/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "utils.h" #include <inttypes.h> #include <pthread.h> #include <sys/stat.h> #include <sys/syscall.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #include <memory> #include "art_field-inl.h" #include "art_method-inl.h" #include "base/stl_util.h" #include "base/unix_file/fd_file.h" #include "dex_file-inl.h" #include "dex_instruction.h" #include "mirror/class-inl.h" #include "mirror/class_loader.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "mirror/string.h" #include "oat_quick_method_header.h" #include "os.h" #include "scoped_thread_state_change.h" #include "utf-inl.h" #if defined(__APPLE__) #include "AvailabilityMacros.h" // For MAC_OS_X_VERSION_MAX_ALLOWED #include <sys/syscall.h> #endif // For DumpNativeStack. #include <backtrace/Backtrace.h> #include <backtrace/BacktraceMap.h> #if defined(__linux__) #include <linux/unistd.h> #endif namespace art { #if defined(__linux__) static constexpr bool kUseAddr2line = !kIsTargetBuild; #endif pid_t GetTid() { #if defined(__APPLE__) uint64_t owner; CHECK_PTHREAD_CALL(pthread_threadid_np, (nullptr, &owner), __FUNCTION__); // Requires Mac OS 10.6 return owner; #elif defined(__BIONIC__) return gettid(); #else return syscall(__NR_gettid); #endif } std::string GetThreadName(pid_t tid) { std::string result; if (ReadFileToString(StringPrintf("/proc/self/task/%d/comm", tid), &result)) { result.resize(result.size() - 1); // Lose the trailing '\n'. } else { result = "<unknown>"; } return result; } void GetThreadStack(pthread_t thread, void** stack_base, size_t* stack_size, size_t* guard_size) { #if defined(__APPLE__) *stack_size = pthread_get_stacksize_np(thread); void* stack_addr = pthread_get_stackaddr_np(thread); // Check whether stack_addr is the base or end of the stack. // (On Mac OS 10.7, it's the end.) int stack_variable; if (stack_addr > &stack_variable) { *stack_base = reinterpret_cast<uint8_t*>(stack_addr) - *stack_size; } else { *stack_base = stack_addr; } // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac. pthread_attr_t attributes; CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__); CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__); CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__); #else pthread_attr_t attributes; CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__); CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__); CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__); CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__); #if defined(__GLIBC__) // If we're the main thread, check whether we were run with an unlimited stack. In that case, // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection // will be broken because we'll die long before we get close to 2GB. bool is_main_thread = (::art::GetTid() == getpid()); if (is_main_thread) { rlimit stack_limit; if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) { PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed"; } if (stack_limit.rlim_cur == RLIM_INFINITY) { size_t old_stack_size = *stack_size; // Use the kernel default limit as our size, and adjust the base to match. *stack_size = 8 * MB; *stack_base = reinterpret_cast<uint8_t*>(*stack_base) + (old_stack_size - *stack_size); VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")" << " to " << PrettySize(*stack_size) << " with base " << *stack_base; } } #endif #endif } bool ReadFileToString(const std::string& file_name, std::string* result) { File file; if (!file.Open(file_name, O_RDONLY)) { return false; } std::vector<char> buf(8 * KB); while (true) { int64_t n = TEMP_FAILURE_RETRY(read(file.Fd(), &buf[0], buf.size())); if (n == -1) { return false; } if (n == 0) { return true; } result->append(&buf[0], n); } } bool PrintFileToLog(const std::string& file_name, LogSeverity level) { File file; if (!file.Open(file_name, O_RDONLY)) { return false; } constexpr size_t kBufSize = 256; // Small buffer. Avoid stack overflow and stack size warnings. char buf[kBufSize + 1]; // +1 for terminator. size_t filled_to = 0; while (true) { DCHECK_LT(filled_to, kBufSize); int64_t n = TEMP_FAILURE_RETRY(read(file.Fd(), &buf[filled_to], kBufSize - filled_to)); if (n <= 0) { // Print the rest of the buffer, if it exists. if (filled_to > 0) { buf[filled_to] = 0; LOG(level) << buf; } return n == 0; } // Scan for '\n'. size_t i = filled_to; bool found_newline = false; for (; i < filled_to + n; ++i) { if (buf[i] == '\n') { // Found a line break, that's something to print now. buf[i] = 0; LOG(level) << buf; // Copy the rest to the front. if (i + 1 < filled_to + n) { memmove(&buf[0], &buf[i + 1], filled_to + n - i - 1); filled_to = filled_to + n - i - 1; } else { filled_to = 0; } found_newline = true; break; } } if (found_newline) { continue; } else { filled_to += n; // Check if we must flush now. if (filled_to == kBufSize) { buf[kBufSize] = 0; LOG(level) << buf; filled_to = 0; } } } } std::string PrettyDescriptor(mirror::String* java_descriptor) { if (java_descriptor == nullptr) { return "null"; } return PrettyDescriptor(java_descriptor->ToModifiedUtf8().c_str()); } std::string PrettyDescriptor(mirror::Class* klass) { if (klass == nullptr) { return "null"; } std::string temp; return PrettyDescriptor(klass->GetDescriptor(&temp)); } std::string PrettyDescriptor(const char* descriptor) { // Count the number of '['s to get the dimensionality. const char* c = descriptor; size_t dim = 0; while (*c == '[') { dim++; c++; } // Reference or primitive? if (*c == 'L') { // "[[La/b/C;" -> "a.b.C[][]". c++; // Skip the 'L'. } else { // "[[B" -> "byte[][]". // To make life easier, we make primitives look like unqualified // reference types. switch (*c) { case 'B': c = "byte;"; break; case 'C': c = "char;"; break; case 'D': c = "double;"; break; case 'F': c = "float;"; break; case 'I': c = "int;"; break; case 'J': c = "long;"; break; case 'S': c = "short;"; break; case 'Z': c = "boolean;"; break; case 'V': c = "void;"; break; // Used when decoding return types. default: return descriptor; } } // At this point, 'c' is a string of the form "fully/qualified/Type;" // or "primitive;". Rewrite the type with '.' instead of '/': std::string result; const char* p = c; while (*p != ';') { char ch = *p++; if (ch == '/') { ch = '.'; } result.push_back(ch); } // ...and replace the semicolon with 'dim' "[]" pairs: for (size_t i = 0; i < dim; ++i) { result += "[]"; } return result; } std::string PrettyField(ArtField* f, bool with_type) { if (f == nullptr) { return "null"; } std::string