/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <ctype.h> #include <errno.h> #include <stdarg.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/mount.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #include <fcntl.h> #include <time.h> #include <selinux/selinux.h> #include <ftw.h> #include <sys/capability.h> #include <sys/xattr.h> #include <linux/xattr.h> #include <inttypes.h> #include <memory> #include <vector> #include <android-base/parseint.h> #include <android-base/strings.h> #include <android-base/stringprintf.h> #include "bootloader.h" #include "applypatch/applypatch.h" #include "cutils/android_reboot.h" #include "cutils/misc.h" #include "cutils/properties.h" #include "edify/expr.h" #include "error_code.h" #include "minzip/DirUtil.h" #include "mtdutils/mounts.h" #include "mtdutils/mtdutils.h" #include "openssl/sha.h" #include "ota_io.h" #include "updater.h" #include "install.h" #include "tune2fs.h" #ifdef USE_EXT4 #include "make_ext4fs.h" #include "wipe.h" #endif // Send over the buffer to recovery though the command pipe. static void uiPrint(State* state, const std::string& buffer) { UpdaterInfo* ui = reinterpret_cast<UpdaterInfo*>(state->cookie); // "line1\nline2\n" will be split into 3 tokens: "line1", "line2" and "". // So skip sending empty strings to UI. std::vector<std::string> lines = android::base::Split(buffer, "\n"); for (auto& line: lines) { if (!line.empty()) { fprintf(ui->cmd_pipe, "ui_print %s\n", line.c_str()); fprintf(ui->cmd_pipe, "ui_print\n"); } } // On the updater side, we need to dump the contents to stderr (which has // been redirected to the log file). Because the recovery will only print // the contents to screen when processing pipe command ui_print. fprintf(stderr, "%s", buffer.c_str()); } __attribute__((__format__(printf, 2, 3))) __nonnull((2)) void uiPrintf(State* state, const char* format, ...) { std::string error_msg; va_list ap; va_start(ap, format); android::base::StringAppendV(&error_msg, format, ap); va_end(ap); uiPrint(state, error_msg); } // Take a sha-1 digest and return it as a newly-allocated hex string. char* PrintSha1(const uint8_t* digest) { char* buffer = reinterpret_cast<char*>(malloc(SHA_DIGEST_LENGTH*2 + 1)); const char* alphabet = "0123456789abcdef"; size_t i; for (i = 0; i < SHA_DIGEST_LENGTH; ++i) { buffer[i*2] = alphabet[(digest[i] >> 4) & 0xf]; buffer[i*2+1] = alphabet[digest[i] & 0xf]; } buffer[i*2] = '\0'; return buffer; } // mount(fs_type, partition_type, location, mount_point) // // fs_type="yaffs2" partition_type="MTD" location=partition // fs_type="ext4" partition_type="EMMC" location=device Value* MountFn(const char* name, State* state, int argc, Expr* argv[]) { char* result = NULL; if (argc != 4 && argc != 5) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 4-5 args, got %d", name, argc); } char* fs_type; char* partition_type; char* location; char* mount_point; char* mount_options; bool has_mount_options; if (argc == 5) { has_mount_options = true; if (ReadArgs(state, argv, 5, &fs_type, &partition_type, &location, &mount_point, &mount_options) < 0) { return NULL; } } else { has_mount_options = false; if (ReadArgs(state, argv, 4, &fs_type, &partition_type, &location, &mount_point) < 0) { return NULL; } } if (strlen(fs_type) == 0) { ErrorAbort(state, kArgsParsingFailure, "fs_type argument to %s() can't be empty", name); goto done; } if (strlen(partition_type) == 0) { ErrorAbort(state, kArgsParsingFailure, "partition_type argument to %s() can't be empty", name); goto done; } if (strlen(location) == 0) { ErrorAbort(state, kArgsParsingFailure, "location argument to %s() can't be empty", name); goto done; } if (strlen(mount_point) == 0) { ErrorAbort(state, kArgsParsingFailure, "mount_point argument to %s() can't be empty", name); goto done; } { char *secontext = NULL; if (sehandle) { selabel_lookup(sehandle, &secontext, mount_point, 0755); setfscreatecon(secontext); } mkdir(mount_point, 0755); if (secontext) { freecon(secontext); setfscreatecon(NULL); } } if (strcmp(partition_type, "MTD") == 0) { mtd_scan_partitions(); const MtdPartition* mtd; mtd = mtd_find_partition_by_name(location); if (mtd == NULL) { uiPrintf(state, "%s: no mtd partition named \"%s\"\n", name, location); result = strdup(""); goto done; } if (mtd_mount_partition(mtd, mount_point, fs_type, 0 /* rw */) != 0) { uiPrintf(state, "mtd mount of %s failed: %s\n", location, strerror(errno)); result = strdup(""); goto done; } result = mount_point; } else { if (mount(location, mount_point, fs_type, MS_NOATIME | MS_NODEV | MS_NODIRATIME, has_mount_options ? mount_options : "") < 0) { uiPrintf(state, "%s: failed to mount %s at %s: %s\n", name, location, mount_point, strerror(errno)); result = strdup(""); } else { result = mount_point; } } done: free(fs_type); free(partition_type); free(location); if (result != mount_point) free(mount_point); if (has_mount_options) free(mount_options); return StringValue(result); } // is_mounted(mount_point) Value* IsMountedFn(const char* name, State* state, int argc, Expr* argv[]) { char* result = NULL; if (argc != 1) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %d", name, argc); } char* mount_point; if (ReadArgs(state, argv, 1, &mount_point) < 0) { return NULL; } if (strlen(mount_point) == 0) { ErrorAbort(state, kArgsParsingFailure, "mount_point argument