/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "inline_method_analyser.h" #include "art_field-inl.h" #include "art_method-inl.h" #include "class_linker-inl.h" #include "dex_file-inl.h" #include "dex_instruction.h" #include "dex_instruction-inl.h" #include "dex_instruction_utils.h" #include "mirror/class-inl.h" #include "mirror/dex_cache-inl.h" #include "verifier/method_verifier-inl.h" /* * NOTE: This code is part of the quick compiler. It lives in the runtime * only to allow the debugger to check whether a method has been inlined. */ namespace art { namespace { // anonymous namespace // Helper class for matching a pattern. class Matcher { public: // Match function type. typedef bool MatchFn(Matcher* matcher); template <size_t size> static bool Match(const DexFile::CodeItem* code_item, MatchFn* const (&pattern)[size]); // Match and advance. static bool Mark(Matcher* matcher); template <bool (Matcher::*Fn)()> static bool Required(Matcher* matcher); template <bool (Matcher::*Fn)()> static bool Repeated(Matcher* matcher); // On match, returns to the mark. // Match an individual instruction. template <Instruction::Code opcode> bool Opcode(); bool Const0(); bool IPutOnThis(); private: explicit Matcher(const DexFile::CodeItem* code_item) : code_item_(code_item), instruction_(Instruction::At(code_item->insns_)), pos_(0u), mark_(0u) { } static bool DoMatch(const DexFile::CodeItem* code_item, MatchFn* const* pattern, size_t size); const DexFile::CodeItem* const code_item_; const Instruction* instruction_; size_t pos_; size_t mark_; }; template <size_t size> bool Matcher::Match(const DexFile::CodeItem* code_item, MatchFn* const (&pattern)[size]) { return DoMatch(code_item, pattern, size); } bool Matcher::Mark(Matcher* matcher) { matcher->pos_ += 1u; // Advance to the next match function before marking. matcher->mark_ = matcher->pos_; return true; } template <bool (Matcher::*Fn)()> bool Matcher::Required(Matcher* matcher) { if (!(matcher->*Fn)()) { return false; } matcher->pos_ += 1u; matcher->instruction_ = matcher->instruction_->Next(); return true; } template <bool (Matcher::*Fn)()> bool Matcher::Repeated(Matcher* matcher) { if (!(matcher->*Fn)()) { // Didn't match optional instruction, try the next match function. matcher->pos_ += 1u; return true; } matcher->pos_ = matcher->mark_; matcher->instruction_ = matcher->instruction_->Next(); return true; } template <Instruction::Code opcode> bool Matcher::Opcode() { return instruction_->Opcode() == opcode; } // Match const 0. bool Matcher::Const0() { return IsInstructionDirectConst(instruction_->Opcode()) && (instruction_->Opcode() == Instruction::CONST_WIDE ? instruction_->VRegB_51l() == 0 : instruction_->VRegB() == 0); } bool Matcher::IPutOnThis() { DCHECK_NE(code_item_->ins_size_, 0u); return IsInstructionIPut(instruction_->Opcode()) && instruction_->VRegB_22c() == code_item_->registers_size_ - code_item_->ins_size_; } bool Matcher::DoMatch(const DexFile::CodeItem* code_item, MatchFn* const* pattern, size_t size) { Matcher matcher(code_item); while (matcher.pos_ != size) { if (!pattern[matcher.pos_](&matcher)) { return false; } } return true; } // Used for a single invoke in a constructor. In that situation, the method verifier makes // sure we invoke a constructor either in the same class or superclass with at least "this". ArtMethod* GetTargetConstructor(ArtMethod* method, const Instruction* invoke_direct) SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK_EQ(invoke_direct->Opcode(), Instruction::INVOKE_DIRECT); DCHECK_EQ(invoke_direct->VRegC_35c(), method->GetCodeItem()->registers_size_ - method->GetCodeItem()->ins_size_); uint32_t method_index = invoke_direct->VRegB_35c(); size_t pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); ArtMethod* target_method = method->GetDexCache()->GetResolvedMethod(method_index, pointer_size); if (kIsDebugBuild && target_method != nullptr) { CHECK(!target_method->IsStatic()); CHECK(target_method->IsConstructor()); CHECK(target_method->GetDeclaringClass() == method->GetDeclaringClass() || target_method->GetDeclaringClass() == method->GetDeclaringClass()->GetSuperClass()); } return target_method; } // Return the forwarded arguments and check that all remaining arguments are zero. // If the check fails, return static_cast<size_t>(-1). size_t CountForwardedConstructorArguments(const DexFile::CodeItem* code_item, const Instruction* invoke_direct, uint16_t zero_vreg_mask) { DCHECK_EQ(invoke_direct->Opcode(), Instruction::INVOKE_DIRECT); size_t number_of_args = invoke_direct->VRegA_35c(); DCHECK_NE(number_of_args, 0u); uint32_t args[Instruction::kMaxVarArgRegs]; invoke_direct->GetVarArgs(args); uint16_t this_vreg = args[0]; DCHECK_EQ(this_vreg, code_item->registers_size_ - code_item->ins_size_); // Checked by verifier. size_t forwarded = 1u; while (forwarded < number_of_args && args[forwarded] == this_vreg + forwarded && (zero_vreg_mask & (1u << args[forwarded])) == 0) { ++forwarded; } for (size_t i = forwarded; i != number_of_args; ++i) { if ((zero_vreg_mask & (1u << args[i])) == 0) { return static_cast<size_t>(-1); } } return forwarded; } uint16_t GetZeroVRegMask(const Instruction* const0) { DCHECK(IsInstructionDirectConst(const0->Opcode())); DCHECK((const0->Opcode() == Instruction::CONST_WIDE) ? const0->VRegB_51l() == 0u : const0->VRegB() == 0); uint16_t base_mask = IsInstructionConstWide(const0->Opcode()) ? 3u : 1u; return base_mask << const0->VRegA(); } // We limit the number of IPUTs storing parameters. There can be any number // of IPUTs that store the value 0 as they are useless in a constructor as // the object always starts zero-initialized. We also eliminate all but the // last store to any field as they are not observable; not even if the field // is volatile as no reference to the object can escape from a constructor // with this pattern. static constexpr size_t kMaxConstructorIPuts = 3u; struct ConstructorIPutData { ConstructorIPutData() : field_index(DexFile::kDexNoIndex16), arg(0u) { } uint16_t field_index; uint16_t arg; }; bool RecordConstructorIPut(ArtMethod* method, const Instruction* new_iput, uint16_t this_vreg, uint16_t zero_vreg_mask, /*inout*/ ConstructorIPutData (&iputs)[kMaxConstructorIPuts]) SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(IsInstructionIPut(new_iput->Opcode())); uint32_t field_index = new_iput->VRegC_22c(); size_t pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); mirror::DexCache* dex_cache = method->GetDexCache(); ArtField* field = dex_cache->GetResolvedField(field_index, pointer_size); if (UNLIKELY(field == nullptr)) { return false; } // Remove previous IPUT to the same field, if any. Different field indexes may refer // to the same field, so we need to compare resolved fields from the dex cache. for (size_t old_pos = 0; old_pos != arraysize(iputs); ++old_pos) { if (iputs[old_pos].field_index == DexFile::kDexNoIndex16) { break; } ArtField* f = dex_cache->GetResolvedField(iputs[old_pos].field_index, pointer_size); DCHECK(f != nullptr); if (f == field) { auto back_it = std::copy(iputs + old_pos + 1, iputs + arraysize(iputs), iputs + old_pos); *back_it = ConstructorIPutData(); break; } } // If the stored value isn't zero, record the IPUT. if ((zero_vreg_mask & (1u << new_iput->VRegA_22c())) == 0u) { size_t new_pos = 0; while (new_pos != arraysize(iputs) && iputs[new_pos].field_index != DexFile::kDexNoIndex16) { ++new_pos; } if (new_pos == arraysize(iputs)) { return false; // Exceeded capacity of the output array. } iputs[new_pos].field_index = field_index; iputs[new_pos].arg = new_iput->VRegA_22c() - this_vreg; } return true; } bool DoAnalyseConstructor(const DexFile::CodeItem* code_item, ArtMethod* method, /*inout*/ ConstructorIPutData (&iputs)[kMaxConstructorIPuts]) SHARED_REQUIRES(Locks::mutator_lock_) { // On entry we should not have any IPUTs yet. DCHECK_EQ(0, std::count_if( iputs, iputs + arraysize(iputs), [](const ConstructorIPutData& iput_data) { return iput_data.field_index != DexFile::kDexNoIndex16; })); // Limit the maximum number of code units we're willing to match. static constexpr size_t kMaxCodeUnits = 16u; // Limit the number of registers that the constructor may use to 16. // Given that IPUTs must use low 16 registers and we do not match MOVEs, // this is a reasonable limitation. static constexpr size_t kMaxVRegs = 16u; // We try to match a constructor that calls another constructor (either in // superclass or in the same class) with the same parameters, or with some // parameters truncated (allowed only for calls to superclass constructor) // or with extra parameters with value 0 (with any type, including null). // This call can be followed by optional IPUTs on "this" storing either one // of the parameters or 0 and the code must then finish with RETURN_VOID. // The called constructor must be either java.lang.Object.<init>() or it // must also match the same pattern. static Matcher::MatchFn* const kConstructorPattern[] = { &Matcher::Mark, &Matcher::Repeated<&Matcher::Const0>, &Matcher::Required<&Matcher::Opcode<Instruction::INVOKE_DIRECT>>, &Matcher::Mark, &Matcher::Repeated<&Matcher::Const0>, &Matcher::Repeated<&Matcher::IPutOnThis>, &Matcher::Required<&Matcher::Opcode<Instruction::RETURN_VOID>>, }; DCHECK(method != nullptr); DCHECK(!method->IsStatic()); DCHECK(method->IsConstructor()); DCHECK(code_item != nullptr); if (!method->GetDeclaringClass()->IsVerified() || code_item->insns_size_in_code_units_ > kMaxCodeUnits || code_item->registers_size_ > kMaxVRegs || !Matcher::Match(code_item, kConstructorPattern)) { return false; } // Verify the invoke, prevent a few odd cases and collect IPUTs. uint16_t this_vreg = code_item->registers_size_ - code_item->ins_size_; uint16_t zero_vreg_mask = 0u; for (const Instruction* instruction = Instruction::At(code_item->insns_); instruction->Opcode() != Instruction::RETURN_VOID; instruction = instruction->Next()) { if (instruction->Opcode() == Instruction::INVOKE_DIRECT) { ArtMethod* target_method = GetTargetConstructor(method, instruction); if (target_method == nullptr) { return false; } // We allow forwarding constructors only if they pass more arguments // to prevent infinite recursion. if (target_method->GetDeclaringClass() == method->GetDeclaringClass() && instruction->VRegA_35c() <= code_item->ins_size_) { return false; } size_t forwarded = CountForwardedConstructorArguments(code_item, instruction, zero_vreg_mask); if (forwarded == static_cast<size_t>(-1)) { return false; } if (target_method->GetDeclaringClass()->IsObjectClass()) { DCHECK_EQ(Instruction::At(target_method->GetCodeItem()->insns_)->Opcode(), Instruction::RETURN_VOID); } else { const DexFile::CodeItem* target_code_item = target_method->GetCodeItem(); if (target_code_item == nullptr) { return false; // Native constructor? } if (!DoAnalyseConstructor(target_code_item, target_method, iputs)) { return false; } // Prune IPUTs with zero input. auto kept_end = std::remove_if( iputs, iputs + arraysize(iputs), [forwarded](const ConstructorIPutData& iput_data) { return iput_data.arg >= forwarded; }); std::fill(kept_end, iputs + arraysize(iputs), ConstructorIPutData()); // If we have any IPUTs from the call, check that the target method is in the same // dex file (compare DexCache references), otherwise field_indexes would be bogus. if (iputs[0].field_index != DexFile::kDexNoIndex16 && target_method->GetDexCache() != method->GetDexCache()) { return false; } } } else if (IsInstructionDirectConst(instruction->Opcode())) { zero_vreg_mask |= GetZeroVRegMask(instruction); if ((zero_vreg_mask & (1u << this_vreg)) != 