result; if (with_type) { result += PrettyDescriptor(f->GetTypeDescriptor()); result += ' '; } std::string temp; result += PrettyDescriptor(f->GetDeclaringClass()->GetDescriptor(&temp)); result += '.'; result += f->GetName(); return result; } std::string PrettyField(uint32_t field_idx, const DexFile& dex_file, bool with_type) { if (field_idx >= dex_file.NumFieldIds()) { return StringPrintf("<<invalid-field-idx-%d>>", field_idx); } const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx); std::string result; if (with_type) { result += dex_file.GetFieldTypeDescriptor(field_id); result += ' '; } result += PrettyDescriptor(dex_file.GetFieldDeclaringClassDescriptor(field_id)); result += '.'; result += dex_file.GetFieldName(field_id); return result; } std::string PrettyType(uint32_t type_idx, const DexFile& dex_file) { if (type_idx >= dex_file.NumTypeIds()) { return StringPrintf("<<invalid-type-idx-%d>>", type_idx); } const DexFile::TypeId& type_id = dex_file.GetTypeId(type_idx); return PrettyDescriptor(dex_file.GetTypeDescriptor(type_id)); } std::string PrettyArguments(const char* signature) { std::string result; result += '('; CHECK_EQ(*signature, '('); ++signature; // Skip the '('. while (*signature != ')') { size_t argument_length = 0; while (signature[argument_length] == '[') { ++argument_length; } if (signature[argument_length] == 'L') { argument_length = (strchr(signature, ';') - signature + 1); } else { ++argument_length; } { std::string argument_descriptor(signature, argument_length); result += PrettyDescriptor(argument_descriptor.c_str()); } if (signature[argument_length] != ')') { result += ", "; } signature += argument_length; } CHECK_EQ(*signature, ')'); ++signature; // Skip the ')'. result += ')'; return result; } std::string PrettyReturnType(const char* signature) { const char* return_type = strchr(signature, ')'); CHECK(return_type != nullptr); ++return_type; // Skip ')'. return PrettyDescriptor(return_type); } std::string PrettyMethod(ArtMethod* m, bool with_signature) { if (m == nullptr) { return "null"; } if (!m->IsRuntimeMethod()) { m = m->GetInterfaceMethodIfProxy(Runtime::Current()->GetClassLinker()->GetImagePointerSize()); } std::string result(PrettyDescriptor(m->GetDeclaringClassDescriptor())); result += '.'; result += m->GetName(); if (UNLIKELY(m->IsFastNative())) { result += "!"; } if (with_signature) { const Signature signature = m->GetSignature(); std::string sig_as_string(signature.ToString()); if (signature == Signature::NoSignature()) { return result + sig_as_string; } result = PrettyReturnType(sig_as_string.c_str()) + " " + result + PrettyArguments(sig_as_string.c_str()); } return result; } std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature) { if (method_idx >= dex_file.NumMethodIds()) { return StringPrintf("<<invalid-method-idx-%d>>", method_idx); } const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx); std::string result(PrettyDescriptor(dex_file.GetMethodDeclaringClassDescriptor(method_id))); result += '.'; result += dex_file.GetMethodName(method_id); if (with_signature) { const Signature signature = dex_file.GetMethodSignature(method_id); std::string sig_as_string(signature.ToString()); if (signature == Signature::NoSignature()) { return result + sig_as_string; } result = PrettyReturnType(sig_as_string.c_str()) + " " + result + PrettyArguments(sig_as_string.c_str()); } return result; } std::string PrettyTypeOf(mirror::Object* obj) { if (obj == nullptr) { return "null"; } if (obj->GetClass() == nullptr) { return "(raw)"; } std::string temp; std::string result(PrettyDescriptor(obj->GetClass()->GetDescriptor(&temp))); if (obj->IsClass()) { result += "<" + PrettyDescriptor(obj->AsClass()->GetDescriptor(&temp)) + ">"; } return result; } std::string PrettyClass(mirror::Class* c) { if (c == nullptr) { return "null"; } std::string result; result += "java.lang.Class<"; result += PrettyDescriptor(c); result += ">"; return result; } std::string PrettyClassAndClassLoader(mirror::Class* c) { if (c == nullptr) { return "null"; } std::string result; result += "java.lang.Class<"; result += PrettyDescriptor(c); result += ","; result += PrettyTypeOf(c->GetClassLoader()); // TODO: add an identifying hash value for the loader result += ">"; return result; } std::string PrettyJavaAccessFlags(uint32_t access_flags) { std::string result; if ((access_flags & kAccPublic) != 0) { result += "public "; } if ((access_flags & kAccProtected) != 0) { result += "protected "; } if ((access_flags & kAccPrivate) != 0) { result += "private "; } if ((access_flags & kAccFinal) != 0) { result += "final "; } if ((access_flags & kAccStatic) != 0) { result += "static "; } if ((access_flags & kAccTransient) != 0) { result += "transient "; } if ((access_flags & kAccVolatile) != 0) { result += "volatile "; } if ((access_flags & kAccSynchronized) != 0) { result += "synchronized "; } return result; } std::string PrettySize(int64_t byte_count) { // The byte thresholds at which we display amounts. A byte count is displayed // in unit U when kUnitThresholds[U] <= bytes < kUnitThresholds[U+1]. static const int64_t kUnitThresholds[] = { 0, // B up to... 3*1024, // KB up to... 2*1024*1024, // MB up to... 1024*1024*1024 // GB from here. }; static const int64_t kBytesPerUnit[] = { 1, KB, MB, GB }; static const char* const kUnitStrings[] = { "B", "KB", "MB", "GB" }; const char* negative_str = ""; if (byte_count < 0) { negative_str = "-"; byte_count = -byte_count; } int i = arraysize(kUnitThresholds); while (--i > 0) { if (byte_count >= kUnitThresholds[i]) { break; } } return StringPrintf("%s%" PRId64 "%s", negative_str, byte_count / kBytesPerUnit[i], kUnitStrings[i]); } std::string PrintableChar(uint16_t ch) { std::string result; result += '\''; if (NeedsEscaping(ch)) { StringAppendF(&result, "\\u%04x", ch); } else { result += ch; } result += '\''; return result; } std::string PrintableString(const char* utf) { std::string result; result += '"'; const char* p = utf; size_t char_count = CountModifiedUtf8Chars(p); for (size_t i = 0; i < char_count; ++i) { uint32_t ch = GetUtf16FromUtf8(&p); if (ch == '\\') { result += "\\\\"; } else if (ch == '\n') { result += "\\n"; } else if (ch == '\r') { result += "\\r"; } else if (ch == '\t') { result += "\\t"; } else { const uint16_t leading = GetLeadingUtf16Char(ch); if (NeedsEscaping(leading)) { StringAppendF(&result, "\\u%04x", leading); } else { result += leading; } const uint32_t trailing = GetTrailingUtf16Char(ch); if (trailing != 0) { // All high surrogates will need