8_t value_arg = header_byte >> kDexAnnotationValueArgShift; int32_t width = value_arg + 1; annotation_value->type_ = value_type; switch (value_type) { case kDexAnnotationByte: annotation_value->value_.SetB(static_cast<int8_t>(ReadSignedInt(annotation, value_arg))); primitive_type = Primitive::kPrimByte; break; case kDexAnnotationShort: annotation_value->value_.SetS(static_cast<int16_t>(ReadSignedInt(annotation, value_arg))); primitive_type = Primitive::kPrimShort; break; case kDexAnnotationChar: annotation_value->value_.SetC(static_cast<uint16_t>(ReadUnsignedInt(annotation, value_arg, false))); primitive_type = Primitive::kPrimChar; break; case kDexAnnotationInt: annotation_value->value_.SetI(ReadSignedInt(annotation, value_arg)); primitive_type = Primitive::kPrimInt; break; case kDexAnnotationLong: annotation_value->value_.SetJ(ReadSignedLong(annotation, value_arg)); primitive_type = Primitive::kPrimLong; break; case kDexAnnotationFloat: annotation_value->value_.SetI(ReadUnsignedInt(annotation, value_arg, true)); primitive_type = Primitive::kPrimFloat; break; case kDexAnnotationDouble: annotation_value->value_.SetJ(ReadUnsignedLong(annotation, value_arg, true)); primitive_type = Primitive::kPrimDouble; break; case kDexAnnotationBoolean: annotation_value->value_.SetZ(value_arg != 0); primitive_type = Primitive::kPrimBoolean; width = 0; break; case kDexAnnotationString: { uint32_t index = ReadUnsignedInt(annotation, value_arg, false); if (result_style == kAllRaw) { annotation_value->value_.SetI(index); } else { StackHandleScope<1> hs(self); Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache())); element_object = Runtime::Current()->GetClassLinker()->ResolveString( klass->GetDexFile(), index, dex_cache); set_object = true; if (element_object == nullptr) { return false; } } break; } case kDexAnnotationType: { uint32_t index = ReadUnsignedInt(annotation, value_arg, false); if (result_style == kAllRaw) { annotation_value->value_.SetI(index); } else { element_object = Runtime::Current()->GetClassLinker()->ResolveType( klass->GetDexFile(), index, klass.Get()); set_object = true; if (element_object == nullptr) { CHECK(self->IsExceptionPending()); if (result_style == kAllObjects) { const char* msg = StringByTypeIdx(index); self->ThrowNewWrappedException("Ljava/lang/TypeNotPresentException;", msg); element_object = self->GetException(); self->ClearException(); } else { return false; } } } break; } case kDexAnnotationMethod: { uint32_t index = ReadUnsignedInt(annotation, value_arg, false); if (result_style == kAllRaw) { annotation_value->value_.SetI(index); } else { StackHandleScope<2> hs(self); Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache())); Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader())); ArtMethod* method = Runtime::Current()->GetClassLinker()->ResolveMethodWithoutInvokeType( klass->GetDexFile(), index, dex_cache, class_loader); if (method == nullptr) { return false; } set_object = true; if (method->IsConstructor()) { element_object = mirror::Constructor::CreateFromArtMethod(self, method); } else { element_object = mirror::Method::CreateFromArtMethod(self, method); } if (element_object == nullptr) { return false; } } break; } case kDexAnnotationField: { uint32_t index = ReadUnsignedInt(annotation, value_arg, false); if (result_style == kAllRaw) { annotation_value->value_.SetI(index); } else { StackHandleScope<2> hs(self); Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache())); Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader())); ArtField* field = Runtime::Current()->GetClassLinker()->ResolveFieldJLS( klass->GetDexFile(), index, dex_cache, class_loader); if (field == nullptr) { return false; } set_object = true; element_object = mirror::Field::CreateFromArtField(self, field, true); if (element_object == nullptr) { return false; } } break; } case kDexAnnotationEnum: { uint32_t index = ReadUnsignedInt(annotation, value_arg, false); if (result_style == kAllRaw) { annotation_value->value_.SetI(index); } else { StackHandleScope<3> hs(self); Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache())); Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader())); ArtField* enum_field = Runtime::Current()->GetClassLinker()->ResolveField( klass->GetDexFile(), index, dex_cache, class_loader, true); if (enum_field == nullptr) { return false; } else { Handle<mirror::Class> field_class(hs.NewHandle(enum_field->GetDeclaringClass())); Runtime::Current()->GetClassLinker()->EnsureInitialized(self, field_class, true, true); element_object = enum_field->GetObject(field_class.Get()); set_object = true; } } break; } case kDexAnnotationArray: if (result_style == kAllRaw || array_class.Get() == nullptr) { return false; } else { ScopedObjectAccessUnchecked soa(self); StackHandleScope<2> hs(self); uint32_t size = DecodeUnsignedLeb128(&annotation); Handle<mirror::Class> component_type(hs.NewHandle(array_class->GetComponentType())); Handle<mirror::Array> new_array(hs.NewHandle(mirror::Array::Alloc<true>( self, array_class.Get(), size, array_class->GetComponentSizeShift(), Runtime::Current()->GetHeap()->GetCurrentAllocator()))); if (new_array.Get() == nullptr) { LOG(ERROR) << "Annotation element array allocation failed with size " << size; return false; } AnnotationValue new_annotation_value; for (uint32_t i = 0; i < size; ++i) { if (!ProcessAnnotationValue(klass, &annotation, &new_annotation_value, component_type, kPrimitivesOrObjects)) { return false; } if (!component_type->IsPrimitive()) { mirror::Object* obj = new_annotation_value.value_.GetL(); new_array->AsObjectArray<mirror::Object>()->SetWithoutChecks<false>(i, obj); } else { switch (new_annotation_value.type_) { case kDexAnnotationByte: new_array->AsByteArray()->SetWithoutChecks<false>( i, new_annotation_value.value_.GetB()); break; case kDexAnnotationShort: new_array->AsShortArray()->SetWithoutChecks<false>( i, new_annotation_value.value_.GetS()); break; case kDexAnnotationChar: new_array->AsCharArray()->SetWithoutChecks<false>( i, new_annotation_value.value_.GetC()); break; case kDexAnnotationInt: new_array->AsIntArray()->SetWithoutChecks<false>( i, new_annotation_value.value_.GetI()); break; case kDexAnnotationLong: new_array->AsLongArray()->SetWithoutChecks<false>( i, new_annotation_value.value_.GetJ()); break; case kDexAnnotationFloat: new_array->AsFloatArray()->SetWithoutChecks<false>( i, new_annotation_value.value_.GetF()); break; case kDexAnnotationDouble: new_array->AsDoubleArray()->SetWithoutChecks<false>( i, new_annotation_value.value_.GetD()); break; case kDexAnnotationBoolean: new_array->AsBooleanArray()->SetWithoutChecks<false>( i, new_annotation_value.value_.GetZ()); break; default: LOG(FATAL) << "Found invalid annotation value type while building annotation array"; return false; } } } element_object = new_array.Get(); set_object = true; width = 0; } break; case kDexAnnotationAnnotation: if (result_style == kAllRaw) { return false; } element_object = ProcessEncodedAnnotation(klass, &annotation); if (element_object == nullptr) { return false; } set_object = true; width = 0; break; case kDexAnnotationNull: if (result_style == kAllRaw) { annotation_value->value_.SetI(0); } else { CHECK(element_object == nullptr); set_object = true; } width = 0; break; default: LOG(ERROR) << StringPrintf("Bad annotation element value type 0x%02x", value_type); return false; } annotation += width; *annotation_ptr = annotation; if (result_style == kAllObjects && primitive_type != Primitive::kPrimVoid) { element_object = BoxPrimitive(primitive_type, annotation_value->value_); set_object = true; } if (set_object) { annotation_value->value_.SetL(element_object); } return true; } mirror::Object* DexFile::ProcessEncodedAnnotation(Handle<mirror::Class> klass, const uint8_t** annotation) const { uint32_t type_index = DecodeUnsignedLeb128(annotation); uint32_t size = DecodeUnsignedLeb128(annotation); Thread* self = Thread::Current(); ScopedObjectAccessUnchecked soa(self); StackHandleScope<2> hs(self); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); Handle<mirror::Class> annotation_class(hs.NewHandle( class_linker->ResolveType(klass->GetDexFile(), type_index, klass.Get()))); if (annotation_class.Get() == nullptr) { LOG(INFO) << "Unable to resolve " << PrettyClass(klass.Get()) << " annotation class " << type_index; DCHECK(Thread::Current()->IsExceptionPending()); Thread::Current()->ClearException(); return nullptr; } mirror::Class* annotation_member_class = soa.Decode<mirror::Class*>(WellKnownClasses::libcore_reflect_AnnotationMember); mirror::Class* annotation_member_array_class = class_linker->FindArrayClass(self, &annotation_member_class); if (annotation_member_array_class == nullptr) { return nullptr; } mirror::ObjectArray<mirror::Object>* element_array = nullptr; if (size > 0) { element_array = mirror::ObjectArray<mirror::Object>::Alloc(self, annotation_member_array_class, size); if (element_array == nullptr) { LOG(ERROR) << "Failed to allocate annotation member array (" << size << " elements)"; return nullptr; } } Handle<mirror::ObjectArray<mirror::Object>> h_element_array(hs.NewHandle(element_array)); for (uint32_t i = 0; i < size; ++i) { mirror::Object* new_member = CreateAnnotationMember(klass, annotation_class, annotation); if (new_member == nullptr) { return nullptr; } h_element_array->SetWithoutChecks<false>(i, new_member); } JValue result; ArtMethod* create_annotation_method = soa.DecodeMethod(WellKnownClasses::libcore_reflect_AnnotationFactory_createAnnotation); uint32_t args[2] = { static_cast<uint32_t>(reinterpret_cast<uintptr_t>(annotation_class.Get())), static_cast<uint32_t>(reinterpret_cast<uintptr_t>(h_element_array.Get())) }; create_annotation_method->Invoke(self, args, sizeof(args), &result, "LLL"); if (self->IsExceptionPending()) { LOG(INFO) << "Exception in AnnotationFactory.createAnnotation"; return nullptr; } return result.GetL(); } const DexFile::AnnotationItem* DexFile::SearchAnnotationSet(const AnnotationSetItem* annotation_set, const char* descriptor, uint32_t visibility) const { const AnnotationItem* result = nullptr; for (uint32_t i = 0; i < annotation_set->size_; ++i) { const AnnotationItem* annotation_item = GetAnnotationItem(annotation_set, i); if (!IsVisibilityCompatible(annotation_item->visibility_, visibility)) { continue; } const uint8_t* annotation = annotation_item->annotation_; uint32_t type_index = DecodeUnsignedLeb128(&annotation); if (strcmp(descriptor, StringByTypeIdx(type_index)) == 0) { result = annotation_item; break; } } return