/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_INTERPRETER_INTERPRETER_COMMON_H_ #define ART_RUNTIME_INTERPRETER_INTERPRETER_COMMON_H_ #include "interpreter.h" #include <math.h> #include <iostream> #include <sstream> #include "art_field-inl.h" #include "art_method-inl.h" #include "base/logging.h" #include "base/macros.h" #include "class_linker-inl.h" #include "common_throws.h" #include "dex_file-inl.h" #include "dex_instruction-inl.h" #include "entrypoints/entrypoint_utils-inl.h" #include "handle_scope-inl.h" #include "jit/jit.h" #include "lambda/art_lambda_method.h" #include "lambda/box_table.h" #include "lambda/closure.h" #include "lambda/closure_builder-inl.h" #include "lambda/leaking_allocator.h" #include "lambda/shorty_field_type.h" #include "mirror/class-inl.h" #include "mirror/method.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "mirror/string-inl.h" #include "stack.h" #include "thread.h" #include "well_known_classes.h" using ::art::ArtMethod; using ::art::mirror::Array; using ::art::mirror::BooleanArray; using ::art::mirror::ByteArray; using ::art::mirror::CharArray; using ::art::mirror::Class; using ::art::mirror::ClassLoader; using ::art::mirror::IntArray; using ::art::mirror::LongArray; using ::art::mirror::Object; using ::art::mirror::ObjectArray; using ::art::mirror::ShortArray; using ::art::mirror::String; using ::art::mirror::Throwable; namespace art { namespace interpreter { // External references to all interpreter implementations. template<bool do_access_check, bool transaction_active> extern JValue ExecuteSwitchImpl(Thread* self, const DexFile::CodeItem* code_item, ShadowFrame& shadow_frame, JValue result_register, bool interpret_one_instruction); template<bool do_access_check, bool transaction_active> extern JValue ExecuteGotoImpl(Thread* self, const DexFile::CodeItem* code_item, ShadowFrame& shadow_frame, JValue result_register); // Mterp does not support transactions or access check, thus no templated versions. extern "C" bool ExecuteMterpImpl(Thread* self, const DexFile::CodeItem* code_item, ShadowFrame* shadow_frame, JValue* result_register); void ThrowNullPointerExceptionFromInterpreter() SHARED_REQUIRES(Locks::mutator_lock_); template <bool kMonitorCounting> static inline void DoMonitorEnter(Thread* self, ShadowFrame* frame, Object* ref) NO_THREAD_SAFETY_ANALYSIS REQUIRES(!Roles::uninterruptible_) { StackHandleScope<1> hs(self); Handle<Object> h_ref(hs.NewHandle(ref)); h_ref->MonitorEnter(self); if (kMonitorCounting && frame->GetMethod()->MustCountLocks()) { frame->GetLockCountData().AddMonitor(self, h_ref.Get()); } } template <bool kMonitorCounting> static inline void DoMonitorExit(Thread* self, ShadowFrame* frame, Object* ref) NO_THREAD_SAFETY_ANALYSIS REQUIRES(!Roles::uninterruptible_) { StackHandleScope<1> hs(self); Handle<Object> h_ref(hs.NewHandle(ref)); h_ref->MonitorExit(self); if (kMonitorCounting && frame->GetMethod()->MustCountLocks()) { frame->GetLockCountData().RemoveMonitorOrThrow(self, h_ref.Get()); } } template <bool kMonitorCounting> static inline bool DoMonitorCheckOnExit(Thread* self, ShadowFrame* frame) NO_THREAD_SAFETY_ANALYSIS REQUIRES(!Roles::uninterruptible_) { if (kMonitorCounting && frame->GetMethod()->MustCountLocks()) { return frame->GetLockCountData().CheckAllMonitorsReleasedOrThrow(self); } return true; } void AbortTransactionF(Thread* self, const char* fmt, ...) __attribute__((__format__(__printf__, 2, 3))) SHARED_REQUIRES(Locks::mutator_lock_); void AbortTransactionV(Thread* self, const char* fmt, va_list args) SHARED_REQUIRES(Locks::mutator_lock_); void RecordArrayElementsInTransaction(mirror::Array* array, int32_t count) SHARED_REQUIRES(Locks::mutator_lock_); // Invokes the given method. This is part of the invocation support and is used by DoInvoke and // DoInvokeVirtualQuick functions. // Returns true on success, otherwise throws an exception and returns false. template<bool is_range, bool do_assignability_check> bool DoCall(ArtMethod* called_method, Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data, JValue* result); // Invokes the given lambda closure. This is part of the invocation support and is used by // DoLambdaInvoke functions. // Returns true on success, otherwise throws an exception and returns false. template<bool is_range, bool do_assignability_check> bool DoLambdaCall(ArtMethod* called_method, Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data, JValue* result); // Validates that the art method corresponding to a lambda method target // is semantically valid: // // Must be ACC_STATIC and ACC_LAMBDA. Must be a concrete managed implementation // (i.e. not native, not proxy, not abstract, ...). // // If the validation fails, return false and raise an exception. static inline bool IsValidLambdaTargetOrThrow(ArtMethod* called_method) SHARED_REQUIRES(Locks::mutator_lock_) { bool success = false; if (UNLIKELY(called_method == nullptr)) { // The shadow frame should already be pushed, so we don't need to update it. } else if (UNLIKELY(!called_method->IsInvokable())) { called_method->ThrowInvocationTimeError(); // We got an error. // TODO(iam): Also handle the case when the method is non-static, what error do we throw? // TODO(iam): Also make sure that ACC_LAMBDA is set. } else if (UNLIKELY(called_method->GetCodeItem() == nullptr)) { // Method could be