escaping. StringAppendF(&result, "\\u%04x", trailing); } } } result += '"'; return result; } // See http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/design.html#wp615 for the full rules. std::string MangleForJni(const std::string& s) { std::string result; size_t char_count = CountModifiedUtf8Chars(s.c_str()); const char* cp = &s[0]; for (size_t i = 0; i < char_count; ++i) { uint32_t ch = GetUtf16FromUtf8(&cp); if ((ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z') || (ch >= '0' && ch <= '9')) { result.push_back(ch); } else if (ch == '.' || ch == '/') { result += "_"; } else if (ch == '_') { result += "_1"; } else if (ch == ';') { result += "_2"; } else if (ch == '[') { result += "_3"; } else { const uint16_t leading = GetLeadingUtf16Char(ch); const uint32_t trailing = GetTrailingUtf16Char(ch); StringAppendF(&result, "_0%04x", leading); if (trailing != 0) { StringAppendF(&result, "_0%04x", trailing); } } } return result; } std::string DotToDescriptor(const char* class_name) { std::string descriptor(class_name); std::replace(descriptor.begin(), descriptor.end(), '.', '/'); if (descriptor.length() > 0 && descriptor[0] != '[') { descriptor = "L" + descriptor + ";"; } return descriptor; } std::string DescriptorToDot(const char* descriptor) { size_t length = strlen(descriptor); if (length > 1) { if (descriptor[0] == 'L' && descriptor[length - 1] == ';') { // Descriptors have the leading 'L' and trailing ';' stripped. std::string result(descriptor + 1, length - 2); std::replace(result.begin(), result.end(), '/', '.'); return result; } else { // For arrays the 'L' and ';' remain intact. std::string result(descriptor); std::replace(result.begin(), result.end(), '/', '.'); return result; } } // Do nothing for non-class/array descriptors. return descriptor; } std::string DescriptorToName(const char* descriptor) { size_t length = strlen(descriptor); if (descriptor[0] == 'L' && descriptor[length - 1] == ';') { std::string result(descriptor + 1, length - 2); return result; } return descriptor; } std::string JniShortName(ArtMethod* m) { std::string class_name(m->GetDeclaringClassDescriptor()); // Remove the leading 'L' and trailing ';'... CHECK_EQ(class_name[0], 'L') << class_name; CHECK_EQ(class_name[class_name.size() - 1], ';') << class_name; class_name.erase(0, 1); class_name.erase(class_name.size() - 1, 1); std::string method_name(m->GetName()); std::string short_name; short_name += "Java_"; short_name += MangleForJni(class_name); short_name += "_"; short_name += MangleForJni(method_name); return short_name; } std::string JniLongName(ArtMethod* m) { std::string long_name; long_name += JniShortName(m); long_name += "__"; std::string signature(m->GetSignature().ToString()); signature.erase(0, 1); signature.erase(signature.begin() + signature.find(')'), signature.end()); long_name += MangleForJni(signature); return long_name; } // Helper for IsValidPartOfMemberNameUtf8(), a bit vector indicating valid low ascii. uint32_t DEX_MEMBER_VALID_LOW_ASCII[4] = { 0x00000000, // 00..1f low control characters; nothing valid 0x03ff2010, // 20..3f digits and symbols; valid: '0'..'9', '$', '-' 0x87fffffe, // 40..5f uppercase etc.; valid: 'A'..'Z', '_' 0x07fffffe // 60..7f lowercase etc.; valid: 'a'..'z' }; // Helper for IsValidPartOfMemberNameUtf8(); do not call directly. bool IsValidPartOfMemberNameUtf8Slow(const char** pUtf8Ptr) { /* * It's a multibyte encoded character. Decode it and analyze. We * accept anything that isn't (a) an improperly encoded low value, * (b) an improper surrogate pair, (c) an encoded '\0', (d) a high * control character, or (e) a high space, layout, or special * character (U+00a0, U+2000..U+200f, U+2028..U+202f, * U+fff0..U+ffff). This is all specified in the dex format * document. */ const uint32_t pair = GetUtf16FromUtf8(pUtf8Ptr); const uint16_t leading = GetLeadingUtf16Char(pair); // We have a surrogate pair resulting from a valid 4 byte UTF sequence. // No further checks are necessary because 4 byte sequences span code // points [U+10000, U+1FFFFF], which are valid codepoints in a dex // identifier. Furthermore, GetUtf16FromUtf8 guarantees that each of // the surrogate halves are valid and well formed in this instance. if (GetTrailingUtf16Char(pair) != 0) { return true; } // We've encountered a one, two or three byte UTF-8 sequence. The // three byte UTF-8 sequence could be one half of a surrogate pair. switch (leading >> 8) { case 0x00: // It's only valid if it's above the ISO-8859-1 high space (0xa0). return (leading > 0x00a0); case 0xd8: case 0xd9: case 0xda: case 0xdb: { // We found a three byte sequence encoding one half of a surrogate. // Look for the other half. const uint32_t pair2 = GetUtf16FromUtf8(pUtf8Ptr); const uint16_t trailing = GetLeadingUtf16Char(pair2); return (GetTrailingUtf16Char(pair2) == 0) && (0xdc00 <= trailing && trailing <= 0xdfff); } case 0xdc: case 0xdd: case 0xde: case 0xdf: // It's a trailing surrogate, which is not valid at this point. return false; case 0x20: case 0xff: // It's in the range that has spaces, controls, and specials. switch (leading & 0xfff8) { case 0x2000: case 0x2008: case 0x2028: case 0xfff0: case 0xfff8: return false; } return true; default: return true; } UNREACHABLE(); } /* Return whether the pointed-at modified-UTF-8 encoded character is * valid as part of a member name, updating the pointer to point past * the consumed character. This will consume two encoded UTF-16 code * points if the character is encoded as a surrogate pair. Also, if * this function returns false, then the given pointer may only have * been partially advanced. */ static bool IsValidPartOfMemberNameUtf8(const char** pUtf8Ptr) { uint8_t c = (uint8_t) **pUtf8Ptr; if (LIKELY(c <= 0x7f)) { // It's low-ascii, so check the table. uint32_t wordIdx = c >> 5; uint32_t bitIdx = c & 0x1f; (*pUtf8Ptr)++; return (DEX_MEMBER_VALID_LOW_ASCII[wordIdx] & (1 << bitIdx)) != 0; } // It's a multibyte encoded character. Call a non-inline function // for the heavy lifting. return IsValidPartOfMemberNameUtf8Slow(pUtf8Ptr); } bool IsValidMemberName(const char* s) { bool angle_name = false; switch (*s) { case '\0': // The empty string is not a valid name. return false; case '<': angle_name = true; s++; break; } while (true) { switch (*s) { case '\0': return !angle_name; case '>': return angle_name && s[1] == '\0'; } if (!IsValidPartOfMemberNameUtf8(&s)) { return false; } } } enum ClassNameType { kName, kDescriptor }; template<ClassNameType kType, char kSeparator> static bool