result; } const uint8_t* DexFile::SearchEncodedAnnotation(const uint8_t* annotation, const char* name) const { DecodeUnsignedLeb128(&annotation); // unused type_index uint32_t size = DecodeUnsignedLeb128(&annotation); while (size != 0) { uint32_t element_name_index = DecodeUnsignedLeb128(&annotation); const char* element_name = GetStringData(GetStringId(element_name_index)); if (strcmp(name, element_name) == 0) { return annotation; } SkipAnnotationValue(&annotation); size--; } return nullptr; } bool DexFile::SkipAnnotationValue(const uint8_t** annotation_ptr) const { const uint8_t* annotation = *annotation_ptr; uint8_t header_byte = *(annotation++); uint8_t value_type = header_byte & kDexAnnotationValueTypeMask; uint8_t value_arg = header_byte >> kDexAnnotationValueArgShift; int32_t width = value_arg + 1; switch (value_type) { case kDexAnnotationByte: case kDexAnnotationShort: case kDexAnnotationChar: case kDexAnnotationInt: case kDexAnnotationLong: case kDexAnnotationFloat: case kDexAnnotationDouble: case kDexAnnotationString: case kDexAnnotationType: case kDexAnnotationMethod: case kDexAnnotationField: case kDexAnnotationEnum: break; case kDexAnnotationArray: { uint32_t size = DecodeUnsignedLeb128(&annotation); while (size--) { if (!SkipAnnotationValue(&annotation)) { return false; } } width = 0; break; } case kDexAnnotationAnnotation: { DecodeUnsignedLeb128(&annotation); // unused type_index uint32_t size = DecodeUnsignedLeb128(&annotation); while (size--) { DecodeUnsignedLeb128(&annotation); // unused element_name_index if (!SkipAnnotationValue(&annotation)) { return false; } } width = 0; break; } case kDexAnnotationBoolean: case kDexAnnotationNull: width = 0; break; default: LOG(FATAL) << StringPrintf("Bad annotation element value byte 0x%02x", value_type); return false; } annotation += width; *annotation_ptr = annotation; return true; } std::ostream& operator<<(std::ostream& os, const DexFile& dex_file) { os << StringPrintf("[DexFile: %s dex-checksum=%08x location-checksum=%08x %p-%p]", dex_file.GetLocation().c_str(), dex_file.GetHeader().checksum_, dex_file.GetLocationChecksum(), dex_file.Begin(), dex_file.Begin() + dex_file.Size()); return os; } std::string Signature::ToString() const { if (dex_file_ == nullptr) { CHECK(proto_id_ == nullptr); return "<no signature>"; } const DexFile::TypeList* params = dex_file_->GetProtoParameters(*proto_id_); std::string result; if (params == nullptr) { result += "()"; } else { result += "("; for (uint32_t i = 0; i < params->Size(); ++i) { result += dex_file_->StringByTypeIdx(params->GetTypeItem(i).type_idx_); } result += ")"; } result += dex_file_->StringByTypeIdx(proto_id_->return_type_idx_); return result; } bool Signature::operator==(const StringPiece& rhs) const { if (dex_file_ == nullptr) { return false; } StringPiece tail(rhs); if (!tail.starts_with("(")) { return false; // Invalid signature } tail.remove_prefix(1); // "("; const DexFile::TypeList* params = dex_file_->GetProtoParameters(*proto_id_); if (params != nullptr) { for (uint32_t i = 0; i < params->Size(); ++i) { StringPiece param(dex_file_->StringByTypeIdx(params->GetTypeItem(i).type_idx_)); if (!tail.starts_with(param)) { return false; } tail.remove_prefix(param.length()); } } if (!tail.starts_with(")")) { return false; } tail.remove_prefix(1); // ")"; return tail == dex_file_->StringByTypeIdx(proto_id_->return_type_idx_); } std::ostream& operator<<(std::ostream& os, const Signature& sig) { return os << sig.ToString(); } // Decodes