/*
 * Copyright (C) 2012 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_RUNTIME_VERIFIER_REGISTER_LINE_H_
#define ART_RUNTIME_VERIFIER_REGISTER_LINE_H_

#include <memory>
#include <vector>

#include "base/scoped_arena_containers.h"
#include "safe_map.h"

namespace art {

class Instruction;

namespace verifier {

class MethodVerifier;
class RegType;

/*
 * Register type categories, for type checking.
 *
 * The spec says category 1 includes boolean, byte, char, short, int, float, reference, and
 * returnAddress. Category 2 includes long and double.
 *
 * We treat object references separately, so we have "category1nr". We don't support jsr/ret, so
 * there is no "returnAddress" type.
 */
enum TypeCategory {
  kTypeCategoryUnknown = 0,
  kTypeCategory1nr = 1,         // boolean, byte, char, short, int, float
  kTypeCategory2 = 2,           // long, double
  kTypeCategoryRef = 3,         // object reference
};

// What to do with the lock levels when setting the register type.
enum class LockOp {
  kClear,                       // Clear the lock levels recorded.
  kKeep                         // Leave the lock levels alone.
};

// During verification, we associate one of these with every "interesting" instruction. We track
// the status of all registers, and (if the method has any monitor-enter instructions) maintain a
// stack of entered monitors (identified by code unit offset).
class RegisterLine {
 public:
  // A map from register to a bit vector of indices into the monitors_ stack.
  using RegToLockDepthsMap = ScopedArenaSafeMap<uint32_t, uint32_t>;

  // Create a register line of num_regs registers.
  static RegisterLine* Create(size_t num_regs, MethodVerifier* verifier);

  // Implement category-1 "move" instructions. Copy a 32-bit value from "vsrc" to "vdst".
  void CopyRegister1(MethodVerifier* verifier, uint32_t vdst, uint32_t vsrc, TypeCategory cat)
      SHARED_REQUIRES(Locks::mutator_lock_);

  // Implement category-2 "move" instructions. Copy a 64-bit value from "vsrc" to "vdst". This
  // copies both halves of the register.
  void CopyRegister2(MethodVerifier* verifier, uint32_t vdst, uint32_t vsrc)
      SHARED_REQUIRES(Locks::mutator_lock_);

  // Implement "move-result". Copy the category-1 value from the result register to another
  // register, and reset the result register.
  void CopyResultRegister1(MethodVerifier* verifier, uint32_t vdst, bool is_reference)
      SHARED_REQUIRES(Locks::mutator_lock_);

  // Implement "move-result-wide". Copy the category-2 value from the result register to another
  // register, and reset the result register.
  void CopyResultRegister2(MethodVerifier* verifier, uint32_t vdst)
      SHARED_REQUIRES(Locks::mutator_lock_);

  // Set the invisible result register to unknown
  void SetResultTypeToUnknown(MethodVerifier* verifier) SHARED_REQUIRES(Locks::mutator_lock_);

  // Set the type of register N, verifying that the register is valid.  If "newType" is the "Lo"
  // part of a 64-bit value, register N+1 will be set to "newType+1".
  // The register index was validated during the static pass, so we don't need to check it here.
  //
  // LockOp::kClear should be used by default; it will clear the lock levels associated with the
  // register. An example is setting the register type because an instruction writes to the
  // register.
  // LockOp::kKeep keeps the lock levels of the register and only changes the register type. This
  // is typical when the underlying value did not change, but we have "different" type information
  // available now. An example is sharpening types after a check-cast. Note that when given kKeep,
  // the new_type is dchecked to be a reference type.
  template <LockOp kLockOp>
  ALWAYS_INLINE bool SetRegisterType(MethodVerifier* verifier,
                                     uint32_t vdst,
                                     const RegType& new_type)
      SHARED_REQUIRES(Locks::mutator_lock_);

  bool SetRegisterTypeWide(MethodVerifier* verifier,
                           uint32_t vdst,
                           const RegType& new_type1,
                           const RegType& new_type2)
      SHARED_REQUIRES(Locks::mutator_lock_);

  /* Set the type of the "result" register. */
  void SetResultRegisterType(MethodVerifier* verifier, const RegType& new_type)
      SHARED_REQUIRES(Locks::mutator_lock_);

  void SetResultRegisterTypeWide(const RegType& new_type1, const RegType& new_type2)
      SHARED_REQUIRES(Locks::mutator_lock_);

