/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mem_map.h" #include <memory> #include "common_runtime_test.h" #include "base/memory_tool.h" #include "base/unix_file/fd_file.h" namespace art { class MemMapTest : public CommonRuntimeTest { public: static uint8_t* BaseBegin(MemMap* mem_map) { return reinterpret_cast<uint8_t*>(mem_map->base_begin_); } static size_t BaseSize(MemMap* mem_map) { return mem_map->base_size_; } static uint8_t* GetValidMapAddress(size_t size, bool low_4gb) { // Find a valid map address and unmap it before returning. std::string error_msg; std::unique_ptr<MemMap> map(MemMap::MapAnonymous("temp", nullptr, size, PROT_READ, low_4gb, false, &error_msg)); CHECK(map != nullptr); return map->Begin(); } static void RemapAtEndTest(bool low_4gb) { std::string error_msg; // Cast the page size to size_t. const size_t page_size = static_cast<size_t>(kPageSize); // Map a two-page memory region. MemMap* m0 = MemMap::MapAnonymous("MemMapTest_RemapAtEndTest_map0", nullptr, 2 * page_size, PROT_READ | PROT_WRITE, low_4gb, false, &error_msg); // Check its state and write to it. uint8_t* base0 = m0->Begin(); ASSERT_TRUE(base0 != nullptr) << error_msg; size_t size0 = m0->Size(); EXPECT_EQ(m0->Size(), 2 * page_size); EXPECT_EQ(BaseBegin(m0), base0); EXPECT_EQ(BaseSize(m0), size0); memset(base0, 42, 2 * page_size); // Remap the latter half into a second MemMap. MemMap* m1 = m0->RemapAtEnd(base0 + page_size, "MemMapTest_RemapAtEndTest_map1", PROT_READ | PROT_WRITE, &error_msg); // Check the states of the two maps. EXPECT_EQ(m0->Begin(), base0) << error_msg; EXPECT_EQ(m0->Size(), page_size); EXPECT_EQ(BaseBegin(m0), base0); EXPECT_EQ(BaseSize(m0), page_size); uint8_t* base1 = m1->Begin(); size_t size1 = m1->Size(); EXPECT_EQ(base1, base0 + page_size); EXPECT_EQ(size1, page_size); EXPECT_EQ(BaseBegin(m1), base1); EXPECT_EQ(BaseSize(m1), size1); // Write to the second region. memset(base1, 43, page_size); // Check the contents of the two regions. for (size_t i = 0; i < page_size; ++i) { EXPECT_EQ(base0[i], 42); } for (size_t i = 0; i < page_size; ++i) { EXPECT_EQ(base1[i], 43); } // Unmap the first region. delete m0; // Make sure the second region is still accessible after the first // region is unmapped. for (size_t i = 0; i < page_size; ++i) { EXPECT_EQ(base1[i], 43); } delete m1; } void CommonInit() { MemMap::Init(); } #if defined(__LP64__) && !defined(__x86_64__) static uintptr_t GetLinearScanPos() { return MemMap::next_mem_pos_; } #endif }; #if defined(__LP64__) && !defined(__x86_64__) #ifdef __BIONIC__ extern uintptr_t CreateStartPos(uint64_t input); #endif TEST_F(MemMapTest, Start) { CommonInit(); uintptr_t start = GetLinearScanPos(); EXPECT_LE(64 * KB, start); EXPECT_LT(start, static_cast<uintptr_t>(ART_BASE_ADDRESS)); #ifdef __BIONIC__ // Test a couple of values. Make sure they are different. uintptr_t last = 0; for (size_t i = 0; i < 100; ++i) { uintptr_t random_start = CreateStartPos(i * kPageSize); EXPECT_NE(last, random_start); last = random_start; } // Even on max, should be below ART_BASE_ADDRESS. EXPECT_LT(CreateStartPos(~0), static_cast<uintptr_t>(ART_BASE_ADDRESS)); #endif // End of test. } #endif TEST_F(MemMapTest, MapAnonymousEmpty) { CommonInit(); std::string error_msg; std::unique_ptr<MemMap> map(MemMap::MapAnonymous("MapAnonymousEmpty", nullptr, 0, PROT_READ, false, false, &error_msg)); ASSERT_TRUE(map.get() != nullptr) << error_msg; ASSERT_TRUE(error_msg.empty()); map.reset(MemMap::MapAnonymous("MapAnonymousEmpty", nullptr, kPageSize, PROT_READ | PROT_WRITE, false, false, &error_msg)); ASSERT_TRUE(map.get() != nullptr) << error_msg; ASSERT_TRUE(error_msg.empty()); } TEST_F(MemMapTest, MapAnonymousFailNullError) { CommonInit(); // Test that we don't crash with a null error_str when mapping at an invalid location. std::unique_ptr<MemMap> map(MemMap::MapAnonymous("MapAnonymousInvalid", reinterpret_cast<uint8_t*>(kPageSize), 0x20000, PROT_READ | PROT_WRITE, false, false, nullptr)); ASSERT_EQ(nullptr, map.get()); } #ifdef __LP64__ TEST_F(MemMapTest, MapAnonymousEmpty32bit) { CommonInit(); std::string error_msg; std::unique_ptr<MemMap> map(MemMap::MapAnonymous("MapAnonymousEmpty", nullptr, kPageSize, PROT_READ | PROT_WRITE, true, false, &error_msg)); ASSERT_TRUE(map.get() != nullptr) << error_msg; ASSERT_TRUE(error_msg.empty()); ASSERT_LT(reinterpret_cast<uintptr_t>(BaseBegin(map.get())), 1ULL << 32); } TEST_F(MemMapTest, MapFile32Bit) { CommonInit(); std::string error_msg; ScratchFile scratch_file; constexpr size_t kMapSize = kPageSize; std::unique_ptr<uint8_t[]> data(new uint8_t[kMapSize]()); ASSERT_TRUE(scratch_file.GetFile()->WriteFully(&data[0], kMapSize)); std::unique_ptr<MemMap> map(MemMap::MapFile(/*byte_count*/kMapSize, PROT_READ, MAP_PRIVATE, scratch_file.GetFd(), /*start*/0, /*low_4gb*/true, scratch_file.GetFilename().c_str(), &error_msg)); ASSERT_TRUE(map != nullptr) << error_msg; ASSERT_TRUE(error_msg.empty()); ASSERT_EQ(map->Size(), kMapSize); ASSERT_LT(reinterpret_cast<uintptr_t>(BaseBegin(map.get())), 1ULL << 32); } #endif TEST_F(MemMapTest, MapAnonymousExactAddr) { CommonInit(); std::string error_msg; // Find a valid address. uint8_t* valid_address = GetValidMapAddress(kPageSize, /*low_4gb*/false); // Map at an address that should work, which should succeed. std::unique_ptr<MemMap> map0(MemMap::MapAnonymous("MapAnonymous0", valid_address, kPageSize, PROT_READ | PROT_WRITE, false, false, &error_msg)); ASSERT_TRUE(map0.get() != nullptr) << error_msg; ASSERT_TRUE(error_msg.empty()); ASSERT_TRUE(map0->BaseBegin() == valid_address); // Map at an unspecified address, which should succeed. std::unique_ptr<MemMap> map1(MemMap::MapAnonymous("MapAnonymous1", nullptr, kPageSize, PROT_READ | PROT_WRITE, false, false, &error_msg)); ASSERT_TRUE(map1.get() != nullptr) << error_msg; ASSERT_TRUE(error_msg.empty()); ASSERT_TRUE(map1->BaseBegin() != nullptr); // Attempt to map at the same address, which should fail. std::unique_ptr<MemMap> map2(MemMap::MapAnonymous("MapAnonymous2", reinterpret_cast<uint8_t*>(map1->BaseBegin()), kPageSize, PROT_READ | PROT_WRITE, false, false, &error_msg)); ASSERT_TRUE(map2.get() == nullptr) << error_msg; ASSERT_TRUE(!error_msg.empty()); } TEST_F(MemMapTest, RemapAtEnd) { RemapAtEndTest(false); } #ifdef __LP64__ TEST_F(MemMapTest, RemapAtEnd32bit) { RemapAtEndTest(true); } #endif TEST_F(MemMapTest, MapAnonymousExactAddr32bitHighAddr) { // Some MIPS32 hardware (namely the Creator Ci20 development board) // cannot allocate in the 2GB-4GB region. TEST_DISABLED_FOR_MIPS(); CommonInit(); // This test may not work under valgrind. if (RUNNING_ON_MEMORY_TOOL == 0) { constexpr size_t size = 0x100000; // Try all addresses starting from 2GB to 4GB. size_t start_addr = 2 * GB; std::string error_msg; std::unique_ptr<MemMap> map; for (; start_addr <= std::numeric_limits<uint32_t>::max() - size; start_addr += size) { map.reset(MemMap::MapAnonymous("MapAnonymousExactAddr32bitHighAddr", reinterpret_cast<uint8_t*>(start_addr), size, PROT_READ | PROT_WRITE, /*low_4gb*/true, false, &error_msg)); if (map != nullptr) { break; } } ASSERT_TRUE(map.get() != nullptr) << error_msg; ASSERT_GE(reinterpret_cast<uintptr_t>(map->End()), 2u * GB); ASSERT_TRUE(error_msg.empty()); ASSERT_EQ(BaseBegin(map.get()), reinterpret_cast<void*>(start_addr)); } } TEST_F(MemMapTest, MapAnonymousOverflow) { CommonInit(); std::string error_msg; uintptr_t ptr = 0; ptr -= kPageSize; // Now it's close to the top. std::unique_ptr<MemMap> map(MemMap::MapAnonymous("MapAnonymousOverflow", reinterpret_cast<uint8_t*>(ptr), 2 * kPageSize, // brings it over the top. PROT_READ | PROT_WRITE, false, false, &error_msg)); ASSERT_EQ(nullptr, map.get()); ASSERT_FALSE(error_msg.empty()); } #ifdef __LP64__ TEST_F(MemMapTest, MapAnonymousLow4GBExpectedTooHigh) { CommonInit(); std::string error_msg; std::unique_ptr<MemMap> map( MemMap::MapAnonymous("MapAnonymousLow4GBExpectedTooHigh", reinterpret_cast<uint8_t*>(UINT64_C(0x100000000)), kPageSize, PROT_READ | PROT_WRITE, true, false, &error_msg)); ASSERT_EQ(nullptr, map.get()); ASSERT_FALSE(error_msg.empty()); } TEST_F(MemMapTest, MapAnonymousLow4GBRangeTooHigh) { CommonInit(); std::string error_msg; std::unique_ptr<MemMap> map(MemMap::MapAnonymous("MapAnonymousLow4GBRangeTooHigh", reinterpret_cast<uint8_t*>(0xF0000000), 0x20000000, PROT_READ | PROT_WRITE, true, false, &error_msg)); ASSERT_EQ(nullptr, map.get()); ASSERT_FALSE(error_msg.empty()); } #endif TEST_F(MemMapTest, MapAnonymousReuse) { CommonInit(); std::string error_msg; std::unique_ptr<MemMap> map(MemMap::MapAnonymous("MapAnonymousReserve", nullptr, 0x20000, PROT_READ | PROT_WRITE, false, false, &error_msg)); ASSERT_NE(nullptr, map.get()); ASSERT_TRUE(error_msg.empty()); std::unique_ptr<MemMap> map2(MemMap::MapAnonymous("MapAnonymousReused", reinterpret_cast<uint8_t*>(map->BaseBegin()), 0x10000, PROT_READ | PROT_WRITE, false, true, &error_msg)); ASSERT_NE(nullptr, map2.get()); ASSERT_TRUE(error_msg.empty()); } TEST_F(MemMapTest, CheckNoGaps) { CommonInit(); std::string error_msg; constexpr size_t kNumPages = 3; // Map a 3-page mem map. std::unique_ptr<MemMap> map(MemMap::MapAnonymous("MapAnonymous0", nullptr, kPageSize * kNumPages, PROT_READ | PROT_WRITE, false, false, &error_msg)); ASSERT_TRUE(map.get() != nullptr) << error_msg; ASSERT_TRUE(error_msg.empty()); // Record the base address. uint8_t* map_base = reinterpret_cast<uint8_t*>(map->BaseBegin()); // Unmap it. map.reset(); // Map at the same address, but in page-sized separate mem maps, // assuming the space at the address is still available. std::unique_ptr<MemMap> map0(MemMap::MapAnonymous("MapAnonymous0", map_base, kPageSize, PROT_READ | PROT_WRITE, false, false, &error_msg)); ASSERT_TRUE(map0.get() != nullptr) << error_msg; ASSERT_TRUE(error_msg.empty()); std::unique_ptr<MemMap> map1(MemMap::MapAnonymous("MapAnonymous1", map_base + kPageSize, kPageSize, PROT_READ | PROT_WRITE, false, false, &error_msg)); ASSERT_TRUE(map1.get() != nullptr) << error_msg; ASSERT_TRUE(error_msg.empty()); std::unique_ptr<MemMap> map2(MemMap::MapAnonymous("MapAnonymous2", map_base + kPageSize * 2, kPageSize, PROT_READ | PROT_WRITE, false, false, &error_msg)); ASSERT_TRUE(map2.get() != nullptr) << error_msg; ASSERT_TRUE(error_msg.empty()); // One-map cases. ASSERT_TRUE(MemMap::CheckNoGaps(map0.get(), map0.get())); ASSERT_TRUE(MemMap::CheckNoGaps(map1.get(), map1.get())); ASSERT_TRUE(MemMap::CheckNoGaps(map2.get(), map2.get())); // Two or three-map cases. ASSERT_TRUE(MemMap::CheckNoGaps(map0.get(), map1.get())); ASSERT_TRUE(MemMap::CheckNoGaps(map1.get(), map2.get())); ASSERT_TRUE(MemMap::CheckNoGaps(map0.get(), map2.get())); // Unmap the middle one. map1.reset(); // Should return false now that there's a gap in the middle. ASSERT_FALSE(MemMap::CheckNoGaps(map0.get(), map2.get())); } } // namespace art