IsValidClassName(const char* s) { int arrayCount = 0; while (*s == '[') { arrayCount++; s++; } if (arrayCount > 255) { // Arrays may have no more than 255 dimensions. return false; } ClassNameType type = kType; if (type != kDescriptor && arrayCount != 0) { /* * If we're looking at an array of some sort, then it doesn't * matter if what is being asked for is a class name; the * format looks the same as a type descriptor in that case, so * treat it as such. */ type = kDescriptor; } if (type == kDescriptor) { /* * We are looking for a descriptor. Either validate it as a * single-character primitive type, or continue on to check the * embedded class name (bracketed by "L" and ";"). */ switch (*(s++)) { case 'B': case 'C': case 'D': case 'F': case 'I': case 'J': case 'S': case 'Z': // These are all single-character descriptors for primitive types. return (*s == '\0'); case 'V': // Non-array void is valid, but you can't have an array of void. return (arrayCount == 0) && (*s == '\0'); case 'L': // Class name: Break out and continue below. break; default: // Oddball descriptor character. return false; } } /* * We just consumed the 'L' that introduces a class name as part * of a type descriptor, or we are looking for an unadorned class * name. */ bool sepOrFirst = true; // first character or just encountered a separator. for (;;) { uint8_t c = (uint8_t) *s; switch (c) { case '\0': /* * Premature end for a type descriptor, but valid for * a class name as long as we haven't encountered an * empty component (including the degenerate case of * the empty string ""). */ return (type == kName) && !sepOrFirst; case ';': /* * Invalid character for a class name, but the * legitimate end of a type descriptor. In the latter * case, make sure that this is the end of the string * and that it doesn't end with an empty component * (including the degenerate case of "L;"). */ return (type == kDescriptor) && !sepOrFirst && (s[1] == '\0'); case '/': case '.': if (c != kSeparator) { // The wrong separator character. return false; } if (sepOrFirst) { // Separator at start or two separators in a row. return false; } sepOrFirst = true; s++; break; default: if (!IsValidPartOfMemberNameUtf8(&s)) { return false; } sepOrFirst = false; break; } } } bool IsValidBinaryClassName(const char* s) { return IsValidClassName<kName, '.'>(s); } bool IsValidJniClassName(const char* s) { return IsValidClassName<kName, '/'>(s); } bool IsValidDescriptor(const char* s) { return IsValidClassName<kDescriptor, '/'>(s); } void Split(const std::string& s, char separator, std::vector<std::string>* result) { const char* p = s.data(); const char* end = p + s.size(); while (p != end) { if (*p == separator) { ++p; } else { const char* start = p; while (++p != end && *p != separator) { // Skip to the next occurrence of the separator. } result->push_back(std::string(start, p - start)); } } } std::string Trim(const std::string& s) { std::string result; unsigned int start_index = 0; unsigned int end_index = s.size() - 1; // Skip initial whitespace. while (start_index < s.size()) { if (!isspace(s[start_index])) { break; } start_index++; } // Skip terminating whitespace. while (end_index >= start_index) { if (!isspace(s[end_index])) { break; } end_index--; } // All spaces, no beef. if (end_index < start_index) { return ""; } // Start_index is the first non-space, end_index is the last one. return s.substr(start_index, end_index - start_index + 1); } template <typename StringT> std::string Join(const std::vector<StringT>& strings, char separator) { if (strings.empty()) { return ""; } std::string result(strings[0]); for (size_t i = 1; i < strings.size(); ++i) { result += separator; result += strings[i]; } return result; } // Explicit instantiations. template std::string Join<std::string>(const std::vector<std::string>& strings, char separator); template std::string Join<const char*>(const std::vector<const char*>& strings, char separator); bool StartsWith(const std::string& s, const char* prefix) { return s.compare(0, strlen(prefix), prefix) == 0; } bool EndsWith(const std::string& s, const char* suffix) { size_t suffix_length = strlen(suffix); size_t string_length = s.size(); if (suffix_length > string_length) { return false; } size_t offset = string_length - suffix_length; return s.compare(offset, suffix_length, suffix) == 0; } void SetThreadName(const char* thread_name) { int hasAt = 0; int hasDot = 0; const char* s = thread_name; while (*s) { if (*s == '.') { hasDot = 1; } else if (*s == '@') { hasAt = 1; } s++; } int len = s - thread_name; if (len < 15 || hasAt || !hasDot) { s = thread_name; } else { s = thread_name + len - 15; } #if defined(__linux__) // pthread_setname_np fails rather than truncating long strings. char buf[16]; // MAX_TASK_COMM_LEN=16 is hard-coded in the kernel. strncpy(buf, s, sizeof(buf)-1); buf[sizeof(buf)-1] = '\0'; errno = pthread_setname_np(pthread_self(), buf); if (errno != 0) { PLOG(WARNING) << "Unable to set the name of current thread to '" << buf << "'"; } #else // __APPLE__ pthread_setname_np(thread_name); #endif } void GetTaskStats(pid_t tid, char* state, int* utime, int* stime, int* task_cpu) { *utime = *stime = *task_cpu = 0; std::string stats; if (!ReadFileToString(StringPrintf("/proc/self/task/%d/stat", tid), &stats)) { return; } // Skip the command, which may contain spaces. stats = stats.substr(stats.find(')') + 2); // Extract the three fields we care about. std::vector<std::string> fields; Split(stats, ' ', &fields); *state = fields[0][0]; *utime = strtoull(fields[11].c_str(), nullptr, 10); *stime = strtoull(fields[12].c_str(), nullptr, 10); *task_cpu = strtoull(fields[36].c_str(), nullptr, 10); } std::string GetSchedulerGroupName(pid_t tid) { // /proc/<pid>/cgroup looks like this: // 2:devices:/ // 1:cpuacct,cpu:/ // We want the third field from the line whose second field contains the "cpu" token. std::string cgroup_file; if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) { return ""; } std::vector<std::string> cgroup_lines; Split(cgroup_file, '\n', &cgroup_lines); for (size_t i = 0; i < cgroup_lines.size(); ++i) { std::vector<std::string> cgroup_fields; Split(cgroup_lines[i], ':', &cgroup_fields); std::vector<std::string> cgroups; Split(cgroup_fields[1], ',', &cgroups); for (size_t j = 0; j < cgroups.size(); ++j) { if (cgroups[j] == "cpu") { return cgroup_fields[2].substr(1); // Skip the leading slash. } } } return ""; } #if defined(__linux__) ALWAYS_INLINE static inline void WritePrefix(std::ostream* os, const char* prefix, bool