  // Get the type of register vsrc.
  const RegType& GetRegisterType(MethodVerifier* verifier, uint32_t vsrc) const;

  ALWAYS_INLINE bool VerifyRegisterType(MethodVerifier* verifier,
                                        uint32_t vsrc,
                                        const RegType& check_type)
      SHARED_REQUIRES(Locks::mutator_lock_);

  bool VerifyRegisterTypeWide(MethodVerifier* verifier,
                              uint32_t vsrc,
                              const RegType& check_type1,
                              const RegType& check_type2)
      SHARED_REQUIRES(Locks::mutator_lock_);

  void CopyFromLine(const RegisterLine* src) {
    DCHECK_EQ(num_regs_, src->num_regs_);
    memcpy(&line_, &src->line_, num_regs_ * sizeof(uint16_t));
    monitors_ = src->monitors_;
    reg_to_lock_depths_ = src->reg_to_lock_depths_;
    this_initialized_ = src->this_initialized_;
  }

  std::string Dump(MethodVerifier* verifier) const SHARED_REQUIRES(Locks::mutator_lock_);

  void FillWithGarbage() {
    memset(&line_, 0xf1, num_regs_ * sizeof(uint16_t));
    monitors_.clear();
    reg_to_lock_depths_.clear();
  }

  /*
   * We're creating a new instance of class C at address A. Any registers holding instances
   * previously created at address A must be initialized by now. If not, we mark them as "conflict"
   * to prevent them from being used (otherwise, MarkRefsAsInitialized would mark the old ones and
   * the new ones at the same time).
   */
  void MarkUninitRefsAsInvalid(MethodVerifier* verifier, const RegType& uninit_type)
      SHARED_REQUIRES(Locks::mutator_lock_);

  /*
   * Update all registers holding "uninit_type" to instead hold the corresponding initialized
   * reference type. This is called when an appropriate constructor is invoked -- all copies of
   * the reference must be marked as initialized.
   */
  void MarkRefsAsInitialized(MethodVerifier* verifier, const RegType& uninit_type)
      SHARED_REQUIRES(Locks::mutator_lock_);

  /*
   * Update all registers to be Conflict except vsrc.
   */
  void MarkAllRegistersAsConflicts(MethodVerifier* verifier);
  void MarkAllRegistersAsConflictsExcept(MethodVerifier* verifier, uint32_t vsrc);
  void MarkAllRegistersAsConflictsExceptWide(MethodVerifier* verifier, uint32_t vsrc);

  void SetThisInitialized() {
    this_initialized_ = true;
  }

  void CopyThisInitialized(const RegisterLine& src) {
    this_initialized_ = src.this_initialized_;
  }

  /*
   * Check constraints on constructor return. Specifically, make sure that the "this" argument got
   * initialized.
   * The "this" argument to <init> uses code offset kUninitThisArgAddr, which puts it at the start
   * of the list in slot 0. If we see a register with an uninitialized slot 0 reference, we know it
   * somehow didn't get initialized.
   */
  bool CheckConstructorReturn(MethodVerifier* verifier) const;

  // Compare two register lines. Returns 0 if they match.
  // Using this for a sort is unwise, since the value can change based on machine endianness.
  int CompareLine(const RegisterLine* line2) const {
    if (monitors_ != line2->monitors_) {
      return 1;
    }
    // TODO: DCHECK(reg_to_lock_depths_ == line2->reg_to_lock_depths_);
    return memcmp(&line_, &line2->line_, num_regs_ * sizeof(uint16_t));
  }

  size_t NumRegs() const {
    return num_regs_;
  }

  // Return how many bytes of memory a register line uses.
  ALWAYS_INLINE static size_t ComputeSize(size_t num_regs);

  /*
   * Get the "this" pointer from a non-static method invocation. This returns the RegType so the
   * caller can decide whether it needs the reference to be initialized or not. (Can also return
   * kRegTypeZero if the reference can only be zero at this point.)
   *
   * The argument count is in vA, and the first argument is in vC, for both "simple" and "range"
   * versions. We just need to make sure vA is >= 1 and then return vC.
   * allow_failure will return Conflict() instead of causing a verification failure if there is an
   * error.
   */
  const RegType& GetInvocationThis(MethodVerifier* verifier,
                                   const Instruction* inst,
                                   bool is_range,
                                   bool allow_failure = false)
      SHARED_REQUIRES(Locks::mutator_lock_);