to unmount() can't be empty"); goto done; } scan_mounted_volumes(); { const MountedVolume* vol = find_mounted_volume_by_mount_point(mount_point); if (vol == NULL) { result = strdup(""); } else { result = mount_point; } } done: if (result != mount_point) free(mount_point); return StringValue(result); } Value* UnmountFn(const char* name, State* state, int argc, Expr* argv[]) { char* result = NULL; if (argc != 1) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %d", name, argc); } char* mount_point; if (ReadArgs(state, argv, 1, &mount_point) < 0) { return NULL; } if (strlen(mount_point) == 0) { ErrorAbort(state, kArgsParsingFailure, "mount_point argument to unmount() can't be empty"); goto done; } scan_mounted_volumes(); { const MountedVolume* vol = find_mounted_volume_by_mount_point(mount_point); if (vol == NULL) { uiPrintf(state, "unmount of %s failed; no such volume\n", mount_point); result = strdup(""); } else { int ret = unmount_mounted_volume(vol); if (ret != 0) { uiPrintf(state, "unmount of %s failed (%d): %s\n", mount_point, ret, strerror(errno)); } result = mount_point; } } done: if (result != mount_point) free(mount_point); return StringValue(result); } static int exec_cmd(const char* path, char* const argv[]) { int status; pid_t child; if ((child = vfork()) == 0) { execv(path, argv); _exit(-1); } waitpid(child, &status, 0); if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) { printf("%s failed with status %d\n", path, WEXITSTATUS(status)); } return WEXITSTATUS(status); } // format(fs_type, partition_type, location, fs_size, mount_point) // // fs_type="yaffs2" partition_type="MTD" location=partition fs_size=<bytes> mount_point=<location> // fs_type="ext4" partition_type="EMMC" location=device fs_size=<bytes> mount_point=<location> // fs_type="f2fs" partition_type="EMMC" location=device fs_size=<bytes> mount_point=<location> // if fs_size == 0, then make fs uses the entire partition. // if fs_size > 0, that is the size to use // if fs_size < 0, then reserve that many bytes at the end of the partition (not for "f2fs") Value* FormatFn(const char* name, State* state, int argc, Expr* argv[]) { char* result = NULL; if (argc != 5) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 5 args, got %d", name, argc); } char* fs_type; char* partition_type; char* location; char* fs_size; char* mount_point; if (ReadArgs(state, argv, 5, &fs_type, &partition_type, &location, &fs_size, &mount_point) < 0) { return NULL; } if (strlen(fs_type) == 0) { ErrorAbort(state, kArgsParsingFailure, "fs_type argument to %s() can't be empty", name); goto done; } if (strlen(partition_type) == 0) { ErrorAbort(state, kArgsParsingFailure, "partition_type argument to %s() can't be empty", name); goto done; } if (strlen(location) == 0) { ErrorAbort(state, kArgsParsingFailure, "location argument to %s() can't be empty", name); goto done; } if (strlen(mount_point) == 0) { ErrorAbort(state, kArgsParsingFailure, "mount_point argument to %s() can't be empty", name); goto done; } if (strcmp(partition_type, "MTD") == 0) { mtd_scan_partitions(); const MtdPartition* mtd = mtd_find_partition_by_name(location); if (mtd == NULL) { printf("%s: no mtd partition named \"%s\"", name, location); result = strdup(""); goto done; } MtdWriteContext* ctx = mtd_write_partition(mtd); if (ctx == NULL) { printf("%s: can't write \"%s\"", name, location); result = strdup(""); goto done; } if (mtd_erase_blocks(ctx, -1) == -1) { mtd_write_close(ctx); printf("%s: failed to erase \"%s\"", name, location); result = strdup(""); goto done; } if (mtd_write_close(ctx) != 0) { printf("%s: failed to close \"%s\"", name, location); result = strdup(""); goto done; } result = location; #ifdef USE_EXT4 } else if (strcmp(fs_type, "ext4") == 0) { int status = make_ext4fs(location, atoll(fs_size), mount_point, sehandle); if (status != 0) { printf("%s: make_ext4fs failed (%d) on %s", name, status, location); result = strdup(""); goto done; } result = location; } else if (strcmp(fs_type, "f2fs") == 0) { char *num_sectors; if (asprintf(&num_sectors, "%lld", atoll(fs_size) / 512) <= 0) { printf("format_volume: failed to create %s command for %s\n", fs_type, location); result = strdup(""); goto done; } const char *f2fs_path = "/sbin/mkfs.f2fs"; const char* const f2fs_argv[] = {"mkfs.f2fs", "-t", "-d1", location, num_sectors, NULL}; int status = exec_cmd(f2fs_path, (char* const*)f2fs_argv); free(num_sectors); if (status != 0) { printf("%s: mkfs.f2fs failed (%d) on %s", name, status, location); result = strdup(""); goto done; } result = location; #endif } else { printf("%s: unsupported fs_type \"%s\" partition_type \"%s\"", name, fs_type, partition_type); } done: free(fs_type); free(partition_type); if (result != location) free(location); return StringValue(result); } Value* RenameFn(const char* name, State* state, int argc, Expr* argv[]) { char* result = NULL; if (argc != 2) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %d", name, argc); } char* src_name; char* dst_name; if (ReadArgs(state, argv, 2, &src_name, &dst_name) < 0) { return NULL; } if (strlen(src_name) == 0) { ErrorAbort(state, kArgsParsingFailure, "src_name argument to %s() can't be empty", name); goto done; } if (strlen(dst_name) == 0) { ErrorAbort(state, kArgsParsingFailure, "dst_name argument to %s() can't be empty", name); goto