native, proxy method, etc. Lambda targets have to be concrete impls, // so don't allow this. } else { success = true; } return success; } // Write out the 'Closure*' into vreg and vreg+1, as if it was a jlong. static inline void WriteLambdaClosureIntoVRegs(ShadowFrame& shadow_frame, const lambda::Closure& lambda_closure, uint32_t vreg) { // Split the method into a lo and hi 32 bits so we can encode them into 2 virtual registers. uint32_t closure_lo = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(&lambda_closure)); uint32_t closure_hi = static_cast<uint32_t>(reinterpret_cast<uint64_t>(&lambda_closure) >> BitSizeOf<uint32_t>()); // Use uint64_t instead of uintptr_t to allow shifting past the max on 32-bit. static_assert(sizeof(uint64_t) >= sizeof(uintptr_t), "Impossible"); DCHECK_NE(closure_lo | closure_hi, 0u); shadow_frame.SetVReg(vreg, closure_lo); shadow_frame.SetVReg(vreg + 1, closure_hi); } // Handles create-lambda instructions. // Returns true on success, otherwise throws an exception and returns false. // (Exceptions are thrown by creating a new exception and then being put in the thread TLS) // // The closure must be allocated big enough to hold the data, and should not be // pre-initialized. It is initialized with the actual captured variables as a side-effect, // although this should be unimportant to the caller since this function also handles storing it to // the ShadowFrame. // // As a work-in-progress implementation, this shoves the ArtMethod object corresponding // to the target dex method index into the target register vA and vA + 1. template<bool do_access_check> static inline bool DoCreateLambda(Thread* self, const Instruction* inst, /*inout*/ShadowFrame& shadow_frame, /*inout*/lambda::ClosureBuilder* closure_builder, /*inout*/lambda::Closure* uninitialized_closure) { DCHECK(closure_builder != nullptr); DCHECK(uninitialized_closure != nullptr); DCHECK_ALIGNED(uninitialized_closure, alignof(lambda::Closure)); using lambda::ArtLambdaMethod; using lambda::LeakingAllocator; /* * create-lambda is opcode 0x21c * - vA is the target register where the closure will be stored into * (also stores into vA + 1) * - vB is the method index which will be the target for a later invoke-lambda */ const uint32_t method_idx = inst->VRegB_21c(); mirror::Object* receiver = nullptr; // Always static. (see 'kStatic') ArtMethod* sf_method = shadow_frame.GetMethod(); ArtMethod* const called_method = FindMethodFromCode<kStatic, do_access_check>( method_idx, &receiver, sf_method, self); uint32_t vreg_dest_closure = inst->VRegA_21c(); if (UNLIKELY(!IsValidLambdaTargetOrThrow(called_method))) { CHECK(self->IsExceptionPending()); shadow_frame.SetVReg(vreg_dest_closure, 0u); shadow_frame.SetVReg(vreg_dest_closure + 1, 0u); return false; } ArtLambdaMethod* initialized_lambda_method; // Initialize the ArtLambdaMethod with the right data. { // Allocate enough memory to store a well-aligned ArtLambdaMethod. // This is not the final type yet since the data starts out uninitialized. LeakingAllocator::AlignedMemoryStorage<ArtLambdaMethod>* uninitialized_lambda_method = LeakingAllocator::AllocateMemory<ArtLambdaMethod>(self); std::string captured_variables_shorty = closure_builder->GetCapturedVariableShortyTypes(); std::string captured_variables_long_type_desc; // Synthesize a long type descriptor from the short one. for (char shorty : captured_variables_shorty) { lambda::ShortyFieldType shorty_field_type(shorty); if (shorty_field_type.IsObject()) { // Not the true type, but good enough until we implement verifier support. captured_variables_long_type_desc += "Ljava/lang/Object;"; UNIMPLEMENTED(FATAL) << "create-lambda with an object captured variable"; } else if (shorty_field_type.IsLambda()) { // Not the true type, but good enough until we implement verifier support. captured_variables_long_type_desc += "Ljava/lang/Runnable;"; UNIMPLEMENTED(FATAL) << "create-lambda with a lambda captured variable"; } else { // The primitive types have the same length shorty or not, so this is always correct. DCHECK(shorty_field_type.IsPrimitive()); captured_variables_long_type_desc += shorty_field_type; } } // Copy strings to dynamically allocated storage. This leaks, but that's ok. Fix it later. // TODO: Strings need to come from the DexFile, so they won't need their own allocations. char* captured_variables_type_desc = LeakingAllocator::MakeFlexibleInstance<char>( self, captured_variables_long_type_desc.size() + 1); strcpy(captured_variables_type_desc, captured_variables_long_type_desc.c_str()); char* captured_variables_shorty_copy = LeakingAllocator::MakeFlexibleInstance<char>( self, captured_variables_shorty.size() + 1); strcpy(captured_variables_shorty_copy, captured_variables_shorty.c_str()); // After initialization, the object at the storage is well-typed. Use strong type going forward. initialized_lambda_method = new (uninitialized_lambda_method) ArtLambdaMethod(called_method, captured_variables_type_desc, captured_variables_shorty_copy, true); // innate lambda } // Write all the closure captured variables and the closure header into the closure. lambda::Closure* initialized_closure = closure_builder->CreateInPlace(uninitialized_closure, initialized_lambda_method); WriteLambdaClosureIntoVRegs(/*inout*/shadow_frame, *initialized_closure, vreg_dest_closure); return true; } // Reads