the header section from the class data bytes. void ClassDataItemIterator::ReadClassDataHeader() { CHECK(ptr_pos_ != nullptr); header_.static_fields_size_ = DecodeUnsignedLeb128(&ptr_pos_); header_.instance_fields_size_ = DecodeUnsignedLeb128(&ptr_pos_); header_.direct_methods_size_ = DecodeUnsignedLeb128(&ptr_pos_); header_.virtual_methods_size_ = DecodeUnsignedLeb128(&ptr_pos_); } void ClassDataItemIterator::ReadClassDataField() { field_.field_idx_delta_ = DecodeUnsignedLeb128(&ptr_pos_); field_.access_flags_ = DecodeUnsignedLeb128(&ptr_pos_); // The user of the iterator is responsible for checking if there // are unordered or duplicate indexes. } void ClassDataItemIterator::ReadClassDataMethod() { method_.method_idx_delta_ = DecodeUnsignedLeb128(&ptr_pos_); method_.access_flags_ = DecodeUnsignedLeb128(&ptr_pos_); method_.code_off_ = DecodeUnsignedLeb128(&ptr_pos_); if (last_idx_ != 0 && method_.method_idx_delta_ == 0) { LOG(WARNING) << "Duplicate method in " << dex_file_.GetLocation(); } } EncodedStaticFieldValueIterator::EncodedStaticFieldValueIterator( const DexFile& dex_file, const DexFile::ClassDef& class_def) : EncodedStaticFieldValueIterator(dex_file, nullptr, nullptr, nullptr, class_def, -1, kByte) { } EncodedStaticFieldValueIterator::EncodedStaticFieldValueIterator( const DexFile& dex_file, Handle<mirror::DexCache>* dex_cache, Handle<mirror::ClassLoader>* class_loader, ClassLinker* linker, const DexFile::ClassDef& class_def) : EncodedStaticFieldValueIterator(dex_file, dex_cache, class_loader, linker, class_def, -1, kByte) { DCHECK(dex_cache_ != nullptr); DCHECK(class_loader_ != nullptr); } EncodedStaticFieldValueIterator::EncodedStaticFieldValueIterator( const DexFile& dex_file, Handle<mirror::DexCache>* dex_cache, Handle<mirror::ClassLoader>* class_loader, ClassLinker* linker, const DexFile::ClassDef& class_def, size_t pos, ValueType type) : dex_file_(dex_file), dex_cache_(dex_cache), class_loader_(class_loader), linker_(linker), array_size_(), pos_(pos), type_(type) { ptr_ = dex_file.GetEncodedStaticFieldValuesArray(class_def); if (ptr_ == nullptr) { array_size_ = 0; } else { array_size_ = DecodeUnsignedLeb128(&ptr_); } if (array_size_ > 0) { Next(); } } void EncodedStaticFieldValueIterator::Next() { pos_++; if (pos_ >= array_size_) { return; } uint8_t value_type = *ptr_++; uint8_t value_arg = value_type >> kEncodedValueArgShift; size_t width = value_arg + 1; // assume and correct later type_ = static_cast<ValueType>(value_type & kEncodedValueTypeMask); switch (type_) { case kBoolean: jval_.i = (value_arg != 0) ? 1 : 0; width = 0; break; case kByte: jval_.i = ReadSignedInt(ptr_, value_arg); CHECK(IsInt<8>(jval_.i)); break; case kShort: jval_.i = ReadSignedInt(ptr_, value_arg); CHECK(IsInt<16>(jval_.i)); break; case kChar: jval_.i = ReadUnsignedInt(ptr_, value_arg, false); CHECK(IsUint<16>(jval_.i)); break; case kInt: jval_.i = ReadSignedInt(ptr_, value_arg); break; case kLong: jval_.j = ReadSignedLong(ptr_, value_arg); break; case kFloat: jval_.i = ReadUnsignedInt(ptr_, value_arg, true); break; case kDouble: jval_.j = ReadUnsignedLong(ptr_, value_arg, true); break; case kString: case kType: jval_.i = ReadUnsignedInt(ptr_, value_arg, false); break; case kField: case kMethod: case kEnum: case kArray: case kAnnotation: UNIMPLEMENTED(FATAL) << ": type " << type_; UNREACHABLE(); case kNull: jval_.l = nullptr; width = 0; break; default: LOG(FATAL) << "Unreached"; UNREACHABLE(); } ptr_ += width; } template<bool kTransactionActive> void