odd) { if (prefix != nullptr) { *os << prefix; } *os << " "; if (!odd) { *os << " "; } } static bool RunCommand(std::string cmd, std::ostream* os, const char* prefix) { FILE* stream = popen(cmd.c_str(), "r"); if (stream) { if (os != nullptr) { bool odd_line = true; // We indent them differently. bool wrote_prefix = false; // Have we already written a prefix? constexpr size_t kMaxBuffer = 128; // Relatively small buffer. Should be OK as we're on an // alt stack, but just to be sure... char buffer[kMaxBuffer]; while (!feof(stream)) { if (fgets(buffer, kMaxBuffer, stream) != nullptr) { // Split on newlines. char* tmp = buffer; for (;;) { char* new_line = strchr(tmp, '\n'); if (new_line == nullptr) { // Print the rest. if (*tmp != 0) { if (!wrote_prefix) { WritePrefix(os, prefix, odd_line); } wrote_prefix = true; *os << tmp; } break; } if (!wrote_prefix) { WritePrefix(os, prefix, odd_line); } char saved = *(new_line + 1); *(new_line + 1) = 0; *os << tmp; *(new_line + 1) = saved; tmp = new_line + 1; odd_line = !odd_line; wrote_prefix = false; } } } } pclose(stream); return true; } else { return false; } } static void Addr2line(const std::string& map_src, uintptr_t offset, std::ostream& os, const char* prefix) { std::string cmdline(StringPrintf("addr2line --functions --inlines --demangle -e %s %zx", map_src.c_str(), offset)); RunCommand(cmdline.c_str(), &os, prefix); } static bool PcIsWithinQuickCode(ArtMethod* method, uintptr_t pc) NO_THREAD_SAFETY_ANALYSIS { uintptr_t code = reinterpret_cast<uintptr_t>(EntryPointToCodePointer( method->GetEntryPointFromQuickCompiledCode())); if (code == 0) { return pc == 0; } uintptr_t code_size = reinterpret_cast<const OatQuickMethodHeader*>(code)[-1].code_size_; return code <= pc && pc <= (code + code_size); } #endif void DumpNativeStack(std::ostream& os, pid_t tid, BacktraceMap* existing_map, const char* prefix, ArtMethod* current_method, void* ucontext_ptr) { #if __linux__ // b/18119146 if (RUNNING_ON_MEMORY_TOOL != 0) { return; } BacktraceMap* map = existing_map; std::unique_ptr<BacktraceMap> tmp_map; if (map == nullptr) { tmp_map.reset(BacktraceMap::Create(getpid())); map = tmp_map.get(); } std::unique_ptr<Backtrace> backtrace(Backtrace::Create(BACKTRACE_CURRENT_PROCESS, tid, map)); if (!backtrace->Unwind(0, reinterpret_cast<ucontext*>(ucontext_ptr))) { os << prefix << "(backtrace::Unwind failed for thread " << tid << ": " << backtrace->GetErrorString(backtrace->GetError()) << ")\n"; return; } else if (backtrace->NumFrames() == 0) { os << prefix << "(no native stack frames for thread " << tid << ")\n"; return; } // Check whether we have and should use addr2line. bool use_addr2line; if (kUseAddr2line) { // Try to run it to see whether we have it. Push an argument so that it doesn't assume a.out // and print to stderr. use_addr2line = (gAborting > 0) && RunCommand("addr2line -h", nullptr, nullptr); } else { use_addr2line = false; } for (Backtrace::const_iterator it = backtrace->begin(); it != backtrace->end(); ++it) { // We produce output like this: // ] #00 pc 000075bb8 /system/lib/libc.so (unwind_backtrace_thread+536) // In order for parsing tools to continue to function, the stack dump // format must at least adhere to this format: // #XX pc <RELATIVE_ADDR> <FULL_PATH_TO_SHARED_LIBRARY> ... // The parsers require a single space before and after pc, and two spaces // after the <RELATIVE_ADDR>. There can be any prefix data before the // #XX. <RELATIVE_ADDR> has to be a hex number but with no 0x prefix. os << prefix << StringPrintf("#%02zu pc ", it->num); bool try_addr2line = false; if (!BacktraceMap::IsValid(it->map)) { os << StringPrintf(Is64BitInstructionSet(kRuntimeISA) ? "%016" PRIxPTR " ???" : "%08" PRIxPTR " ???", it->pc); } else { os << StringPrintf(Is64BitInstructionSet(kRuntimeISA) ? "%016" PRIxPTR " " : "%08" PRIxPTR " ", BacktraceMap::GetRelativePc(it->map, it->pc)); os << it->map.name; os << " ("; if (!it->func_name.empty()) { os << it->func_name; if (it->func_offset != 0) { os << "+" << it->func_offset; } try_addr2line = true; } else if (current_method != nullptr && Locks::mutator_lock_->IsSharedHeld(Thread::Current()) && PcIsWithinQuickCode(current_method, it->pc)) { const void* start_of_code = current_method->GetEntryPointFromQuickCompiledCode(); os << JniLongName(current_method) << "+" << (it->pc - reinterpret_cast<uintptr_t>(start_of_code)); } else { os << "???"; } os << ")"; } os << "\n"; if (try_addr2line && use_addr2line) { Addr2line(it->map.name, it->pc - it->map.start, os, prefix); } } #else UNUSED(os, tid, existing_map, prefix, current_method, ucontext_ptr); #endif } #if defined(__APPLE__) // TODO: is there any way to get the kernel stack on Mac OS? void DumpKernelStack(std::ostream&, pid_t, const char*, bool) {} #else void DumpKernelStack(std::ostream& os, pid_t tid, const char* prefix, bool include_count) { if (tid == GetTid()) { // There's no point showing that we're reading our stack out of /proc! return; } std::string kernel_stack_filename(StringPrintf("/proc/self/task/%d/stack", tid)); std::string kernel_stack; if (!ReadFileToString(kernel_stack_filename, &kernel_stack)) { os << prefix << "(couldn't read " << kernel_stack_filename << ")\n"; return; } std::vector<std::string> kernel_stack_frames; Split(kernel_stack, '\n', &kernel_stack_frames); // We skip the last stack frame because it's always equivalent to "[<ffffffff>] 0xffffffff", // which looking at the source appears to be the kernel's way of saying "that's all, folks!". kernel_stack_frames.pop_back(); for (size_t i = 0; i < kernel_stack_frames.size(); ++i) { // Turn "[<ffffffff8109156d>] futex_wait_queue_me+0xcd/0x110" // into "futex_wait_queue_me+0xcd/0x110". const char* text = kernel_stack_frames[i].c_str(); const char* close_bracket = strchr(text, ']'); if (close_bracket != nullptr) { text = close_bracket + 2; } os << prefix; if (include_count) { os << StringPrintf("#%02zd ", i); } os << text << "\n"; } } #endif const char* GetAndroidRoot() { const char* android_root = getenv("ANDROID_ROOT"); if (android_root == nullptr) { if (OS::DirectoryExists("/system")) { android_root = "/system"; } else { LOG(FATAL) << "ANDROID_ROOT not set and /system does not exist"; return ""; } } if (!OS::DirectoryExists(android_root)) { LOG(FATAL) << "Failed to find ANDROID_ROOT directory " << android_root; return ""; } return android_root; } const char* GetAndroidData() { std::string error_msg; const char* dir = GetAndroidDataSafe(&error_msg); if (dir != nullptr) { return dir; } else { LOG(FATAL) << error_msg; return ""; } } const char* GetAndroidDataSafe(std::string* error_msg) { const char* android_data = getenv("ANDROID_DATA"); if (android_data == nullptr) { if (OS::DirectoryExists("/data")) { android_data = "/data"; } else { *error_msg = "ANDROID_DATA not set and /data does not exist"; return nullptr; } } if (!OS::DirectoryExists(android_data)) { *error_msg = StringPrintf("Failed to find ANDROID_DATA directory %s", android_data); return nullptr; } return android_data; } void GetDalvikCache(const char* subdir, const bool create_if_absent, std::string* dalvik_cache, bool* have_android_data, bool* dalvik_cache_exists, bool* is_global_cache) { CHECK(subdir != nullptr); std::string error_msg; const char* android_data = GetAndroidDataSafe(&error_msg); if (android_data == nullptr) { *have_android_data = false; *dalvik_cache_exists = false; *is_global_cache = false; return; } else { *have_android_data = true; } const std::string dalvik_cache_root(StringPrintf("%s/dalvik-cache/", android_data)); *dalvik_cache = dalvik_cache_root + subdir; *dalvik_cache_exists = OS::DirectoryExists(dalvik_cache->c_str()); *is_global_cache = strcmp(android_data, "/data") == 0; if (create_if_absent && !*dalvik_cache_exists && !*is_global_cache) { // Don't create the system's /data/dalvik-cache/... because it needs special permissions. *dalvik_cache_exists = ((mkdir(dalvik_cache_root.c_str(), 0700) == 0 || errno == EEXIST) && (mkdir(dalvik_cache->c_str(), 0700) == 0 || errno == EEXIST)); } } static std::string GetDalvikCacheImpl(const char* subdir, const bool create_if_absent, const bool abort_on_error) { CHECK(subdir != nullptr); const char* android_data = GetAndroidData(); const std::string dalvik_cache_root(StringPrintf("%s/dalvik-cache/", android_data)); const std::string dalvik_cache = dalvik_cache_root + subdir; if (!OS::DirectoryExists(dalvik_cache.c_str())) { if (!create_if_absent) { // TODO: Check callers. Traditional behavior is to not to abort, even when abort_on_error. return ""; } // Don't create the system's /data/dalvik-cache/... because it needs special permissions. if (strcmp(android_data, "/data") == 0) { if (abort_on_error) { LOG(FATAL) << "Failed to find dalvik-cache directory " << dalvik_cache << ", cannot create /data dalvik-cache."; UNREACHABLE(); } return ""; } int result = mkdir(dalvik_cache_root.c_str(), 0700); if (result != 0 && errno != EEXIST) { if (abort_on_error) { PLOG(FATAL) << "Failed to create dalvik-cache root directory " << dalvik_cache_root; UNREACHABLE(); } return ""; } result = mkdir(dalvik_cache.c_str(), 0700); if (result != 0) { if (abort_on_error) { PLOG(FATAL) << "Failed to create dalvik-cache directory " << dalvik_cache; UNREACHABLE(); } return ""; } } return dalvik_cache; } std::string GetDalvikCache(const char* subdir, const bool create_if_absent) { return GetDalvikCacheImpl(subdir, create_if_absent, false); } std::string GetDalvikCacheOrDie(const char* subdir, const bool create_if_absent) { return GetDalvikCacheImpl(subdir, create_if_absent, true); } bool GetDalvikCacheFilename(const char* location, const char* cache_location, std::string* filename, std::string* error_msg) { if (location[0] != '/') { *error_msg = StringPrintf("Expected path in location to be absolute: %s", location); return false; } std::string cache_file(&location[1]); // skip leading slash if (!EndsWith(location, ".dex") && !EndsWith(location, ".art") && !EndsWith(location, ".oat")) { cache_file += "/"; cache_file += DexFile::kClassesDex; } std::replace(cache_file.begin(), cache_file.end(), '/', '@'); *filename = StringPrintf("%s/%s", cache_location, cache_file.c_str()); return true; } std::string GetDalvikCacheFilenameOrDie(const char* location, const char* cache_location) { std::string ret; std::string error_msg; if (!GetDalvikCacheFilename(location, cache_location, &ret, &error_msg)) { LOG(FATAL) << error_msg; } return ret; } static void InsertIsaDirectory(const InstructionSet isa, std::string* filename) { // in = /foo/bar/baz // out = /foo/bar/<isa>/baz size_t pos = filename->rfind('/'); CHECK_NE(pos, std::string::npos) << *filename << " " << isa; filename->insert(pos, "/", 1); filename->insert(pos + 1, GetInstructionSetString(isa)); } std::string GetSystemImageFilename(const char* location, const InstructionSet isa) { // location = /system/framework/boot.art // filename = /system/framework/<isa>/boot.art std::string filename(location); InsertIsaDirectory(isa, &filename); return filename; } int ExecAndReturnCode(std::vector<std::string>& arg_vector, std::string* error_msg) { const std::string command_line(Join(arg_vector, ' ')); CHECK_GE(arg_vector.size(), 1U) << command_line; // Convert the args to char pointers. const char* program = arg_vector[0].c_str(); std::vector<char*> args; for (size_t i = 0; i < arg_vector.size(); ++i) { const std::string& arg = arg_vector[i]; char* arg_str = const_cast<char*>(arg.c_str()); CHECK(arg_str != nullptr) << i; args.push_back(arg_str); } args.push_back(nullptr); // fork and exec pid_t pid = fork(); if (pid == 0) { // no allocation allowed between fork and exec // change process groups, so we don't get reaped by ProcessManager setpgid(0, 0); execv(program, &args[0]); PLOG(ERROR) << "Failed to execv(" << command_line << ")"; // _exit to avoid atexit handlers in child. _exit(1); } else { if (pid == -1) { *error_msg = StringPrintf("Failed to execv(%s) because fork failed: %s", command_line.c_str(), strerror(errno)); return -1; } // wait for subprocess to finish int status = -1; pid_t got_pid = TEMP_FAILURE_RETRY(waitpid(pid, &status, 0)); if (got_pid != pid) { *error_msg = StringPrintf("Failed after fork for execv(%s) because waitpid failed: " "wanted %d, got %d: %s", command_line.c_str(), pid, got_pid, strerror(errno)); return -1; } if (WIFEXITED(status)) { return WEXITSTATUS(status); } return -1; } } bool Exec(std::vector<std::string>& arg_vector, std::string* error_msg) { int status = ExecAndReturnCode(arg_vector, error_msg); if (status != 0) { const std::string command_line(Join(arg_vector, ' ')); *error_msg = StringPrintf("Failed execv(%s) because non-0 exit status", command_line.c_str()); return false; } return true; } bool FileExists(const std::string& filename) { struct stat buffer; return stat(filename.c_str(), &buffer) == 0; } bool FileExistsAndNotEmpty(const std::string& filename) { struct stat buffer; if (stat(filename.c_str(), &buffer) != 0) { return false; } return buffer.st_size > 0; } std::string PrettyDescriptor(Primitive::Type type) { return