out the 'ArtMethod*' stored inside of vreg and vreg+1 // // Validates that the art method points to a valid lambda function, otherwise throws // an exception and returns null. // (Exceptions are thrown by creating a new exception and then being put in the thread TLS) static inline lambda::Closure* ReadLambdaClosureFromVRegsOrThrow(ShadowFrame& shadow_frame, uint32_t vreg) SHARED_REQUIRES(Locks::mutator_lock_) { // Lambda closures take up a consecutive pair of 2 virtual registers. // On 32-bit the high bits are always 0. uint32_t vc_value_lo = shadow_frame.GetVReg(vreg); uint32_t vc_value_hi = shadow_frame.GetVReg(vreg + 1); uint64_t vc_value_ptr = (static_cast<uint64_t>(vc_value_hi) << BitSizeOf<uint32_t>()) | vc_value_lo; // Use uint64_t instead of uintptr_t to allow left-shifting past the max on 32-bit. static_assert(sizeof(uint64_t) >= sizeof(uintptr_t), "Impossible"); lambda::Closure* const lambda_closure = reinterpret_cast<lambda::Closure*>(vc_value_ptr); DCHECK_ALIGNED(lambda_closure, alignof(lambda::Closure)); // Guard against the user passing a null closure, which is odd but (sadly) semantically valid. if (UNLIKELY(lambda_closure == nullptr)) { ThrowNullPointerExceptionFromInterpreter(); return nullptr; } else if (UNLIKELY(!IsValidLambdaTargetOrThrow(lambda_closure->GetTargetMethod()))) { // Sanity check against data corruption. return nullptr; } return lambda_closure; } // Forward declaration for lock annotations. See below for documentation. template <bool do_access_check> static inline const char* GetStringDataByDexStringIndexOrThrow(ShadowFrame& shadow_frame, uint32_t string_idx) SHARED_REQUIRES(Locks::mutator_lock_); // Find the c-string data corresponding to a dex file's string index. // Otherwise, returns null if not found and throws a VerifyError. // // Note that with do_access_check=false, we never return null because the verifier // must guard against invalid string indices. // (Exceptions are thrown by creating a new exception and then being put in the thread TLS) template <bool do_access_check> static inline const char* GetStringDataByDexStringIndexOrThrow(ShadowFrame& shadow_frame, uint32_t string_idx) { ArtMethod* method = shadow_frame.GetMethod(); const DexFile* dex_file = method->GetDexFile(); mirror::Class* declaring_class = method->GetDeclaringClass(); if (!do_access_check) { // MethodVerifier refuses methods with string_idx out of bounds. DCHECK_LT(string_idx, declaring_class->GetDexCache()->NumStrings()); } else { // Access checks enabled: perform string index bounds ourselves. if (string_idx >= dex_file->GetHeader().string_ids_size_) { ThrowVerifyError(declaring_class, "String index '%" PRIu32 "' out of bounds", string_idx); return nullptr; } } const char* type_string = dex_file->StringDataByIdx(string_idx); if (UNLIKELY(type_string == nullptr)) { CHECK_EQ(false, do_access_check) << " verifier should've caught invalid string index " << string_idx; CHECK_EQ(true, do_access_check) << " string idx size check should've caught invalid string index " << string_idx; } return type_string; } // Handles capture-variable instructions. // Returns true on success, otherwise throws an exception and returns false. // (Exceptions are thrown by creating a new exception and then being put in the thread TLS) template<bool do_access_check> static inline bool DoCaptureVariable(Thread* self, const Instruction* inst, /*inout*/ShadowFrame& shadow_frame, /*inout*/lambda::ClosureBuilder* closure_builder) { DCHECK(closure_builder != nullptr); using lambda::ShortyFieldType; /* * capture-variable is opcode 0xf6, fmt 0x21c * - vA is the source register of the variable that will be captured * - vB is the string ID of the variable's type that will be captured */ const uint32_t source_vreg = inst->VRegA_21c(); const uint32_t string_idx = inst->VRegB_21c(); // TODO: this should be a proper [type id] instead of a [string ID] pointing to a type. const char* type_string = GetStringDataByDexStringIndexOrThrow<do_access_check>(shadow_frame, string_idx); if (UNLIKELY(type_string == nullptr)) { CHECK(self->IsExceptionPending()); return false; } char type_first_letter = type_string[0]; ShortyFieldType shorty_type; if (do_access_check && UNLIKELY(!ShortyFieldType::MaybeCreate(type_first_letter, /*out*/&shorty_type))) { // NOLINT: [whitespace/comma] [3] ThrowVerifyError(shadow_frame.GetMethod()->GetDeclaringClass(), "capture-variable vB must be a valid type"); return false; } else { // Already verified that the type is valid. shorty_type = ShortyFieldType(type_first_letter); } const size_t captured_variable_count = closure_builder->GetCaptureCount(); // Note: types are specified explicitly so that the closure is packed tightly. switch (shorty_type) { case ShortyFieldType::kBoolean: { uint32_t primitive_narrow_value = shadow_frame.GetVReg(source_vreg); closure_builder->CaptureVariablePrimitive<bool>(primitive_narrow_value); break; } case ShortyFieldType::kByte: { uint32_t primitive_narrow_value = shadow_frame.GetVReg(source_vreg); closure_builder->CaptureVariablePrimitive<int8_t>(primitive_narrow_value); break; } case ShortyFieldType::kChar: { uint32_t primitive_narrow_value = shadow_frame.GetVReg(source_vreg); closure_builder->CaptureVariablePrimitive<uint16_t>(primitive_narrow_value); break; } case ShortyFieldType::kShort: { uint32_t primitive_narrow_value = shadow_frame.GetVReg(source_vreg); closure_builder->CaptureVariablePrimitive<int16_t>(primitive_narrow_value); break; } case ShortyFieldType::kInt: { uint32_t primitive_narrow_value = shadow_frame.GetVReg(source_vreg); closure_builder->CaptureVariablePrimitive<int32_t>(primitive_narrow_value); break; } case ShortyFieldType::kDouble: { closure_builder->CaptureVariablePrimitive(shadow_frame.GetVRegDouble(source_vreg)); break; } case ShortyFieldType::kFloat: { closure_builder->CaptureVariablePrimitive(shadow_frame.GetVRegFloat(source_vreg)); break; } case ShortyFieldType::kLambda: { UNIMPLEMENTED(FATAL) << " capture-variable with type kLambda"; // TODO: Capturing lambdas recursively will be done at a later time. UNREACHABLE(); } case ShortyFieldType::kLong: { closure_builder->CaptureVariablePrimitive(shadow_frame.GetVRegLong(source_vreg)); break; } case ShortyFieldType::kObject: { closure_builder->CaptureVariableObject(shadow_frame.GetVRegReference(source_vreg)); UNIMPLEMENTED(FATAL) << " capture-variable with type kObject"; // TODO: finish implementing this. disabled for now since we can't track lambda refs for GC. UNREACHABLE(); } default: LOG(FATAL) << "Invalid shorty type value " << shorty_type; UNREACHABLE(); } DCHECK_EQ(captured_variable_count + 1, closure_builder->GetCaptureCount()); return true; } // Handles capture-variable instructions. // Returns true on success, otherwise throws an exception and returns false. // (Exceptions are thrown by creating a new exception and then being put in the thread TLS) template<bool do_access_check> static inline bool DoLiberateVariable(Thread* self, const Instruction* inst, size_t captured_variable_index, /*inout*/ShadowFrame& shadow_frame) { using lambda::ShortyFieldType; /* * liberate-variable is opcode 0xf7, fmt 0x22c * - vA is the destination register * - vB is the register with the lambda closure in it * - vC is the string ID which needs to be a valid field type descriptor */ const uint32_t dest_vreg = inst->VRegA_22c(); const uint32_t closure_vreg = inst->VRegB_22c(); const uint32_t string_idx = inst->VRegC_22c(); // TODO: this should be a proper [type id] instead of a [string ID] pointing to a type. // Synthesize a long type descriptor from a shorty type descriptor list. // TODO: Fix the dex encoding to contain the long and short type descriptors. const char* type_string = GetStringDataByDexStringIndexOrThrow<do_access_check>(shadow_frame, string_idx); if (UNLIKELY(do_access_check && type_string == nullptr)) { CHECK(self->IsExceptionPending()); shadow_frame.SetVReg(dest_vreg, 0); return false; } char type_first_letter = type_string[0]; ShortyFieldType shorty_type; if (do_access_check && UNLIKELY(!ShortyFieldType::MaybeCreate(type_first_letter, /*out*/&shorty_type))) { // NOLINT: [whitespace/comma] [3] ThrowVerifyError(shadow_frame.GetMethod()->GetDeclaringClass(), "liberate-variable vC must be a valid type"); shadow_frame.SetVReg(dest_vreg, 0); return false; } else { // Already verified that the type is valid. shorty_type = ShortyFieldType(type_first_letter); } // Check for closure being null *after* the type check. // This way we can access the type info in case we fail later, to know how many vregs to clear. const lambda::Closure* lambda_closure = ReadLambdaClosureFromVRegsOrThrow(/*inout*/shadow_frame, closure_vreg); // Failed lambda target runtime check, an exception was raised. if (UNLIKELY(lambda_closure == nullptr)) { CHECK(self->IsExceptionPending()); // Clear the destination vreg(s) to be safe. shadow_frame.SetVReg(dest_vreg, 0); if (shorty_type.IsPrimitiveWide() || shorty_type.IsLambda()) { shadow_frame.SetVReg(dest_vreg + 1, 0); } return false; } if (do_access_check && UNLIKELY(captured_variable_index >= lambda_closure->GetNumberOfCapturedVariables())) { ThrowVerifyError(shadow_frame.GetMethod()->GetDeclaringClass(), "liberate-variable captured variable index %zu out of bounds", lambda_closure->GetNumberOfCapturedVariables()); // Clear the destination vreg(s) to be safe. shadow_frame.SetVReg(dest_vreg, 0); if (shorty_type.IsPrimitiveWide() || shorty_type.IsLambda()) { shadow_frame.SetVReg(dest_vreg + 1, 0); } return false; } // Verify that the runtime type of the captured-variable matches the requested dex type. if (do_access_check) { ShortyFieldType actual_type = lambda_closure->GetCapturedShortyType(captured_variable_index); if (actual_type != shorty_type) { ThrowVerifyError(shadow_frame.GetMethod()->GetDeclaringClass(), "cannot liberate-variable of runtime type '%c' to dex type '%c'", static_cast<char>(actual_type), static_cast<char>(shorty_type)); shadow_frame.SetVReg(dest_vreg, 0); if (shorty_type.IsPrimitiveWide() || shorty_type.IsLambda()) { shadow_frame.SetVReg(dest_vreg + 1, 0); } return false; } if (actual_type.IsLambda() || actual_type.IsObject()) { UNIMPLEMENTED(FATAL) << "liberate-variable type checks needs to " << "parse full type descriptor for objects and lambdas"; } } // Unpack the captured variable from the closure into the correct type, then save it to the vreg. if (shorty_type.IsPrimitiveNarrow()) { uint32_t primitive_narrow_value = lambda_closure->GetCapturedPrimitiveNarrow(captured_variable_index); shadow_frame.SetVReg(dest_vreg, primitive_narrow_value); } else if (shorty_type.IsPrimitiveWide()) { uint64_t primitive_wide_value = lambda_closure->GetCapturedPrimitiveWide(captured_variable_index); shadow_frame.SetVRegLong(dest_vreg, static_cast<int64_t>(primitive_wide_value)); } else if (shorty_type.IsObject()) { mirror::Object* unpacked_object = lambda_closure->GetCapturedObject(captured_variable_index); shadow_frame.SetVRegReference(dest_vreg, unpacked_object); UNIMPLEMENTED(FATAL) << "liberate-variable cannot unpack objects yet"; } else if (shorty_type.IsLambda()) { UNIMPLEMENTED(FATAL) << "liberate-variable cannot unpack lambdas yet"; } else { LOG(FATAL) << "unreachable"; UNREACHABLE(); } return true; } template<bool do_access_check> static inline bool DoInvokeLambda(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data, JValue* result) { /* * invoke-lambda is opcode 0x25 * * - vC is the closure register (both vC and vC + 1 will be used to store the closure). * - vB is the number of additional registers up to |{vD,vE,vF,vG}| (4) * - the rest of the registers are always var-args * * - reading var-args for 0x25 gets us vD,vE,vF,vG (but not vB) */ uint32_t vreg_closure = inst->VRegC_25x(); const lambda::Closure* lambda_closure = ReadLambdaClosureFromVRegsOrThrow(shadow_frame, vreg_closure); // Failed lambda target runtime check, an exception was raised. if (UNLIKELY(lambda_closure == nullptr)) { CHECK(self->IsExceptionPending()); result->SetJ(0); return false; } ArtMethod* const called_method = lambda_closure->GetTargetMethod(); // Invoke a non-range lambda return DoLambdaCall<false, do_access_check>(called_method, self, shadow_frame, inst, inst_data, result); } // Handles invoke-XXX/range instructions (other than invoke-lambda[-range]). // Returns true on success, otherwise throws an exception and returns false. template<InvokeType type, bool is_range, bool do_access_check> static inline bool DoInvoke(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data, JValue* result) { const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c(); const uint32_t vregC = (is_range) ? inst->VRegC_3rc() : inst->VRegC_35c(); Object* receiver = (type == kStatic) ? nullptr : shadow_frame.GetVRegReference(vregC); ArtMethod* sf_method = shadow_frame.GetMethod(); ArtMethod* const called_method = FindMethodFromCode<type, do_access_check>( method_idx, &receiver, sf_method, self); // The shadow frame should already be pushed, so we don't need to update it. if (UNLIKELY(called_method == nullptr)) { CHECK(self->IsExceptionPending()); result->SetJ(0); return false; } else if (UNLIKELY(!called_method->IsInvokable())) { called_method->ThrowInvocationTimeError(); result->SetJ(0); return false; } else { jit::Jit* jit = Runtime::Current()->GetJit(); if (jit != nullptr) { if (type == kVirtual || type == kInterface) { jit->InvokeVirtualOrInterface( self, receiver, sf_method, shadow_frame.GetDexPC(), called_method); } jit->AddSamples(self, sf_method, 1, /*with_backedges*/false); } // TODO: Remove the InvokeVirtualOrInterface instrumentation, as it was only used by the JIT. if (type == kVirtual || type == kInterface) { instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); if (UNLIKELY(instrumentation->HasInvokeVirtualOrInterfaceListeners())) { instrumentation->InvokeVirtualOrInterface( self, receiver, sf_method, shadow_frame.GetDexPC(), called_method); } } return DoCall<is_range, do_access_check>(called_method, self, shadow_frame, inst, inst_data, result); } } // Handles invoke-virtual-quick and invoke-virtual-quick-range instructions. // Returns true on success, otherwise throws an exception and returns false. template<bool is_range> static inline bool DoInvokeVirtualQuick(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data, JValue* result) { const uint32_t vregC = (is_range) ? inst->VRegC_3rc() : inst->VRegC_35c(); Object* const receiver = shadow_frame.GetVRegReference(vregC); if (UNLIKELY(receiver == nullptr)) { // We lost the reference to the method index so we cannot get a more // precised exception message. ThrowNullPointerExceptionFromDexPC(); return false; } const uint32_t vtable_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c(); CHECK(receiver->GetClass()->ShouldHaveEmbeddedImtAndVTable()); ArtMethod* const called_method = receiver->GetClass()->GetEmbeddedVTableEntry( vtable_idx, sizeof(void*)); if (UNLIKELY(called_method == nullptr)) { CHECK(self->IsExceptionPending()); result->SetJ(0); return false; } else if (UNLIKELY(!called_method->IsInvokable())) { called_method->ThrowInvocationTimeError(); result->SetJ(0); return false; } else { jit::Jit* jit = Runtime::Current()->GetJit(); if (jit != nullptr) { jit->InvokeVirtualOrInterface( self, receiver, shadow_frame.GetMethod(), shadow_frame.GetDexPC(), called_method); jit->AddSamples(self, shadow_frame.GetMethod(), 1, /*with_backedges*/false); } instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); // TODO: Remove the InvokeVirtualOrInterface instrumentation, as it was only used by the JIT. if (UNLIKELY(instrumentation->HasInvokeVirtualOrInterfaceListeners())) { instrumentation->InvokeVirtualOrInterface( self, receiver, shadow_frame.GetMethod(), shadow_frame.GetDexPC(), called_method); } // No need to check since we've been quickened. return DoCall<is_range, false>(called_method, self, shadow_frame, inst, inst_data, result); } } // Handles iget-XXX and sget-XXX instructions. // Returns true on success, otherwise throws an exception and returns