done; } if (make_parents(dst_name) != 0) { ErrorAbort(state, kFileRenameFailure, "Creating parent of %s failed, error %s", dst_name, strerror(errno)); } else if (access(dst_name, F_OK) == 0 && access(src_name, F_OK) != 0) { // File was already moved result = dst_name; } else if (rename(src_name, dst_name) != 0) { ErrorAbort(state, kFileRenameFailure, "Rename of %s to %s failed, error %s", src_name, dst_name, strerror(errno)); } else { result = dst_name; } done: free(src_name); if (result != dst_name) free(dst_name); return StringValue(result); } Value* DeleteFn(const char* name, State* state, int argc, Expr* argv[]) { char** paths = reinterpret_cast<char**>(malloc(argc * sizeof(char*))); for (int i = 0; i < argc; ++i) { paths[i] = Evaluate(state, argv[i]); if (paths[i] == NULL) { for (int j = 0; j < i; ++j) { free(paths[j]); } free(paths); return NULL; } } bool recursive = (strcmp(name, "delete_recursive") == 0); int success = 0; for (int i = 0; i < argc; ++i) { if ((recursive ? dirUnlinkHierarchy(paths[i]) : unlink(paths[i])) == 0) ++success; free(paths[i]); } free(paths); char buffer[10]; sprintf(buffer, "%d", success); return StringValue(strdup(buffer)); } Value* ShowProgressFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc != 2) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %d", name, argc); } char* frac_str; char* sec_str; if (ReadArgs(state, argv, 2, &frac_str, &sec_str) < 0) { return NULL; } double frac = strtod(frac_str, NULL); int sec; android::base::ParseInt(sec_str, &sec); UpdaterInfo* ui = (UpdaterInfo*)(state->cookie); fprintf(ui->cmd_pipe, "progress %f %d\n", frac, sec); free(sec_str); return StringValue(frac_str); } Value* SetProgressFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc != 1) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %d", name, argc); } char* frac_str; if (ReadArgs(state, argv, 1, &frac_str) < 0) { return NULL; } double frac = strtod(frac_str, NULL); UpdaterInfo* ui = (UpdaterInfo*)(state->cookie); fprintf(ui->cmd_pipe, "set_progress %f\n", frac); return StringValue(frac_str); } // package_extract_dir(package_path, destination_path) Value* PackageExtractDirFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc != 2) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %d", name, argc); } char* zip_path; char* dest_path; if (ReadArgs(state, argv, 2, &zip_path, &dest_path) < 0) return NULL; ZipArchive* za = ((UpdaterInfo*)(state->cookie))->package_zip; // To create a consistent system image, never use the clock for timestamps. struct utimbuf timestamp = { 1217592000, 1217592000 }; // 8/1/2008 default bool success = mzExtractRecursive(za, zip_path, dest_path, ×tamp, NULL, NULL, sehandle); free(zip_path); free(dest_path); return StringValue(strdup(success ? "t" : "")); } // package_extract_file(package_path, destination_path) // or // package_extract_file(package_path) // to return the entire contents of the file as the result of this // function (the char* returned is actually a FileContents*). Value* PackageExtractFileFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc < 1 || argc > 2) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 or 2 args, got %d", name, argc); } bool success = false; if (argc == 2) { // The two-argument version extracts to a file. ZipArchive* za = ((UpdaterInfo*)(state->cookie))->package_zip; char* zip_path; char* dest_path; if (ReadArgs(state, argv, 2, &zip_path, &dest_path) < 0) return NULL; const ZipEntry* entry = mzFindZipEntry(za, zip_path); if (entry == NULL) { printf("%s: no %s in package\n", name, zip_path); goto done2; } { int fd = TEMP_FAILURE_RETRY(ota_open(dest_path, O_WRONLY | O_CREAT | O_TRUNC | O_SYNC, S_IRUSR | S_IWUSR)); if (fd == -1) { printf("%s: can't open %s for write: %s\n", name, dest_path, strerror(errno)); goto done2; } success = mzExtractZipEntryToFile(za, entry, fd); if (ota_fsync(fd) == -1) { printf("fsync of \"%s\" failed: %s\n", dest_path, strerror(errno)); success = false; } if (ota_close(fd) == -1) { printf("close of \"%s\" failed: %s\n", dest_path, strerror(errno)); success = false; } } done2: free(zip_path); free(dest_path); return StringValue(strdup(success ? "t" : "")); } else { // The one-argument version returns the contents of the file // as the result. char* zip_path; if (ReadArgs(state, argv, 1, &zip_path) < 0) return NULL; Value* v = reinterpret_cast<Value*>(malloc(sizeof(Value))); v->type = VAL_BLOB; v->size = -1; v->data = NULL; ZipArchive* za = ((UpdaterInfo*)(state->cookie))->package_zip; const ZipEntry* entry = mzFindZipEntry(za, zip_path); if (entry == NULL) { printf("%s: no %s in package\n", name, zip_path); goto done1; } v->size = mzGetZipEntryUncompLen(entry); v->data = reinterpret_cast<char*>(malloc(v->size)); if (v->data == NULL) { printf("%s: failed to allocate %ld bytes for %s\n", name, (long)v->size, zip_path); goto done1; } success = mzExtractZipEntryToBuffer(za, entry, (unsigned char *)v->data); done1: free(zip_path); if (!success) { free(v->data); v->data = NULL; v->size = -1; } return v; } } // Create all parent directories of name, if necessary. static int make_parents(char* name) { char* p; for (p = name + (strlen(name)-1); p > name; --p) { if (*p != '/') continue; *p = '\0'; if (make_parents(name) < 0) return -1; int result = mkdir(name, 0700); if (result == 0) printf("created [%s]\n", name); *p = '/'; if (result == 0 || errno == EEXIST) { // successfully created or already existed; we're done return 0; } else { printf("failed to mkdir %s: %s\n", name, strerror(errno)); return -1; } } return 0; } // symlink target src1 src2 ... // unlinks any previously existing src1, src2, etc before creating symlinks. Value* SymlinkFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc == 0) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1+ args, got %d", name, argc); } char* target; target = Evaluate(state, argv[0]); if (target == NULL) return NULL; char** srcs = ReadVarArgs(state, argc-1, argv+1); if (srcs == NULL) { free(target); return NULL; } int bad = 0; int i; for (i = 0; i < argc-1; ++i) { if (unlink(srcs[i]) < 0) { if (errno != ENOENT) { printf("%s: failed to remove %s: %s\n", name, srcs[i], strerror(errno)); ++bad; } } if (make_parents(srcs[i])) { printf("%s: failed to symlink %s to %s: making parents failed\n", name, srcs[i], target); ++bad; } if (symlink(target, srcs[i]) < 0) { printf("%s: failed to symlink %s to %s: %s\n", name, srcs[i], target, strerror(errno)); ++bad; } free(srcs[i]); } free(srcs); if (bad) { return ErrorAbort(state, kSymlinkFailure, "%s: some symlinks failed", name); } return StringValue(strdup("")); } struct perm_parsed_args { bool has_uid; uid_t uid; bool has_gid; gid_t gid; bool has_mode; mode_t mode; bool has_fmode; mode_t fmode; bool has_dmode; mode_t dmode; bool has_selabel; char* selabel; bool has_capabilities; uint64_t capabilities; }; static struct perm_parsed_args ParsePermArgs(State * state, int argc, char** args) { int i; struct perm_parsed_args parsed; int bad = 0; static int max_warnings = 20; memset(&parsed, 0, sizeof(parsed)); for (i = 1; i < argc; i += 2) { if (strcmp("uid", args[i]) == 0) { int64_t uid; if (sscanf(args[i+1], "%" SCNd64, &uid) == 1) { parsed.uid = uid; parsed.has_uid = true; } else { uiPrintf(state, "ParsePermArgs: invalid UID \"%s\"\n", args[i + 1]); bad++; } continue; } if (strcmp("gid", args[i]) == 0) { int64_t gid; if (sscanf(args[i+1], "%" SCNd64, &gid) == 1) { parsed.gid = gid; parsed.has_gid = true; } else { uiPrintf(state, "ParsePermArgs: invalid GID \"%s\"\n", args[i + 1]); bad++; } continue; } if (strcmp("mode", args[i]) == 0) { int32_t mode; if (sscanf(args[i+1], "%" SCNi32, &mode) == 1) { parsed.mode = mode; parsed.has_mode = true; } else { uiPrintf(state, "ParsePermArgs: invalid mode \"%s\"\n", args[i + 1]); bad++; } continue; } if (strcmp("dmode", args[i]) == 0) { int32_t mode; if (sscanf(args[i+1], "%" SCNi32, &mode) == 1) { parsed.dmode = mode; parsed.has_dmode = true; } else { uiPrintf(state, "ParsePermArgs: invalid dmode \"%s\"\n", args[i + 1]); bad++; } continue; } if (strcmp("fmode", args[i]) == 0) { int32_t mode; if (sscanf(args[i+1], "%" SCNi32, &mode) == 1) { parsed.fmode = mode; parsed.has_fmode = true; } else { uiPrintf(state, "ParsePermArgs: invalid fmode \"%s\"\n", args[i + 1]); bad++; } continue; } if (strcmp("capabilities", args[i]) == 0) { int64_t capabilities; if (sscanf(args[i+1], "%" SCNi64, &capabilities) == 1) { parsed.capabilities = capabilities; parsed.has_capabilities = true; } else { uiPrintf(state, "ParsePermArgs: invalid capabilities \"%s\"\n", args[i + 1]); bad++; } continue; } if (strcmp("selabel", args[i]) == 0) { if (args[i+1][0] != '\0') { parsed.selabel = args[i+1]; parsed.has_selabel = true; } else { uiPrintf(state, "ParsePermArgs: invalid selabel \"%s\"\n", args[i + 1]); bad++; } continue; } if (max_warnings != 0) { printf("ParsedPermArgs: unknown key \"%s\", ignoring\n", args[i]); max_warnings--; if (max_warnings == 0) { printf("ParsedPermArgs: suppressing further warnings\n"); } } } return parsed; } static int ApplyParsedPerms( State * state, const char* filename, const struct stat *statptr, struct perm_parsed_args parsed) { int bad = 0; if (parsed.has_selabel) { if (lsetfilecon(filename, parsed.selabel) != 0) { uiPrintf(state, "ApplyParsedPerms: lsetfilecon of %s to %s failed: %s\n", filename, parsed.selabel, strerror(errno)); bad++; } } /* ignore symlinks */ if (S_ISLNK(statptr->st_mode)) { return bad; } if (parsed.has_uid) { if (chown(filename, parsed.uid, -1) < 0) { uiPrintf(state, "ApplyParsedPerms: chown of %s to %d failed: %s\n", filename, parsed.uid, strerror(errno)); bad++; } } if (parsed.has_gid) { if (chown(filename, -1, parsed.gid) < 0) { uiPrintf(state, "ApplyParsedPerms: chgrp of %s to %d failed: %s\n", filename, parsed.gid, strerror(errno)); bad++; } } if (parsed.has_mode) { if (chmod(filename, parsed.mode) < 0) { uiPrintf(state, "ApplyParsedPerms: chmod of %s to %d failed: %s\n", filename, parsed.mode, strerror(errno)); bad++; } } if (parsed.has_dmode && S_ISDIR(statptr->st_mode)) { if (chmod(filename, parsed.dmode) < 0) { uiPrintf(state, "ApplyParsedPerms: chmod of %s to %d failed: %s\n", filename, parsed.dmode, strerror(errno)); bad++; } } if (parsed.has_fmode && S_ISREG(statptr->st_mode)) { if (chmod(filename, parsed.fmode) < 0) { uiPrintf(state, "ApplyParsedPerms: chmod of %s to %d failed: %s\n", filename, parsed.fmode, strerror(errno)); bad++; } } if (parsed.has_capabilities && S_ISREG(statptr->st_mode)) { if (parsed.capabilities == 0) { if ((removexattr(filename, XATTR_NAME_CAPS) == -1) && (errno != ENODATA)) { // Report failure unless it's ENODATA (attribute not