0u) { return false; // Overwriting `this` is unsupported. } } else { DCHECK(IsInstructionIPut(instruction->Opcode())); DCHECK_EQ(instruction->VRegB_22c(), this_vreg); if (!RecordConstructorIPut(method, instruction, this_vreg, zero_vreg_mask, iputs)) { return false; } } } return true; } } // anonymous namespace bool AnalyseConstructor(const DexFile::CodeItem* code_item, ArtMethod* method, InlineMethod* result) SHARED_REQUIRES(Locks::mutator_lock_) { ConstructorIPutData iputs[kMaxConstructorIPuts]; if (!DoAnalyseConstructor(code_item, method, iputs)) { return false; } static_assert(kMaxConstructorIPuts == 3, "Unexpected limit"); // Code below depends on this. DCHECK(iputs[0].field_index != DexFile::kDexNoIndex16 || iputs[1].field_index == DexFile::kDexNoIndex16); DCHECK(iputs[1].field_index != DexFile::kDexNoIndex16 || iputs[2].field_index == DexFile::kDexNoIndex16); #define STORE_IPUT(n) \ do { \ result->d.constructor_data.iput##n##_field_index = iputs[n].field_index; \ result->d.constructor_data.iput##n##_arg = iputs[n].arg; \ } while (false) STORE_IPUT(0); STORE_IPUT(1); STORE_IPUT(2); #undef STORE_IPUT result->opcode = kInlineOpConstructor; result->flags = kInlineSpecial; result->d.constructor_data.reserved = 0u; return true; } static_assert(InlineMethodAnalyser::IsInstructionIGet(Instruction::IGET), "iget type"); static_assert(InlineMethodAnalyser::IsInstructionIGet(Instruction::IGET_WIDE), "iget_wide type"); static_assert(InlineMethodAnalyser::IsInstructionIGet(Instruction::IGET_OBJECT), "iget_object type"); static_assert(InlineMethodAnalyser::IsInstructionIGet(Instruction::IGET_BOOLEAN), "iget_boolean type"); static_assert(InlineMethodAnalyser::IsInstructionIGet(Instruction::IGET_BYTE), "iget_byte type"); static_assert(InlineMethodAnalyser::IsInstructionIGet(Instruction::IGET_CHAR), "iget_char type"); static_assert(InlineMethodAnalyser::IsInstructionIGet(Instruction::IGET_SHORT), "iget_short type"); static_assert(InlineMethodAnalyser::IsInstructionIPut(Instruction::IPUT), "iput type"); static_assert(InlineMethodAnalyser::IsInstructionIPut(Instruction::IPUT_WIDE), "iput_wide type"); static_assert(InlineMethodAnalyser::IsInstructionIPut(Instruction::IPUT_OBJECT), "iput_object type"); static_assert(InlineMethodAnalyser::IsInstructionIPut(Instruction::IPUT_BOOLEAN), "iput_boolean type"); static_assert(InlineMethodAnalyser::IsInstructionIPut(Instruction::IPUT_BYTE), "iput_byte type"); static_assert(InlineMethodAnalyser::IsInstructionIPut(Instruction::IPUT_CHAR), "iput_char type"); static_assert(InlineMethodAnalyser::IsInstructionIPut(Instruction::IPUT_SHORT), "iput_short type"); static_assert(InlineMethodAnalyser::IGetVariant(Instruction::IGET) == InlineMethodAnalyser::IPutVariant(Instruction::IPUT), "iget/iput variant"); static_assert(InlineMethodAnalyser::IGetVariant(Instruction::IGET_WIDE) == InlineMethodAnalyser::IPutVariant(Instruction::IPUT_WIDE), "iget/iput_wide variant"); static_assert(InlineMethodAnalyser::IGetVariant(Instruction::IGET_OBJECT) == InlineMethodAnalyser::IPutVariant(Instruction::IPUT_OBJECT), "iget/iput_object variant"); static_assert(InlineMethodAnalyser::IGetVariant(Instruction::IGET_BOOLEAN) == InlineMethodAnalyser::IPutVariant(Instruction::IPUT_BOOLEAN), "iget/iput_boolean variant"); static_assert(InlineMethodAnalyser::IGetVariant(Instruction::IGET_BYTE) == InlineMethodAnalyser::IPutVariant(Instruction::IPUT_BYTE), "iget/iput_byte variant"); static_assert(InlineMethodAnalyser::IGetVariant(Instruction::IGET_CHAR) == InlineMethodAnalyser::IPutVariant(Instruction::IPUT_CHAR), "iget/iput_char variant"); static_assert(InlineMethodAnalyser::IGetVariant(Instruction::IGET_SHORT) == InlineMethodAnalyser::IPutVariant(Instruction::IPUT_SHORT), "iget/iput_short variant"); // This is used by compiler and debugger. We look into the dex cache for resolved methods and // fields. However, in