false. template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check> bool DoFieldGet(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) SHARED_REQUIRES(Locks::mutator_lock_); // Handles iget-quick, iget-wide-quick and iget-object-quick instructions. // Returns true on success, otherwise throws an exception and returns false. template<Primitive::Type field_type> bool DoIGetQuick(ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) SHARED_REQUIRES(Locks::mutator_lock_); // Handles iput-XXX and sput-XXX instructions. // Returns true on success, otherwise throws an exception and returns false. template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check, bool transaction_active> bool DoFieldPut(Thread* self, const ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) SHARED_REQUIRES(Locks::mutator_lock_); // Handles iput-quick, iput-wide-quick and iput-object-quick instructions. // Returns true on success, otherwise throws an exception and returns false. template<Primitive::Type field_type, bool transaction_active> bool DoIPutQuick(const ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) SHARED_REQUIRES(Locks::mutator_lock_); // Handles string resolution for const-string and const-string-jumbo instructions. Also ensures the // java.lang.String class is initialized. static inline String* ResolveString(Thread* self, ShadowFrame& shadow_frame, uint32_t string_idx) SHARED_REQUIRES(Locks::mutator_lock_) { Class* java_lang_string_class = String::GetJavaLangString(); if (UNLIKELY(!java_lang_string_class->IsInitialized())) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); StackHandleScope<1> hs(self); Handle<mirror::Class> h_class(hs.NewHandle(java_lang_string_class)); if (UNLIKELY(!class_linker->EnsureInitialized(self, h_class, true, true))) { DCHECK(self->IsExceptionPending()); return nullptr; } } ArtMethod* method = shadow_frame.GetMethod(); mirror::Class* declaring_class = method->GetDeclaringClass(); // MethodVerifier refuses methods with string_idx out of bounds. DCHECK_LT(string_idx, declaring_class->GetDexCache()->NumStrings()); mirror::String* s = declaring_class->GetDexCacheStrings()[string_idx].Read(); if (UNLIKELY(s == nullptr)) { StackHandleScope<1> hs(self); Handle<mirror::DexCache> dex_cache(hs.NewHandle(declaring_class->GetDexCache())); s = Runtime::Current()->GetClassLinker()->ResolveString(*method->GetDexFile(), string_idx, dex_cache); } return s; } // Handles div-int, div-int/2addr, div-int/li16 and div-int/lit8 instructions. // Returns true on success, otherwise throws a java.lang.ArithmeticException and return false. static inline bool DoIntDivide(ShadowFrame& shadow_frame, size_t result_reg, int32_t dividend, int32_t divisor) SHARED_REQUIRES(Locks::mutator_lock_) { constexpr int32_t kMinInt = std::numeric_limits<int32_t>::min(); if (UNLIKELY(divisor == 0)) { ThrowArithmeticExceptionDivideByZero(); return false; } if (UNLIKELY(dividend == kMinInt && divisor == -1)) { shadow_frame.SetVReg(result_reg, kMinInt); } else { shadow_frame.SetVReg(result_reg, dividend / divisor); } return true; } // Handles rem-int, rem-int/2addr, rem-int/li16 and rem-int/lit8 instructions. // Returns true on success, otherwise throws a java.lang.ArithmeticException and return false. static inline bool DoIntRemainder(ShadowFrame& shadow_frame, size_t result_reg, int32_t dividend, int32_t divisor) SHARED_REQUIRES(Locks::mutator_lock_) { constexpr int32_t kMinInt = std::numeric_limits<int32_t>::min(); if (UNLIKELY(divisor == 0)) { ThrowArithmeticExceptionDivideByZero(); return false; } if (UNLIKELY(dividend == kMinInt && divisor == -1)) { shadow_frame.SetVReg(result_reg, 0); } else { shadow_frame.SetVReg(result_reg, dividend % divisor); } return true; } // Handles div-long and div-long-2addr instructions. // Returns true on success, otherwise throws a java.lang.ArithmeticException and return false. static inline bool DoLongDivide(ShadowFrame& shadow_frame, size_t result_reg, int64_t dividend, int64_t divisor) SHARED_REQUIRES(Locks::mutator_lock_) { const int64_t kMinLong = std::numeric_limits<int64_t>::min(); if (UNLIKELY(divisor == 0)) { ThrowArithmeticExceptionDivideByZero(); return false; } if (UNLIKELY(dividend == kMinLong && divisor == -1)) { shadow_frame.SetVRegLong(result_reg, kMinLong); } else { shadow_frame.SetVRegLong(result_reg, dividend / divisor); } return true; } // Handles rem-long and rem-long-2addr instructions. // Returns true on success, otherwise throws a java.lang.ArithmeticException and return false. static inline bool DoLongRemainder(ShadowFrame& shadow_frame, size_t result_reg, int64_t dividend, int64_t divisor) SHARED_REQUIRES(Locks::mutator_lock_) { const int64_t kMinLong = std::numeric_limits<int64_t>::min(); if (UNLIKELY(divisor == 0)) { ThrowArithmeticExceptionDivideByZero(); return false; } if (UNLIKELY(dividend == kMinLong && divisor == -1)) { shadow_frame.SetVRegLong(result_reg, 0); } else { shadow_frame.SetVRegLong(result_reg, dividend % divisor); } return true; } // Handles filled-new-array and filled-new-array-range instructions. // Returns true on success, otherwise throws an exception and returns false. template <bool is_range, bool do_access_check, bool transaction_active> bool DoFilledNewArray(const Instruction* inst, const ShadowFrame& shadow_frame, Thread* self, JValue* result); // Handles packed-switch