  /*
   * Verify types for a simple two-register instruction (e.g. "neg-int").
   * "dst_type" is stored into vA, and "src_type" is verified against vB.
   */
  void CheckUnaryOp(MethodVerifier* verifier,
                    const Instruction* inst,
                    const RegType& dst_type,
                    const RegType& src_type)
      SHARED_REQUIRES(Locks::mutator_lock_);

  void CheckUnaryOpWide(MethodVerifier* verifier,
                        const Instruction* inst,
                        const RegType& dst_type1,
                        const RegType& dst_type2,
                        const RegType& src_type1,
                        const RegType& src_type2)
      SHARED_REQUIRES(Locks::mutator_lock_);

  void CheckUnaryOpToWide(MethodVerifier* verifier,
                          const Instruction* inst,
                          const RegType& dst_type1,
                          const RegType& dst_type2,
                          const RegType& src_type)
      SHARED_REQUIRES(Locks::mutator_lock_);

  void CheckUnaryOpFromWide(MethodVerifier* verifier,
                            const Instruction* inst,
                            const RegType& dst_type,
                            const RegType& src_type1,
                            const RegType& src_type2)
      SHARED_REQUIRES(Locks::mutator_lock_);

  /*
   * Verify types for a simple three-register instruction (e.g. "add-int").
   * "dst_type" is stored into vA, and "src_type1"/"src_type2" are verified
   * against vB/vC.
   */
  void CheckBinaryOp(MethodVerifier* verifier,
                     const Instruction* inst,
                     const RegType& dst_type,
                     const RegType& src_type1,
                     const RegType& src_type2,
                     bool check_boolean_op)
      SHARED_REQUIRES(Locks::mutator_lock_);

  void CheckBinaryOpWide(MethodVerifier* verifier,
                         const Instruction* inst,
                         const RegType& dst_type1,
                         const RegType& dst_type2,
                         const RegType& src_type1_1,
                         const RegType& src_type1_2,
                         const RegType& src_type2_1,
                         const RegType& src_type2_2)
      SHARED_REQUIRES(Locks::mutator_lock_);

  void CheckBinaryOpWideShift(MethodVerifier* verifier,
                              const Instruction* inst,
                              const RegType& long_lo_type,
                              const RegType& long_hi_type,
                              const RegType& int_type)
      SHARED_REQUIRES(Locks::mutator_lock_);

  /*
   * Verify types for a binary "2addr" operation. "src_type1"/"src_type2"
   * are verified against vA/vB, then "dst_type" is stored into vA.
   */
  void CheckBinaryOp2addr(MethodVerifier* verifier,
                          const Instruction* inst,
                          const RegType& dst_type,
                          const RegType& src_type1,
                          const RegType& src_type2,
                          bool check_boolean_op)
      SHARED_REQUIRES(Locks::mutator_lock_);

  void CheckBinaryOp2addrWide(MethodVerifier* verifier,
                              const Instruction* inst,
                              const RegType& dst_type1,
                              const RegType& dst_type2,
                              const RegType& src_type1_1,
                              const RegType& src_type1_2,
                              const RegType& src_type2_1,
                              const RegType& src_type2_2)
      SHARED_REQUIRES(Locks::mutator_lock_);

  void CheckBinaryOp2addrWideShift(MethodVerifier* verifier,
                                   const Instruction* inst,
                                   const RegType& long_lo_type,
                                   const RegType& long_hi_type,
                                   const RegType& int_type)
      SHARED_REQUIRES(Locks::mutator_lock_);

  /*
   * Verify types for A two-register instruction with a literal constant (e.g. "add-int/lit8").
   * "dst_type" is stored into vA, and "src_type" is verified against vB.
   *
   * If "check_boolean_op" is set, we use the constant value in vC.
   */
  void CheckLiteralOp(MethodVerifier* verifier,
                      const Instruction* inst,
                      const RegType& dst_type,
                      const RegType& src_type,
                      bool check_boolean_op,
                      bool is_lit16)
      SHARED_REQUIRES(Locks::mutator_lock_);