the context of the debugger, not all methods and fields are resolved. Since // we need to be able to detect possibly inlined method, we pass a null inline method to indicate // we don't want to take unresolved methods and fields into account during analysis. bool InlineMethodAnalyser::AnalyseMethodCode(verifier::MethodVerifier* verifier, InlineMethod* result) { DCHECK(verifier != nullptr); if (!Runtime::Current()->UseJitCompilation()) { DCHECK_EQ(verifier->CanLoadClasses(), result != nullptr); } // Note: verifier->GetMethod() may be null. return AnalyseMethodCode(verifier->CodeItem(), verifier->GetMethodReference(), (verifier->GetAccessFlags() & kAccStatic) != 0u, verifier->GetMethod(), result); } bool InlineMethodAnalyser::AnalyseMethodCode(ArtMethod* method, InlineMethod* result) { const DexFile::CodeItem* code_item = method->GetCodeItem(); if (code_item == nullptr) { // Native or abstract. return false; } return AnalyseMethodCode( code_item, method->ToMethodReference(), method->IsStatic(), method, result); } bool InlineMethodAnalyser::AnalyseMethodCode(const DexFile::CodeItem* code_item, const MethodReference& method_ref, bool is_static, ArtMethod* method, InlineMethod* result) { // We currently support only plain return or 2-instruction methods. DCHECK_NE(code_item->insns_size_in_code_units_, 0u); const Instruction* instruction = Instruction::At(code_item->insns_); Instruction::Code opcode = instruction->Opcode(); switch (opcode) { case Instruction::RETURN_VOID: if (result != nullptr) { result->opcode = kInlineOpNop; result->flags = kInlineSpecial; result->d.data = 0u; } return true; case Instruction::RETURN: case Instruction::RETURN_OBJECT: case Instruction::RETURN_WIDE: return AnalyseReturnMethod(code_item, result); case Instruction::CONST: case Instruction::CONST_4: case Instruction::CONST_16: case Instruction::CONST_HIGH16: // TODO: Support wide constants (RETURN_WIDE). if (AnalyseConstMethod(code_item, result)) { return true; } FALLTHROUGH_INTENDED; case Instruction::CONST_WIDE: case Instruction::CONST_WIDE_16: case Instruction::CONST_WIDE_32: case Instruction::CONST_WIDE_HIGH16: case Instruction::INVOKE_DIRECT: if (method != nullptr && !method->IsStatic() && method->IsConstructor()) { return AnalyseConstructor(code_item, method, result); } return false; case Instruction::IGET: case Instruction::IGET_OBJECT: case Instruction::IGET_BOOLEAN: case Instruction::IGET_BYTE: case Instruction::IGET_CHAR: case Instruction::IGET_SHORT: case Instruction::IGET_WIDE: // TODO: Add handling for JIT. // case Instruction::IGET_QUICK: // case Instruction::IGET_WIDE_QUICK: // case Instruction::IGET_OBJECT_QUICK: return AnalyseIGetMethod(code_item, method_ref, is_static, method, result); case Instruction::IPUT: case Instruction::IPUT_OBJECT: case Instruction::IPUT_BOOLEAN: case Instruction::IPUT_BYTE: case Instruction::IPUT_CHAR: case Instruction::IPUT_SHORT: case Instruction::IPUT_WIDE: // TODO: Add handling for JIT. // case Instruction::IPUT_QUICK: // case Instruction::IPUT_WIDE_QUICK: // case Instruction::IPUT_OBJECT_QUICK: return AnalyseIPutMethod(code_item, method_ref, is_static, method, result); default: return false; } } bool InlineMethodAnalyser::IsSyntheticAccessor(MethodReference ref) { const DexFile::MethodId& method_id = ref.dex_file->GetMethodId(ref.dex_method_index); const char* method_name = ref.dex_file->GetMethodName(method_id); // javac names synthetic accessors "access$nnn", // jack names them "-getN", "-putN", "-wrapN". return strncmp(method_name, "access$", strlen("access$")) == 0 || strncmp(method_name, "-", strlen("-")) == 0; } bool InlineMethodAnalyser::AnalyseReturnMethod(const DexFile::CodeItem* code_item, InlineMethod* result) { const Instruction* return_instruction = Instruction::At(code_item->insns_); Instruction::Code return_opcode = return_instruction->Opcode(); uint32_t reg = return_instruction->VRegA_11x(); uint32_t arg_start = code_item->registers_size_ - code_item->ins_size_; DCHECK_GE(reg, arg_start); DCHECK_LT((return_opcode == Instruction::RETURN_WIDE) ? reg + 1 : reg, code_item->registers_size_); if (result != nullptr) { result->opcode = kInlineOpReturnArg; result->flags = kInlineSpecial; InlineReturnArgData* data = &result->d.return_data; data->arg = reg - arg_start; data->is_wide = (return_opcode == Instruction::RETURN_WIDE) ? 