PrettyDescriptor(Primitive::Descriptor(type)); } static void DumpMethodCFGImpl(const DexFile* dex_file, uint32_t dex_method_idx, const DexFile::CodeItem* code_item, std::ostream& os) { os << "digraph {\n"; os << " # /* " << PrettyMethod(dex_method_idx, *dex_file, true) << " */\n"; std::set<uint32_t> dex_pc_is_branch_target; { // Go and populate. const Instruction* inst = Instruction::At(code_item->insns_); for (uint32_t dex_pc = 0; dex_pc < code_item->insns_size_in_code_units_; dex_pc += inst->SizeInCodeUnits(), inst = inst->Next()) { if (inst->IsBranch()) { dex_pc_is_branch_target.insert(dex_pc + inst->GetTargetOffset()); } else if (inst->IsSwitch()) { const uint16_t* insns = code_item->insns_ + dex_pc; int32_t switch_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16); const uint16_t* switch_insns = insns + switch_offset; uint32_t switch_count = switch_insns[1]; int32_t targets_offset; if ((*insns & 0xff) == Instruction::PACKED_SWITCH) { /* 0=sig, 1=count, 2/3=firstKey */ targets_offset = 4; } else { /* 0=sig, 1=count, 2..count*2 = keys */ targets_offset = 2 + 2 * switch_count; } for (uint32_t targ = 0; targ < switch_count; targ++) { int32_t offset = static_cast<int32_t>(switch_insns[targets_offset + targ * 2]) | static_cast<int32_t>(switch_insns[targets_offset + targ * 2 + 1] << 16); dex_pc_is_branch_target.insert(dex_pc + offset); } } } } // Create nodes for "basic blocks." std::map<uint32_t, uint32_t> dex_pc_to_node_id; // This only has entries for block starts. std::map<uint32_t, uint32_t> dex_pc_to_incl_id; // This has entries for all dex pcs. { const Instruction* inst = Instruction::At(code_item->insns_); bool first_in_block = true; bool force_new_block = false; for (uint32_t dex_pc = 0; dex_pc < code_item->insns_size_in_code_units_; dex_pc += inst->SizeInCodeUnits(), inst = inst->Next()) { if (dex_pc == 0 || (dex_pc_is_branch_target.find(dex_pc) != dex_pc_is_branch_target.end()) || force_new_block) { uint32_t id = dex_pc_to_node_id.size(); if (id > 0) { // End last node. os << "}\"];\n"; } // Start next node. os << " node" << id << " [shape=record,label=\"{"; dex_pc_to_node_id.insert(std::make_pair(dex_pc, id)); first_in_block = true; force_new_block = false; } // Register instruction. dex_pc_to_incl_id.insert(std::make_pair(dex_pc, dex_pc_to_node_id.size() - 1)); // Print instruction. if (!first_in_block) { os << " | "; } else { first_in_block = false; } // Dump the instruction. Need to escape '"', '<', '>', '{' and '}'. os << "<" << "p" << dex_pc << ">"; os << " 0x" << std::hex << dex_pc << std::dec << ": "; std::string inst_str = inst->DumpString(dex_file); size_t cur_start = 0; // It's OK to start at zero, instruction dumps don't start with chars // we need to escape. while (cur_start != std::string::npos) { size_t next_escape = inst_str.find_first_of("\"{}<>", cur_start + 1); if (next_escape == std::string::npos) { os << inst_str.substr(cur_start, inst_str.size() - cur_start); break; } else { os << inst_str.substr(cur_start, next_escape - cur_start); // Escape all necessary characters. while (next_escape < inst_str.size()) { char c = inst_str.at(next_escape); if (c == '"' || c == '{' || c == '}' || c == '<' || c == '>') { os << '\\' << c; } else { break; } next_escape++; } if (next_escape >= inst_str.size()) { next_escape = std::string::npos; } cur_start = next_escape; } } // Force a new block for some fall-throughs and some instructions that terminate the "local" // control flow. force_new_block = inst->IsSwitch() || inst->IsBasicBlockEnd(); } // Close last node. if (dex_pc_to_node_id.size() > 0) { os << "}\"];\n"; } } // Create edges between them. { std::ostringstream regular_edges; std::ostringstream taken_edges; std::ostringstream exception_edges; // Common set of exception edges. std::set<uint32_t> exception_targets; // These blocks (given by the first dex pc) need exception per dex-pc handling in a second // pass. In the first pass we try and see whether we can use a common set of edges. std::set<uint32_t> blocks_with_detailed_exceptions; { uint32_t last_node_id = std::numeric_limits<uint32_t>::max(); uint32_t old_dex_pc = 0; uint32_t block_start_dex_pc = std::numeric_limits<uint32_t>::max(); const Instruction* inst = Instruction::At(code_item->insns_); for (uint32_t dex_pc = 0; dex_pc < code_item->insns_size_in_code_units_; old_dex_pc = dex_pc, dex_pc += inst->SizeInCodeUnits(), inst = inst->Next()) { { auto it = dex_pc_to_node_id.find(dex_pc); if (it != dex_pc_to_node_id.end()) { if (!exception_targets.empty()) { // It seems the last block had common exception handlers. Add the exception edges now. uint32_t node_id = dex_pc_to_node_id.find(block_start_dex_pc)->second; for (uint32_t handler_pc : exception_targets) { auto node_id_it = dex_pc_to_incl_id.find(handler_pc); if (node_id_it != dex_pc_to_incl_id.end()) { exception_edges << " node" << node_id << " -> node" << node_id_it->second << ":p" << handler_pc << ";\n"; } } exception_targets.clear(); } block_start_dex_pc = dex_pc; // Seems to be a fall-through, connect to last_node_id. May be spurious edges for things // like switch data. uint32_t old_last = last_node_id; last_node_id = it->second; if (old_last != std::numeric_limits<uint32_t>::max()) { regular_edges << " node" << old_last << ":p" << old_dex_pc << " -> node" << last_node_id << ":p" << dex_pc << ";\n"; } } // Look at the exceptions of the first entry. CatchHandlerIterator catch_it(*code_item, dex_pc); for (; catch_it.HasNext(); catch_it.Next()) { exception_targets.insert(catch_it.GetHandlerAddress()); } } // Handle instruction. // Branch: something with at most two targets. if (inst->IsBranch()) { const int32_t offset = inst->GetTargetOffset(); const bool conditional = !inst->IsUnconditional(); auto target_it = dex_pc_to_node_id.find(dex_pc + offset); if (target_it != dex_pc_to_node_id.end()) { taken_edges << " node" << last_node_id << ":p" << dex_pc << " -> node" << target_it->second << ":p" << (dex_pc + offset) << ";\n"; } if (!conditional) { // No fall-through. last_node_id = std::numeric_limits<uint32_t>::max(); } } else if (inst->IsSwitch()) { // TODO: Iterate through all switch targets. const uint16_t* insns = code_item->insns_ + dex_pc; /* make sure the start of the switch is in range */ int32_t switch_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16); /* offset to switch table is a relative branch-style offset */ const uint16_t* switch_insns = insns + switch_offset; uint32_t switch_count = switch_insns[1]; int32_t targets_offset; if ((*insns & 0xff) == Instruction::PACKED_SWITCH) { /* 