  // Verify/push monitor onto the monitor stack, locking the value in reg_idx at location insn_idx.
  void PushMonitor(MethodVerifier* verifier, uint32_t reg_idx, int32_t insn_idx)
      SHARED_REQUIRES(Locks::mutator_lock_);

  // Verify/pop monitor from monitor stack ensuring that we believe the monitor is locked
  void PopMonitor(MethodVerifier* verifier, uint32_t reg_idx)
      SHARED_REQUIRES(Locks::mutator_lock_);

  // Stack of currently held monitors and where they were locked
  size_t MonitorStackDepth() const {
    return monitors_.size();
  }

  // We expect no monitors to be held at certain points, such a method returns. Verify the stack
  // is empty, queueing a LOCKING error else.
  void VerifyMonitorStackEmpty(MethodVerifier* verifier) const;

  bool MergeRegisters(MethodVerifier* verifier, const RegisterLine* incoming_line)
      SHARED_REQUIRES(Locks::mutator_lock_);

  size_t GetMonitorEnterCount() const {
    return monitors_.size();
  }

  uint32_t GetMonitorEnterDexPc(size_t i) const {
    return monitors_[i];
  }

 private:
  void CopyRegToLockDepth(size_t dst, size_t src) {
    auto it = reg_to_lock_depths_.find(src);
    if (it != reg_to_lock_depths_.end()) {
      reg_to_lock_depths_.Put(dst, it->second);
    }
  }

  bool IsSetLockDepth(size_t reg, size_t depth) {
    auto it = reg_to_lock_depths_.find(reg);
    if (it != reg_to_lock_depths_.end()) {
      return (it->second & (1 << depth)) != 0;
    } else {
      return false;
    }
  }

  bool SetRegToLockDepth(size_t reg, size_t depth) {
    CHECK_LT(depth, 32u);
    if (IsSetLockDepth(reg, depth)) {
      return false;  // Register already holds lock so locking twice is erroneous.
    }
    auto it = reg_to_lock_depths_.find(reg);
    if (it == reg_to_lock_depths_.end()) {
      reg_to_lock_depths_.Put(reg, 1 << depth);
    } else {
      it->second |= (1 << depth);
    }
    return true;
  }

  void ClearRegToLockDepth(size_t reg, size_t depth) {
    CHECK_LT(depth, 32u);
    DCHECK(IsSetLockDepth(reg, depth));
    auto it = reg_to_lock_depths_.find(reg);
    DCHECK(it != reg_to_lock_depths_.end());
    uint32_t depths = it->second ^ (1 << depth);
    if (depths != 0) {
      it->second = depths;
    } else {
      reg_to_lock_depths_.erase(it);
    }
    // Need to unlock every register at the same lock depth. These are aliased locks.
    uint32_t mask = 1 << depth;
    for (auto& pair : reg_to_lock_depths_) {
      if ((pair.second & mask) != 0) {
        VLOG(verifier) << "Also unlocking " << pair.first;
        pair.second ^= mask;
      }
    }
  }

  void ClearAllRegToLockDepths(size_t reg) {
    reg_to_lock_depths_.erase(reg);
  }

  RegisterLine(size_t num_regs, MethodVerifier* verifier);

  // Storage for the result register's type, valid after an invocation.
  uint16_t result_[2];

  // Length of reg_types_
  const uint32_t num_regs_;

  // A stack of monitor enter locations.
  ScopedArenaVector<uint32_t> monitors_;

  // A map from register to a bit vector of indices into the monitors_ stack. As we pop the monitor
  // stack we verify that monitor-enter/exit are correctly nested. That is, if there was a
  // monitor-enter on v5 and then on v6, we expect the monitor-exit to be on v6 then on v5.
  RegToLockDepthsMap reg_to_lock_depths_;

  // Whether "this" initialization (a constructor supercall) has happened.
  bool this_initialized_;

  // An array of RegType Ids associated with each dex register.
  uint16_t line_[1];

  DISALLOW_COPY_AND_ASSIGN(RegisterLine);
};

class RegisterLineArenaDelete : public ArenaDelete<RegisterLine> {
 public:
  void operator()(RegisterLine* ptr) const;
};

}  // namespace verifier
}  // namespace art

#endif  // ART_RUNTIME_VERIFIER_REGISTER_LINE_H_