set) uiPrintf(state, "ApplyParsedPerms: removexattr of %s to %" PRIx64 " failed: %s\n", filename, parsed.capabilities, strerror(errno)); bad++; } } else { struct vfs_cap_data cap_data; memset(&cap_data, 0, sizeof(cap_data)); cap_data.magic_etc = VFS_CAP_REVISION | VFS_CAP_FLAGS_EFFECTIVE; cap_data.data[0].permitted = (uint32_t) (parsed.capabilities & 0xffffffff); cap_data.data[0].inheritable = 0; cap_data.data[1].permitted = (uint32_t) (parsed.capabilities >> 32); cap_data.data[1].inheritable = 0; if (setxattr(filename, XATTR_NAME_CAPS, &cap_data, sizeof(cap_data), 0) < 0) { uiPrintf(state, "ApplyParsedPerms: setcap of %s to %" PRIx64 " failed: %s\n", filename, parsed.capabilities, strerror(errno)); bad++; } } } return bad; } // nftw doesn't allow us to pass along context, so we need to use // global variables. *sigh* static struct perm_parsed_args recursive_parsed_args; static State* recursive_state; static int do_SetMetadataRecursive(const char* filename, const struct stat *statptr, int fileflags, struct FTW *pfwt) { return ApplyParsedPerms(recursive_state, filename, statptr, recursive_parsed_args); } static Value* SetMetadataFn(const char* name, State* state, int argc, Expr* argv[]) { int bad = 0; struct stat sb; Value* result = NULL; bool recursive = (strcmp(name, "set_metadata_recursive") == 0); if ((argc % 2) != 1) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects an odd number of arguments, got %d", name, argc); } char** args = ReadVarArgs(state, argc, argv); if (args == NULL) return NULL; if (lstat(args[0], &sb) == -1) { result = ErrorAbort(state, kSetMetadataFailure, "%s: Error on lstat of \"%s\": %s", name, args[0], strerror(errno)); goto done; } { struct perm_parsed_args parsed = ParsePermArgs(state, argc, args); if (recursive) { recursive_parsed_args = parsed; recursive_state = state; bad += nftw(args[0], do_SetMetadataRecursive, 30, FTW_CHDIR | FTW_DEPTH | FTW_PHYS); memset(&recursive_parsed_args, 0, sizeof(recursive_parsed_args)); recursive_state = NULL; } else { bad += ApplyParsedPerms(state, args[0], &sb, parsed); } } done: for (int i = 0; i < argc; ++i) { free(args[i]); } free(args); if (result != NULL) { return result; } if (bad > 0) { return ErrorAbort(state, kSetMetadataFailure, "%s: some changes failed", name); } return StringValue(strdup("")); } Value* GetPropFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc != 1) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %d", name, argc); } char* key = Evaluate(state, argv[0]); if (key == NULL) return NULL; char value[PROPERTY_VALUE_MAX]; property_get(key, value, ""); free(key); return StringValue(strdup(value)); } // file_getprop(file, key) // // interprets 'file' as a getprop-style file (key=value pairs, one // per line. # comment lines,blank lines, lines without '=' ignored), // and returns the value for 'key' (or "" if it isn't defined). Value* FileGetPropFn(const char* name, State* state, int argc, Expr* argv[]) { char* result = NULL; char* buffer = NULL; char* filename; char* key; if (ReadArgs(state, argv, 2, &filename, &key) < 0) { return NULL; } struct stat st; if (stat(filename, &st) < 0) { ErrorAbort(state, kFileGetPropFailure, "%s: failed to stat \"%s\": %s", name, filename, strerror(errno)); goto done; } #define MAX_FILE_GETPROP_SIZE 65536 if (st.st_size > MAX_FILE_GETPROP_SIZE) { ErrorAbort(state, kFileGetPropFailure, "%s too large for %s (max %d)", filename, name, MAX_FILE_GETPROP_SIZE); goto done; } buffer = reinterpret_cast<char*>(malloc(st.st_size+1)); if (buffer == NULL) { ErrorAbort(state, kFileGetPropFailure, "%s: failed to alloc %lld bytes", name, (long long)st.st_size+1); goto done; } FILE* f; f = fopen(filename, "rb"); if (f == NULL) { ErrorAbort(state, kFileOpenFailure, "%s: failed to open %s: %s", name, filename, strerror(errno)); goto done; } if (ota_fread(buffer, 1, st.st_size, f) != static_cast<size_t>(st.st_size)) { ErrorAbort(state, kFreadFailure, "%s: failed to read %lld bytes from %s", name, (long long)st.st_size+1, filename); fclose(f); goto done; } buffer[st.st_size] = '\0'; fclose(f); char* line; line = strtok(buffer, "\n"); do { // skip whitespace at start of line while (*line && isspace(*line)) ++line; // comment or blank line: skip to next line if (*line == '\0' || *line == '#') continue; char* equal = strchr(line, '='); if (equal == NULL) { continue; } // trim whitespace between key and '=' char* key_end = equal-1; while (key_end > line && isspace(*key_end)) --key_end; key_end[1] = '\0'; // not the key we're looking for if (strcmp(key, line) != 0) continue; // skip whitespace after the '=' to the start of the value char* val_start = equal+1; while(*val_start && isspace(*val_start)) ++val_start; // trim trailing whitespace char* val_end = val_start + strlen(val_start)-1; while (val_end > val_start && isspace(*val_end)) --val_end; val_end[1] = '\0'; result = strdup(val_start); break; } while ((line = strtok(NULL, "\n"))); if (result == NULL) result = strdup(""); done: free(filename); free(key); free(buffer); return StringValue(result); } // write_raw_image(filename_or_blob, partition) Value* WriteRawImageFn(const char* name, State* state, int argc, Expr* argv[]) { char* result = NULL; Value* partition_value; Value* contents; if (ReadValueArgs(state, argv, 2, &contents, &partition_value) < 0) { return NULL; } char* partition = NULL; if (partition_value->type != VAL_STRING) { ErrorAbort(state, kArgsParsingFailure, "partition argument to %s must be string", name); goto done; } partition = partition_value->data; if (strlen(partition) == 0) { ErrorAbort(state, kArgsParsingFailure, "partition argument to %s can't be empty", name); goto done; } if (contents->type == VAL_STRING && strlen((char*) contents->data) == 0) { ErrorAbort(state, kArgsParsingFailure, "file argument to %s can't be empty", name); goto done; } mtd_scan_partitions(); const MtdPartition* mtd; mtd = mtd_find_partition_by_name(partition); if (mtd == NULL) { printf("%s: no mtd partition named \"%s\"\n", name, partition); result = strdup(""); goto done; } MtdWriteContext* ctx; ctx = mtd_write_partition(mtd); if (ctx == NULL) { printf("%s: can't write mtd partition \"%s\"\n", name, partition); result = strdup(""); goto done; } bool success; if (contents->type == VAL_STRING) { // we're given a filename as the contents char* filename = contents->data; FILE* f = ota_fopen(filename, "rb"); if (f == NULL) { printf("%s: can't open %s: %s\n", name, filename, strerror(errno)); result = strdup(""); goto done; } success = true; char* buffer = reinterpret_cast<char*>(malloc(BUFSIZ)); int read; while (success && (read = ota_fread(buffer, 1, BUFSIZ, f)) > 0) { int wrote = mtd_write_data(ctx, buffer, read); success = success && (wrote == read); } free(buffer); ota_fclose(f); } else { // we're given a blob as the contents ssize_t wrote = mtd_write_data(ctx, contents->data, contents->size); success = (wrote == contents->size); } if (!success) { printf("mtd_write_data to %s failed: %s\n", partition, strerror(errno)); } if (mtd_erase_blocks(ctx, -1) == -1) { printf("%s: error erasing blocks of %s\n", name, partition); } if (mtd_write_close(ctx) != 0) { printf("%s: error closing write of %s\n", name, partition); } printf("%s %s partition\n", success ? "wrote" : "failed to write", partition); result = success ? partition : strdup(""); done: if (result != partition) FreeValue(partition_value); FreeValue(contents); return StringValue(result); } // apply_patch_space(bytes) Value* ApplyPatchSpaceFn(const char* name, State* state, int argc, Expr* argv[]) { char* bytes_str; if (ReadArgs(state, argv, 1, &bytes_str) < 0) { return NULL; } size_t bytes; if (!android::base::ParseUint(bytes_str, &bytes)) { ErrorAbort(state, kArgsParsingFailure, "%s(): can't parse \"%s\" as byte count\n\n", name, bytes_str); free(bytes_str); return nullptr; } return StringValue(strdup(CacheSizeCheck(bytes) ? "" : "t")); } // apply_patch(file, size, init_sha1, tgt_sha1, patch) Value* ApplyPatchFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc < 6 || (argc % 2) == 1) { return ErrorAbort(state, kArgsParsingFailure, "%s(): expected at least 6 args and an " "even number, got %d", name, argc); } char* source_filename; char* target_filename; char* target_sha1; char* target_size_str; if (ReadArgs(state, argv, 4, &source_filename, &target_filename, &target_sha1, &target_size_str) < 0) { return NULL; } size_t target_size; if (!android::base::ParseUint(target_size_str, &target_size)) { ErrorAbort(state, kArgsParsingFailure, "%s(): can't parse \"%s\" as byte count", name, target_size_str); free(source_filename); free(target_filename); free(target_sha1); free(target_size_str); return nullptr; } int patchcount = (argc-4) / 2; std::unique_ptr<Value*, decltype(&free)> arg_values(ReadValueVarArgs(state, argc-4, argv+4), free); if (!arg_values) { return nullptr; } std::vector<std::unique_ptr<Value, decltype(&FreeValue)>> patch_shas; std::vector<std::unique_ptr<Value, decltype(&FreeValue)>> patches; // Protect values by unique_ptrs first to get rid of memory leak. for (int i = 0; i < patchcount * 2; i += 2) { patch_shas.emplace_back(arg_values.get()[i], FreeValue); patches.emplace_back(arg_values.get()[i+1], FreeValue); } for (int i = 0; i < patchcount; ++i) { if (patch_shas[i]->type != VAL_STRING) { ErrorAbort(state, kArgsParsingFailure, "%s(): sha-1 #%d is not string", name, i); return nullptr; } if (patches[i]->type != VAL_BLOB) { ErrorAbort(state, kArgsParsingFailure, "%s(): patch #%d is not blob", name, i); return nullptr; } } std::vector<char*> patch_sha_str; std::vector<Value*> patch_ptrs; for (int i = 0; i < patchcount; ++i) { patch_sha_str.push_back(patch_shas[i]->data); patch_ptrs.push_back(patches[i].get()); } int result = applypatch(source_filename, target_filename, target_sha1, target_size, patchcount, patch_sha_str.data(), patch_ptrs.data(), NULL); return StringValue(strdup(result == 0 ? "t" : "")); } // apply_patch_check(file, [sha1_1, ...]) Value* ApplyPatchCheckFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc < 1) { return ErrorAbort(state, kArgsParsingFailure, "%s(): expected at least 1 arg, got %d", name, argc); } char* filename; if (ReadArgs(state, argv, 1, &filename) < 0) { return NULL; } int patchcount = argc-1; char** sha1s = ReadVarArgs(state, argc-1, argv+1); int result = applypatch_check(filename, patchcount, sha1s); int i; for (i = 0; i < patchcount; ++i) { free(sha1s[i]); } free(sha1s); return StringValue(strdup(result == 0 ? "t" : "")); } // This is the updater side handler for ui_print() in edify script. Contents // will be sent over to the recovery side for on-screen display. Value* UIPrintFn(const