1u : 0u; data->is_object = (return_opcode == Instruction::RETURN_OBJECT) ? 1u : 0u; data->reserved = 0u; data->reserved2 = 0u; } return true; } bool InlineMethodAnalyser::AnalyseConstMethod(const DexFile::CodeItem* code_item, InlineMethod* result) { const Instruction* instruction = Instruction::At(code_item->insns_); const Instruction* return_instruction = instruction->Next(); Instruction::Code return_opcode = return_instruction->Opcode(); if (return_opcode != Instruction::RETURN && return_opcode != Instruction::RETURN_OBJECT) { return false; } int32_t return_reg = return_instruction->VRegA_11x(); DCHECK_LT(return_reg, code_item->registers_size_); int32_t const_value = instruction->VRegB(); if (instruction->Opcode() == Instruction::CONST_HIGH16) { const_value <<= 16; } DCHECK_LT(instruction->VRegA(), code_item->registers_size_); if (instruction->VRegA() != return_reg) { return false; // Not returning the value set by const? } if (return_opcode == Instruction::RETURN_OBJECT && const_value != 0) { return false; // Returning non-null reference constant? } if (result != nullptr) { result->opcode = kInlineOpNonWideConst; result->flags = kInlineSpecial; result->d.data = static_cast<uint64_t>(const_value); } return true; } bool InlineMethodAnalyser::AnalyseIGetMethod(const DexFile::CodeItem* code_item, const MethodReference& method_ref, bool is_static, ArtMethod* method, InlineMethod* result) { const Instruction* instruction = Instruction::At(code_item->insns_); Instruction::Code opcode = instruction->Opcode(); DCHECK(IsInstructionIGet(opcode)); const Instruction* return_instruction = instruction->Next(); Instruction::Code return_opcode = return_instruction->Opcode(); if (!(return_opcode == Instruction::RETURN_WIDE && opcode == Instruction::IGET_WIDE) && !(return_opcode == Instruction::RETURN_OBJECT && opcode == Instruction::IGET_OBJECT) && !(return_opcode == Instruction::RETURN && opcode != Instruction::IGET_WIDE && opcode != Instruction::IGET_OBJECT)) { return false; } uint32_t return_reg = return_instruction->VRegA_11x(); DCHECK_LT(return_opcode == Instruction::RETURN_WIDE ? return_reg + 1 : return_reg, code_item->registers_size_); uint32_t dst_reg = instruction->VRegA_22c(); uint32_t object_reg = instruction->VRegB_22c(); uint32_t field_idx = instruction->VRegC_22c(); uint32_t arg_start = code_item->registers_size_ - code_item->ins_size_; DCHECK_GE(object_reg, arg_start); DCHECK_LT(object_reg, code_item->registers_size_); uint32_t object_arg = object_reg - arg_start; DCHECK_LT(opcode == Instruction::IGET_WIDE ? dst_reg + 1 : dst_reg, code_item->registers_size_); if (dst_reg != return_reg) { return false; // Not returning the value retrieved by IGET? } if (is_static || object_arg != 0u) { // TODO: Implement inlining of IGET on non-"this" registers (needs correct stack trace for NPE). // Allow synthetic accessors. We don't care about losing their stack frame in NPE. if (!IsSyntheticAccessor(method_ref)) { return false; } } // InlineIGetIPutData::object_arg is only 4 bits wide. static constexpr uint16_t kMaxObjectArg = 15u; if (object_arg > kMaxObjectArg) { return false; } if (result != nullptr) { InlineIGetIPutData* data = &result->d.ifield_data; if (!ComputeSpecialAccessorInfo(method, field_idx, false, data)) { return false; } result->opcode = kInlineOpIGet; result->flags = kInlineSpecial; data->op_variant = IGetVariant(opcode); data->method_is_static = is_static ? 