instruction. // Returns the branch offset to the next instruction to execute. static inline int32_t DoPackedSwitch(const Instruction* inst, const ShadowFrame& shadow_frame, uint16_t inst_data) SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(inst->Opcode() == Instruction::PACKED_SWITCH); const uint16_t* switch_data = reinterpret_cast<const uint16_t*>(inst) + inst->VRegB_31t(); int32_t test_val = shadow_frame.GetVReg(inst->VRegA_31t(inst_data)); DCHECK_EQ(switch_data[0], static_cast<uint16_t>(Instruction::kPackedSwitchSignature)); uint16_t size = switch_data[1]; if (size == 0) { // Empty packed switch, move forward by 3 (size of PACKED_SWITCH). return 3; } const int32_t* keys = reinterpret_cast<const int32_t*>(&switch_data[2]); DCHECK_ALIGNED(keys, 4); int32_t first_key = keys[0]; const int32_t* targets = reinterpret_cast<const int32_t*>(&switch_data[4]); DCHECK_ALIGNED(targets, 4); int32_t index = test_val - first_key; if (index >= 0 && index < size) { return targets[index]; } else { // No corresponding value: move forward by 3 (size of PACKED_SWITCH). return 3; } } // Handles sparse-switch instruction. // Returns the branch offset to the next instruction to execute. static inline int32_t DoSparseSwitch(const Instruction* inst, const ShadowFrame& shadow_frame, uint16_t inst_data) SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(inst->Opcode() == Instruction::SPARSE_SWITCH); const uint16_t* switch_data = reinterpret_cast<const uint16_t*>(inst) + inst->VRegB_31t(); int32_t test_val = shadow_frame.GetVReg(inst->VRegA_31t(inst_data)); DCHECK_EQ(switch_data[0], static_cast<uint16_t>(Instruction::kSparseSwitchSignature)); uint16_t size = switch_data[1]; // Return length of SPARSE_SWITCH if size is 0. if (size == 0) { return 3; } const int32_t* keys = reinterpret_cast<const int32_t*>(&switch_data[2]); DCHECK_ALIGNED(keys, 4); const int32_t* entries = keys + size; DCHECK_ALIGNED(entries, 4); int lo = 0; int hi = size - 1; while (lo <= hi) { int mid = (lo + hi) / 2; int32_t foundVal = keys[mid]; if (test_val < foundVal) { hi = mid - 1; } else if (test_val > foundVal) { lo = mid + 1; } else { return entries[mid]; } } // No corresponding value: move forward by 3 (size of SPARSE_SWITCH). return 3; } template <bool _do_check> static inline bool DoBoxLambda(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) SHARED_REQUIRES(Locks::mutator_lock_) { /* * box-lambda vA, vB /// opcode 0xf8, format 22x * - vA is the target register where the Object representation of the closure will be stored into * - vB is a closure (made by create-lambda) * (also reads vB + 1) */ uint32_t vreg_target_object = inst->VRegA_22x(inst_data); uint32_t vreg_source_closure = inst->VRegB_22x(); lambda::Closure* lambda_closure = ReadLambdaClosureFromVRegsOrThrow(shadow_frame, vreg_source_closure); // Failed lambda target runtime check, an exception was raised. if (UNLIKELY(lambda_closure == nullptr)) { CHECK(self->IsExceptionPending()); return false; } mirror::Object* closure_as_object = Runtime::Current()->GetLambdaBoxTable()->BoxLambda(lambda_closure); // Failed to box the lambda, an exception was raised. if (UNLIKELY(closure_as_object == nullptr)) { CHECK(self->IsExceptionPending()); return false; } shadow_frame.SetVRegReference(vreg_target_object, closure_as_object); return true; } template <bool _do_check> SHARED_REQUIRES(Locks::mutator_lock_) static inline bool DoUnboxLambda(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) { /* * unbox-lambda vA, vB, [type id] /// opcode 0xf9, format 22c * - vA is the target register where the closure will be written into * (also writes vA + 1) * - vB is the Object representation of the closure (made by box-lambda) */ uint32_t vreg_target_closure = inst->VRegA_22c(inst_data); uint32_t vreg_source_object = inst->VRegB_22c(); // Raise NullPointerException if object is null mirror::Object* boxed_closure_object = shadow_frame.GetVRegReference(vreg_source_object); if (UNLIKELY(boxed_closure_object == nullptr)) { ThrowNullPointerExceptionFromInterpreter(); return false; } lambda::Closure* unboxed_closure = nullptr; // Raise an exception if unboxing fails. if (!Runtime::Current()->GetLambdaBoxTable()->UnboxLambda(boxed_closure_object, /*out*/&unboxed_closure)) { CHECK(self->IsExceptionPending()); return false; } DCHECK(unboxed_closure != nullptr); WriteLambdaClosureIntoVRegs(/*inout*/shadow_frame, *unboxed_closure, vreg_target_closure); return true; } uint32_t FindNextInstructionFollowingException(Thread* self, ShadowFrame& shadow_frame, uint32_t dex_pc, const instrumentation::Instrumentation* instrumentation) SHARED_REQUIRES(Locks::mutator_lock_); NO_RETURN void UnexpectedOpcode(const Instruction* inst, const ShadowFrame& shadow_frame) __attribute__((cold)) SHARED_REQUIRES(Locks::mutator_lock_); static inline bool TraceExecutionEnabled() { // Return true if you want TraceExecution invocation before each bytecode execution. return false; } static inline void TraceExecution(const ShadowFrame& shadow_frame, const Instruction* inst, const uint32_t dex_pc) SHARED_REQUIRES(Locks::mutator_lock_) { if (TraceExecutionEnabled()) { #define TRACE_LOG std::cerr std::ostringstream oss; oss << PrettyMethod(shadow_frame.GetMethod()) << StringPrintf("\n0x%x: ", dex_pc) << inst->DumpString(shadow_frame.GetMethod()->GetDexFile()) << "\n"; for (uint32_t i = 