EncodedStaticFieldValueIterator::ReadValueToField(ArtField* field) const { DCHECK(dex_cache_ != nullptr); DCHECK(class_loader_ != nullptr); switch (type_) { case kBoolean: field->SetBoolean<kTransactionActive>(field->GetDeclaringClass(), jval_.z); break; case kByte: field->SetByte<kTransactionActive>(field->GetDeclaringClass(), jval_.b); break; case kShort: field->SetShort<kTransactionActive>(field->GetDeclaringClass(), jval_.s); break; case kChar: field->SetChar<kTransactionActive>(field->GetDeclaringClass(), jval_.c); break; case kInt: field->SetInt<kTransactionActive>(field->GetDeclaringClass(), jval_.i); break; case kLong: field->SetLong<kTransactionActive>(field->GetDeclaringClass(), jval_.j); break; case kFloat: field->SetFloat<kTransactionActive>(field->GetDeclaringClass(), jval_.f); break; case kDouble: field->SetDouble<kTransactionActive>(field->GetDeclaringClass(), jval_.d); break; case kNull: field->SetObject<kTransactionActive>(field->GetDeclaringClass(), nullptr); break; case kString: { mirror::String* resolved = linker_->ResolveString(dex_file_, jval_.i, *dex_cache_); field->SetObject<kTransactionActive>(field->GetDeclaringClass(), resolved); break; } case kType: { mirror::Class* resolved = linker_->ResolveType(dex_file_, jval_.i, *dex_cache_, *class_loader_); field->SetObject<kTransactionActive>(field->GetDeclaringClass(), resolved); break; } default: UNIMPLEMENTED(FATAL) << ": type " << type_; } } template void EncodedStaticFieldValueIterator::ReadValueToField<true>(ArtField* field) const; template void EncodedStaticFieldValueIterator::ReadValueToField<false>(ArtField* field) const; CatchHandlerIterator::CatchHandlerIterator(const DexFile::CodeItem& code_item, uint32_t address) { handler_.address_ = -1; int32_t offset = -1; // Short-circuit the overwhelmingly common cases. switch (code_item.tries_size_) { case 0: break; case 1: { const DexFile::TryItem* tries = DexFile::GetTryItems(code_item, 0); uint32_t start = tries->start_addr_; if (address >= start) { uint32_t end = start + tries->insn_count_; if (address < end) { offset = tries->handler_off_; } } break; } default: offset = DexFile::FindCatchHandlerOffset(code_item, address); } Init(code_item, offset); } CatchHandlerIterator::CatchHandlerIterator(const DexFile::CodeItem& code_item, const DexFile::TryItem& try_item) { handler_.address_ = -1; Init(code_item, try_item.handler_off_); } void CatchHandlerIterator::Init(const DexFile::CodeItem& code_item, int32_t offset) { if (offset >= 0) { Init(DexFile::GetCatchHandlerData(code_item, offset)); } else { // Not found, initialize as empty current_data_ = nullptr; remaining_count_ = -1; catch_all_ = false; DCHECK(!HasNext()); } } void CatchHandlerIterator::Init(const uint8_t* handler_data) { current_data_ = handler_data; remaining_count_ = DecodeSignedLeb128(¤t_data_); // If remaining_count_ is non-positive, then it is the negative of // the number of catch types, and the catches are followed by a // catch-all handler. if (remaining_count_ <= 0) { catch_all_ = true; remaining_count_ = -remaining_count_; } else { catch_all_ = false; } Next(); } void CatchHandlerIterator::Next() { if (remaining_count_ > 0) { handler_.type_idx_ = DecodeUnsignedLeb128(¤t_data_); handler_.address_ = DecodeUnsignedLeb128(¤t_data_); remaining_count_--; return; } if (catch_all_) { handler_.type_idx_ = DexFile::kDexNoIndex16; handler_.address_ = DecodeUnsignedLeb128(¤t_data_); catch_all_ = false; return; } // no more handler remaining_count_ = -1; } } // namespace art