char* name, State* state, int argc, Expr* argv[]) { char** args = ReadVarArgs(state, argc, argv); if (args == NULL) { return NULL; } std::string buffer; for (int i = 0; i < argc; ++i) { buffer += args[i]; free(args[i]); } free(args); buffer += "\n"; uiPrint(state, buffer); return StringValue(strdup(buffer.c_str())); } Value* WipeCacheFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc != 0) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects no args, got %d", name, argc); } fprintf(((UpdaterInfo*)(state->cookie))->cmd_pipe, "wipe_cache\n"); return StringValue(strdup("t")); } Value* RunProgramFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc < 1) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects at least 1 arg", name); } char** args = ReadVarArgs(state, argc, argv); if (args == NULL) { return NULL; } char** args2 = reinterpret_cast<char**>(malloc(sizeof(char*) * (argc+1))); memcpy(args2, args, sizeof(char*) * argc); args2[argc] = NULL; printf("about to run program [%s] with %d args\n", args2[0], argc); pid_t child = fork(); if (child == 0) { execv(args2[0], args2); printf("run_program: execv failed: %s\n", strerror(errno)); _exit(1); } int status; waitpid(child, &status, 0); if (WIFEXITED(status)) { if (WEXITSTATUS(status) != 0) { printf("run_program: child exited with status %d\n", WEXITSTATUS(status)); } } else if (WIFSIGNALED(status)) { printf("run_program: child terminated by signal %d\n", WTERMSIG(status)); } int i; for (i = 0; i < argc; ++i) { free(args[i]); } free(args); free(args2); char buffer[20]; sprintf(buffer, "%d", status); return StringValue(strdup(buffer)); } // sha1_check(data) // to return the sha1 of the data (given in the format returned by // read_file). // // sha1_check(data, sha1_hex, [sha1_hex, ...]) // returns the sha1 of the file if it matches any of the hex // strings passed, or "" if it does not equal any of them. // Value* Sha1CheckFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc < 1) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects at least 1 arg", name); } std::unique_ptr<Value*, decltype(&free)> arg_values(ReadValueVarArgs(state, argc, argv), free); if (arg_values == nullptr) { return nullptr; } std::vector<std::unique_ptr<Value, decltype(&FreeValue)>> args; for (int i = 0; i < argc; ++i) { args.emplace_back(arg_values.get()[i], FreeValue); } if (args[0]->size < 0) { return StringValue(strdup("")); } uint8_t digest[SHA_DIGEST_LENGTH]; SHA1(reinterpret_cast<uint8_t*>(args[0]->data), args[0]->size, digest); if (argc == 1) { return StringValue(PrintSha1(digest)); } int i; uint8_t arg_digest[SHA_DIGEST_LENGTH]; for (i = 1; i < argc; ++i) { if (args[i]->type != VAL_STRING) { printf("%s(): arg %d is not a string; skipping", name, i); } else if (ParseSha1(args[i]->data, arg_digest) != 0) { // Warn about bad args and skip them. printf("%s(): error parsing \"%s\" as sha-1; skipping", name, args[i]->data); } else if (memcmp(digest, arg_digest, SHA_DIGEST_LENGTH) == 0) { break; } } if (i >= argc) { // Didn't match any of the hex strings; return false. return StringValue(strdup("")); } // Found a match. return args[i].release(); } // Read a local file and return its contents (the Value* returned // is actually a FileContents*). Value* ReadFileFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc != 1) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %d", name, argc); } char* filename; if (ReadArgs(state, argv, 1, &filename) < 0) return NULL; Value* v = static_cast<Value*>(malloc(sizeof(Value))); if (v == nullptr) { return nullptr; } v->type = VAL_BLOB; v->size = -1; v->data = nullptr; FileContents fc; if (LoadFileContents(filename, &fc) != 0) { v->data = static_cast<char*>(malloc(fc.data.size())); if (v->data != nullptr) { memcpy(v->data, fc.data.data(), fc.data.size()); v->size = fc.data.size(); } } free(filename); return v; } // Immediately reboot the device. Recovery is not finished normally, // so if you reboot into recovery it will re-start applying the // current package (because nothing has cleared the copy of the // arguments stored in the BCB). // // The argument is the partition name passed to the android reboot // property. It can be "recovery" to boot from the recovery // partition, or "" (empty string) to boot from the regular boot // partition. Value* RebootNowFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc != 2) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %d", name, argc); } char* filename; char* property; if (ReadArgs(state, argv, 2, &filename, &property) < 0) return NULL; char buffer[80]; // zero out the 'command' field of the bootloader message. memset(buffer, 0, sizeof(((struct bootloader_message*)0)->command)); FILE* f = fopen(filename, "r+b"); fseek(f, offsetof(struct bootloader_message, command), SEEK_SET); ota_fwrite(buffer, sizeof(((struct bootloader_message*)0)->command), 1, f); fclose(f); free(filename); strcpy(buffer, "reboot,"); if (property != NULL) { strncat(buffer, property, sizeof(buffer)-10); } property_set(ANDROID_RB_PROPERTY, buffer); sleep(5); free(property); ErrorAbort(state, kRebootFailure, "%s() failed to reboot", name); return NULL; } // Store a string value somewhere that future invocations of recovery // can access it. This value is called the "stage" and can be used to // drive packages that need to do reboots in