1u : 0u; data->object_arg = object_arg; // Allow IGET on any register, not just "this". data->src_arg = 0u; data->return_arg_plus1 = 0u; } return true; } bool InlineMethodAnalyser::AnalyseIPutMethod(const DexFile::CodeItem* code_item, const MethodReference& method_ref, bool is_static, ArtMethod* method, InlineMethod* result) { const Instruction* instruction = Instruction::At(code_item->insns_); Instruction::Code opcode = instruction->Opcode(); DCHECK(IsInstructionIPut(opcode)); const Instruction* return_instruction = instruction->Next(); Instruction::Code return_opcode = return_instruction->Opcode(); uint32_t arg_start = code_item->registers_size_ - code_item->ins_size_; uint16_t return_arg_plus1 = 0u; if (return_opcode != Instruction::RETURN_VOID) { if (return_opcode != Instruction::RETURN && return_opcode != Instruction::RETURN_OBJECT && return_opcode != Instruction::RETURN_WIDE) { return false; } // Returning an argument. uint32_t return_reg = return_instruction->VRegA_11x(); DCHECK_GE(return_reg, arg_start); DCHECK_LT(return_opcode == Instruction::RETURN_WIDE ? return_reg + 1u : return_reg, code_item->registers_size_); return_arg_plus1 = return_reg - arg_start + 1u; } uint32_t src_reg = instruction->VRegA_22c(); uint32_t object_reg = instruction->VRegB_22c(); uint32_t field_idx = instruction->VRegC_22c(); DCHECK_GE(object_reg, arg_start); DCHECK_LT(object_reg, code_item->registers_size_); DCHECK_GE(src_reg, arg_start); DCHECK_LT(opcode == Instruction::IPUT_WIDE ? src_reg + 1 : src_reg, code_item->registers_size_); uint32_t object_arg = object_reg - arg_start; uint32_t src_arg = src_reg - arg_start; if (is_static || object_arg != 0u) { // TODO: Implement inlining of IPUT on non-"this" registers (needs correct stack trace for NPE). // Allow synthetic accessors. We don't care about losing their stack frame in NPE. if (!IsSyntheticAccessor(method_ref)) { return false; } } // InlineIGetIPutData::object_arg/src_arg/return_arg_plus1 are each only 4 bits wide. static constexpr uint16_t kMaxObjectArg = 15u; static constexpr uint16_t kMaxSrcArg = 15u; static constexpr uint16_t kMaxReturnArgPlus1 = 15u; if (object_arg > kMaxObjectArg || src_arg > kMaxSrcArg || return_arg_plus1 > kMaxReturnArgPlus1) { return false; } if (result != nullptr) { InlineIGetIPutData* data = &result->d.ifield_data; if (!ComputeSpecialAccessorInfo(method, field_idx, true, data)) { return false; } result->opcode = kInlineOpIPut; result->flags = kInlineSpecial; data->op_variant = IPutVariant(opcode); data->method_is_static = is_static ? 1u : 0u; data->object_arg = object_arg; // Allow IPUT on any register, not just "this". data->src_arg = src_arg; data->return_arg_plus1 = return_arg_plus1; } return true; } bool InlineMethodAnalyser::ComputeSpecialAccessorInfo(ArtMethod* method, uint32_t field_idx, bool is_put, InlineIGetIPutData* result) { if (method == nullptr) { return false; } mirror::DexCache* dex_cache = method->GetDexCache(); size_t pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); ArtField* field = dex_cache->GetResolvedField(field_idx, pointer_size); if (field == nullptr || field->IsStatic()) { return false; } mirror::Class* method_class = method->GetDeclaringClass(); mirror::Class* field_class = field->GetDeclaringClass(); if (!method_class->CanAccessResolvedField(field_class, field, dex_cache, field_idx) || (is_put && field->IsFinal() && method_class != field_class)) { return false; } DCHECK_GE(field->GetOffset().Int32Value(), 0); // Do not interleave function calls with bit field writes to placate valgrind. Bug: 27552451. uint32_t field_offset = field->GetOffset().Uint32Value(); bool is_volatile = field->IsVolatile(); result->field_idx = field_idx; result->field_offset = field_offset; result->is_volatile = is_volatile ? 1u : 0u; return true; } } // namespace art