0; i < shadow_frame.NumberOfVRegs(); ++i) { uint32_t raw_value = shadow_frame.GetVReg(i); Object* ref_value = shadow_frame.GetVRegReference(i); oss << StringPrintf(" vreg%u=0x%08X", i, raw_value); if (ref_value != nullptr) { if (ref_value->GetClass()->IsStringClass() && ref_value->AsString()->GetValue() != nullptr) { oss << "/java.lang.String \"" << ref_value->AsString()->ToModifiedUtf8() << "\""; } else { oss << "/" << PrettyTypeOf(ref_value); } } } TRACE_LOG << oss.str() << "\n"; #undef TRACE_LOG } } static inline bool IsBackwardBranch(int32_t branch_offset) { return branch_offset <= 0; } void ArtInterpreterToCompiledCodeBridge(Thread* self, ArtMethod* caller, const DexFile::CodeItem* code_item, ShadowFrame* shadow_frame, JValue* result); // Set string value created from StringFactory.newStringFromXXX() into all aliases of // StringFactory.newEmptyString(). void SetStringInitValueToAllAliases(ShadowFrame* shadow_frame, uint16_t this_obj_vreg, JValue result); // Explicitly instantiate all DoInvoke functions. #define EXPLICIT_DO_INVOKE_TEMPLATE_DECL(_type, _is_range, _do_check) \ template SHARED_REQUIRES(Locks::mutator_lock_) \ bool DoInvoke<_type, _is_range, _do_check>(Thread* self, ShadowFrame& shadow_frame, \ const Instruction* inst, uint16_t inst_data, \ JValue* result) #define EXPLICIT_DO_INVOKE_ALL_TEMPLATE_DECL(_type) \ EXPLICIT_DO_INVOKE_TEMPLATE_DECL(_type, false, false); \ EXPLICIT_DO_INVOKE_TEMPLATE_DECL(_type, false, true); \ EXPLICIT_DO_INVOKE_TEMPLATE_DECL(_type, true, false); \ EXPLICIT_DO_INVOKE_TEMPLATE_DECL(_type, true, true); EXPLICIT_DO_INVOKE_ALL_TEMPLATE_DECL(kStatic) // invoke-static/range. EXPLICIT_DO_INVOKE_ALL_TEMPLATE_DECL(kDirect) // invoke-direct/range. EXPLICIT_DO_INVOKE_ALL_TEMPLATE_DECL(kVirtual) // invoke-virtual/range. EXPLICIT_DO_INVOKE_ALL_TEMPLATE_DECL(kSuper) // invoke-super/range. EXPLICIT_DO_INVOKE_ALL_TEMPLATE_DECL(kInterface) // invoke-interface/range. #undef EXPLICIT_DO_INVOKE_ALL_TEMPLATE_DECL #undef EXPLICIT_DO_INVOKE_TEMPLATE_DECL // Explicitly instantiate all DoInvokeVirtualQuick functions. #define EXPLICIT_DO_INVOKE_VIRTUAL_QUICK_TEMPLATE_DECL(_is_range) \ template SHARED_REQUIRES(Locks::mutator_lock_) \ bool DoInvokeVirtualQuick<_is_range>(Thread* self, ShadowFrame& shadow_frame, \ const Instruction* inst, uint16_t inst_data, \ JValue* result) EXPLICIT_DO_INVOKE_VIRTUAL_QUICK_TEMPLATE_DECL(false); // invoke-virtual-quick. EXPLICIT_DO_INVOKE_VIRTUAL_QUICK_TEMPLATE_DECL(true); // invoke-virtual-quick-range. #undef EXPLICIT_INSTANTIATION_DO_INVOKE_VIRTUAL_QUICK // Explicitly instantiate all DoCreateLambda functions. #define EXPLICIT_DO_CREATE_LAMBDA_DECL(_do_check) \ template SHARED_REQUIRES(Locks::mutator_lock_) \ bool DoCreateLambda<_do_check>(Thread* self, \ const Instruction* inst, \ /*inout*/ShadowFrame& shadow_frame, \ /*inout*/lambda::ClosureBuilder* closure_builder, \ /*inout*/lambda::Closure* uninitialized_closure); EXPLICIT_DO_CREATE_LAMBDA_DECL(false); // create-lambda EXPLICIT_DO_CREATE_LAMBDA_DECL(true); // create-lambda #undef EXPLICIT_DO_CREATE_LAMBDA_DECL // Explicitly instantiate all DoInvokeLambda functions. #define EXPLICIT_DO_INVOKE_LAMBDA_DECL(_do_check) \ template SHARED_REQUIRES(Locks::mutator_lock_) \ bool DoInvokeLambda<_do_check>(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, \ uint16_t inst_data, JValue* result); EXPLICIT_DO_INVOKE_LAMBDA_DECL(false); // invoke-lambda EXPLICIT_DO_INVOKE_LAMBDA_DECL(true); // invoke-lambda #undef EXPLICIT_DO_INVOKE_LAMBDA_DECL // Explicitly instantiate all DoBoxLambda functions. #define EXPLICIT_DO_BOX_LAMBDA_DECL(_do_check) \ template SHARED_REQUIRES(Locks::mutator_lock_) \ bool DoBoxLambda<_do_check>(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, \ uint16_t inst_data); EXPLICIT_DO_BOX_LAMBDA_DECL(false); // box-lambda EXPLICIT_DO_BOX_LAMBDA_DECL(true); // box-lambda #undef EXPLICIT_DO_BOX_LAMBDA_DECL // Explicitly instantiate all DoUnBoxLambda functions. #define EXPLICIT_DO_UNBOX_LAMBDA_DECL(_do_check) \ template SHARED_REQUIRES(Locks::mutator_lock_) \ bool DoUnboxLambda<_do_check>(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, \ uint16_t inst_data); EXPLICIT_DO_UNBOX_LAMBDA_DECL(false); // unbox-lambda EXPLICIT_DO_UNBOX_LAMBDA_DECL(true); // unbox-lambda #undef EXPLICIT_DO_BOX_LAMBDA_DECL // Explicitly instantiate all DoCaptureVariable functions. #define EXPLICIT_DO_CAPTURE_VARIABLE_DECL(_do_check) \ template SHARED_REQUIRES(Locks::mutator_lock_) \ bool DoCaptureVariable<_do_check>(Thread* self, \ const Instruction* inst, \ ShadowFrame& shadow_frame, \ lambda::ClosureBuilder* closure_builder); EXPLICIT_DO_CAPTURE_VARIABLE_DECL(false); // capture-variable EXPLICIT_DO_CAPTURE_VARIABLE_DECL(true); // capture-variable #undef EXPLICIT_DO_CREATE_LAMBDA_DECL // Explicitly instantiate all DoLiberateVariable functions. #define EXPLICIT_DO_LIBERATE_VARIABLE_DECL(_do_check) \ template SHARED_REQUIRES(Locks::mutator_lock_) \ bool DoLiberateVariable<_do_check>(Thread* self, \ const Instruction* inst, \ size_t captured_variable_index, \ ShadowFrame& shadow_frame); \ EXPLICIT_DO_LIBERATE_VARIABLE_DECL(false); // liberate-variable EXPLICIT_DO_LIBERATE_VARIABLE_DECL(true); // liberate-variable #undef EXPLICIT_DO_LIBERATE_LAMBDA_DECL } // namespace interpreter } // namespace art #endif // ART_RUNTIME_INTERPRETER_INTERPRETER_COMMON_H_