0=sig, 1=count, 2/3=firstKey */ targets_offset = 4; } else { /* 0=sig, 1=count, 2..count*2 = keys */ targets_offset = 2 + 2 * switch_count; } /* make sure the end of the switch is in range */ /* verify each switch target */ for (uint32_t targ = 0; targ < switch_count; targ++) { int32_t offset = static_cast<int32_t>(switch_insns[targets_offset + targ * 2]) | static_cast<int32_t>(switch_insns[targets_offset + targ * 2 + 1] << 16); int32_t abs_offset = dex_pc + offset; auto target_it = dex_pc_to_node_id.find(abs_offset); if (target_it != dex_pc_to_node_id.end()) { // TODO: value label. taken_edges << " node" << last_node_id << ":p" << dex_pc << " -> node" << target_it->second << ":p" << (abs_offset) << ";\n"; } } } // Exception edges. If this is not the first instruction in the block if (block_start_dex_pc != dex_pc) { std::set<uint32_t> current_handler_pcs; CatchHandlerIterator catch_it(*code_item, dex_pc); for (; catch_it.HasNext(); catch_it.Next()) { current_handler_pcs.insert(catch_it.GetHandlerAddress()); } if (current_handler_pcs != exception_targets) { exception_targets.clear(); // Clear so we don't do something at the end. blocks_with_detailed_exceptions.insert(block_start_dex_pc); } } if (inst->IsReturn() || (inst->Opcode() == Instruction::THROW) || (inst->IsBranch() && inst->IsUnconditional())) { // No fall-through. last_node_id = std::numeric_limits<uint32_t>::max(); } } // Finish up the last block, if it had common exceptions. if (!exception_targets.empty()) { // It seems the last block had common exception handlers. Add the exception edges now. uint32_t node_id = dex_pc_to_node_id.find(block_start_dex_pc)->second; for (uint32_t handler_pc : exception_targets) { auto node_id_it = dex_pc_to_incl_id.find(handler_pc); if (node_id_it != dex_pc_to_incl_id.end()) { exception_edges << " node" << node_id << " -> node" << node_id_it->second << ":p" << handler_pc << ";\n"; } } exception_targets.clear(); } } // Second pass for detailed exception blocks. // TODO // Exception edges. If this is not the first instruction in the block for (uint32_t dex_pc : blocks_with_detailed_exceptions) { const Instruction* inst = Instruction::At(&code_item->insns_[dex_pc]); uint32_t this_node_id = dex_pc_to_incl_id.find(dex_pc)->second; while (true) { CatchHandlerIterator catch_it(*code_item, dex_pc); if (catch_it.HasNext()) { std::set<uint32_t> handled_targets; for (; catch_it.HasNext(); catch_it.Next()) { uint32_t handler_pc = catch_it.GetHandlerAddress(); auto it = handled_targets.find(handler_pc); if (it == handled_targets.end()) { auto node_id_it = dex_pc_to_incl_id.find(handler_pc); if (node_id_it != dex_pc_to_incl_id.end()) { exception_edges << " node" << this_node_id << ":p" << dex_pc << " -> node" << node_id_it->second << ":p" << handler_pc << ";\n"; } // Mark as done. handled_targets.insert(handler_pc); } } } if (inst->IsBasicBlockEnd()) { break; } // Loop update. Have a break-out if the next instruction is a branch target and thus in // another block. dex_pc += inst->SizeInCodeUnits(); if (dex_pc >= code_item->insns_size_in_code_units_) { break; } if (dex_pc_to_node_id.find(dex_pc) != dex_pc_to_node_id.end()) { break; } inst = inst->Next(); } } // Write out the sub-graphs to make edges styled. os << "\n"; os << " subgraph regular_edges {\n"; os << " edge [color=\"#000000\",weight=.3,len=3];\n\n"; os << " " << regular_edges.str() << "\n"; os << " }\n\n"; os << " subgraph taken_edges {\n"; os << " edge [color=\"#00FF00\",weight=.3,len=3];\n\n"; os << " " << taken_edges.str() << "\n"; os << " }\n\n"; os << " subgraph exception_edges {\n"; os << " edge [color=\"#FF0000\",weight=.3,len=3];\n\n"; os << " " << exception_edges.str() << "\n"; os << " }\n\n"; } os << "}\n"; } void DumpMethodCFG(ArtMethod* method, std::ostream& os) { const DexFile* dex_file = method->GetDexFile(); const DexFile::CodeItem* code_item = dex_file->GetCodeItem(method->GetCodeItemOffset()); DumpMethodCFGImpl(dex_file, method->GetDexMethodIndex(), code_item, os); } void DumpMethodCFG(const DexFile* dex_file, uint32_t dex_method_idx, std::ostream& os) { // This is painful, we need to find the code item. That means finding the class, and then // iterating the table. if (dex_method_idx >= dex_file->NumMethodIds()) { os << "Could not find method-idx."; return; } const DexFile::MethodId& method_id = dex_file->GetMethodId(dex_method_idx); const DexFile::ClassDef* class_def = dex_file->FindClassDef(method_id.class_idx_); if (class_def == nullptr) { os << "Could not find class-def."; return; } const uint8_t* class_data = dex_file->GetClassData(*class_def); if (class_data == nullptr) { os << "No class data."; return; } ClassDataItemIterator it(*dex_file, class_data); // Skip fields while (it.HasNextStaticField() || it.HasNextInstanceField()) { it.Next(); } // Find method, and dump it. while (it.HasNextDirectMethod() || it.HasNextVirtualMethod()) { uint32_t method_idx = it.GetMemberIndex(); if (method_idx == dex_method_idx) { DumpMethodCFGImpl(dex_file, dex_method_idx, it.GetMethodCodeItem(), os); return; } it.Next(); } // Otherwise complain. os << "Something went wrong, didn't find the method in the class data."; } static void ParseStringAfterChar(const std::string& s, char c, std::string* parsed_value, UsageFn Usage) { std::string::size_type colon = s.find(c); if (colon == std::string::npos) { Usage("Missing char %c in option %s\n", c, s.c_str()); } // Add one to remove the char we were trimming until. *parsed_value = s.substr(colon + 1); } void ParseDouble(const std::string& option, char after_char, double min, double max, double* parsed_value, UsageFn Usage) { std::string substring; ParseStringAfterChar(option, after_char, &substring, Usage); bool sane_val = true; double value; if ((false)) { // TODO: this doesn't seem to work on the emulator. b/15114595 std::stringstream iss(substring); iss >> value; // Ensure that we have a value, there was no cruft after it and it satisfies a sensible range. sane_val = iss.eof() && (value >= min) && (value <= max); } else { char* end = nullptr; value = strtod(substring.c_str(), &end); sane_val = *end == '\0' && value >= min && value <= max; } if (!sane_val) { Usage("Invalid double value %s for option %s\n", substring.c_str(), option.c_str()); } *parsed_value = value; } int64_t GetFileSizeBytes(const std::string& filename) { struct stat stat_buf; int rc = stat(filename.c_str(), &stat_buf); return rc == 0 ? stat_buf.st_size : -1; } void SleepForever() { while (true) { usleep(1000000); } } } // namespace art