the middle of // installation and keep track of where they are in the multi-stage // install. // // The first argument is the block device for the misc partition // ("/misc" in the fstab), which is where this value is stored. The // second argument is the string to store; it should not exceed 31 // bytes. Value* SetStageFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc != 2) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %d", name, argc); } char* filename; char* stagestr; if (ReadArgs(state, argv, 2, &filename, &stagestr) < 0) return NULL; // Store this value in the misc partition, immediately after the // bootloader message that the main recovery uses to save its // arguments in case of the device restarting midway through // package installation. FILE* f = fopen(filename, "r+b"); fseek(f, offsetof(struct bootloader_message, stage), SEEK_SET); int to_write = strlen(stagestr)+1; int max_size = sizeof(((struct bootloader_message*)0)->stage); if (to_write > max_size) { to_write = max_size; stagestr[max_size-1] = 0; } ota_fwrite(stagestr, to_write, 1, f); fclose(f); free(stagestr); return StringValue(filename); } // Return the value most recently saved with SetStageFn. The argument // is the block device for the misc partition. Value* GetStageFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc != 1) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %d", name, argc); } char* filename; if (ReadArgs(state, argv, 1, &filename) < 0) return NULL; char buffer[sizeof(((struct bootloader_message*)0)->stage)]; FILE* f = fopen(filename, "rb"); fseek(f, offsetof(struct bootloader_message, stage), SEEK_SET); ota_fread(buffer, sizeof(buffer), 1, f); fclose(f); buffer[sizeof(buffer)-1] = '\0'; return StringValue(strdup(buffer)); } Value* WipeBlockDeviceFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc != 2) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %d", name, argc); } char* filename; char* len_str; if (ReadArgs(state, argv, 2, &filename, &len_str) < 0) return NULL; size_t len; android::base::ParseUint(len_str, &len); int fd = ota_open(filename, O_WRONLY, 0644); int success = wipe_block_device(fd, len); free(filename); free(len_str); ota_close(fd); return StringValue(strdup(success ? "t" : "")); } Value* EnableRebootFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc != 0) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects no args, got %d", name, argc); } UpdaterInfo* ui = (UpdaterInfo*)(state->cookie); fprintf(ui->cmd_pipe, "enable_reboot\n"); return StringValue(strdup("t")); } Value* Tune2FsFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc == 0) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects args, got %d", name, argc); } char** args = ReadVarArgs(state, argc, argv); if (args == NULL) { return ErrorAbort(state, kArgsParsingFailure, "%s() could not read args", name); } char** args2 = reinterpret_cast<char**>(malloc(sizeof(char*) * (argc+1))); // Tune2fs expects the program name as its args[0] args2[0] = strdup(name); for (int i = 0; i < argc; ++i) { args2[i + 1] = args[i]; } int result = tune2fs_main(argc + 1, args2); for (int i = 0; i < argc; ++i) { free(args[i]); } free(args); free(args2[0]); free(args2); if (result != 0) { return ErrorAbort(state, kTune2FsFailure, "%s() returned error code %d", name, result); } return StringValue(strdup("t")); } void RegisterInstallFunctions() { RegisterFunction("mount", MountFn); RegisterFunction("is_mounted", IsMountedFn); RegisterFunction("unmount", UnmountFn); RegisterFunction("format", FormatFn); RegisterFunction("show_progress", ShowProgressFn); RegisterFunction("set_progress", SetProgressFn); RegisterFunction("delete", DeleteFn); RegisterFunction("delete_recursive", DeleteFn); RegisterFunction("package_extract_dir", PackageExtractDirFn); RegisterFunction("package_extract_file", PackageExtractFileFn); RegisterFunction("symlink", SymlinkFn); // Usage: // set_metadata("filename", "key1", "value1", "key2", "value2", ...) // Example: // set_metadata("/system/bin/netcfg", "uid", 0, "gid", 3003, "mode", 02750, "selabel", "u:object_r:system_file:s0", "capabilities", 0x0); RegisterFunction("set_metadata", SetMetadataFn); // Usage: // set_metadata_recursive("dirname", "key1", "value1", "key2", "value2", ...) // Example: // set_metadata_recursive("/system", "uid", 0, "gid", 0, "fmode", 0644, "dmode", 0755, "selabel", "u:object_r:system_file:s0", "capabilities", 0x0); RegisterFunction("set_metadata_recursive", SetMetadataFn); RegisterFunction("getprop", GetPropFn); RegisterFunction("file_getprop", FileGetPropFn); RegisterFunction("write_raw_image", WriteRawImageFn); RegisterFunction("apply_patch", ApplyPatchFn); RegisterFunction("apply_patch_check", ApplyPatchCheckFn); RegisterFunction("apply_patch_space", ApplyPatchSpaceFn); RegisterFunction("wipe_block_device", WipeBlockDeviceFn); RegisterFunction("read_file", ReadFileFn); RegisterFunction("sha1_check", Sha1CheckFn); RegisterFunction("rename", RenameFn); RegisterFunction("wipe_cache", WipeCacheFn); RegisterFunction("ui_print", UIPrintFn); RegisterFunction("run_program", RunProgramFn); RegisterFunction("reboot_now", RebootNowFn); RegisterFunction("get_stage", GetStageFn); RegisterFunction("set_stage", SetStageFn); RegisterFunction("enable_reboot", EnableRebootFn); RegisterFunction("tune2fs", Tune2FsFn); }