/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <errno.h> #include <malloc.h> #include <stdio.h> #include <string.h> #include <algorithm> #include <memory> #include <openssl/ecdsa.h> #include <openssl/obj_mac.h> #include "asn1_decoder.h" #include "common.h" #include "print_sha1.h" #include "ui.h" #include "verifier.h" extern RecoveryUI* ui; static constexpr size_t MiB = 1024 * 1024; /* * Simple version of PKCS#7 SignedData extraction. This extracts the * signature OCTET STRING to be used for signature verification. * * For full details, see http://www.ietf.org/rfc/rfc3852.txt * * The PKCS#7 structure looks like: * * SEQUENCE (ContentInfo) * OID (ContentType) * [0] (content) * SEQUENCE (SignedData) * INTEGER (version CMSVersion) * SET (DigestAlgorithmIdentifiers) * SEQUENCE (EncapsulatedContentInfo) * [0] (CertificateSet OPTIONAL) * [1] (RevocationInfoChoices OPTIONAL) * SET (SignerInfos) * SEQUENCE (SignerInfo) * INTEGER (CMSVersion) * SEQUENCE (SignerIdentifier) * SEQUENCE (DigestAlgorithmIdentifier) * SEQUENCE (SignatureAlgorithmIdentifier) * OCTET STRING (SignatureValue) */ static bool read_pkcs7(uint8_t* pkcs7_der, size_t pkcs7_der_len, uint8_t** sig_der, size_t* sig_der_length) { asn1_context_t* ctx = asn1_context_new(pkcs7_der, pkcs7_der_len); if (ctx == NULL) { return false; } asn1_context_t* pkcs7_seq = asn1_sequence_get(ctx); if (pkcs7_seq != NULL && asn1_sequence_next(pkcs7_seq)) { asn1_context_t *signed_data_app = asn1_constructed_get(pkcs7_seq); if (signed_data_app != NULL) { asn1_context_t* signed_data_seq = asn1_sequence_get(signed_data_app); if (signed_data_seq != NULL && asn1_sequence_next(signed_data_seq) && asn1_sequence_next(signed_data_seq) && asn1_sequence_next(signed_data_seq) && asn1_constructed_skip_all(signed_data_seq)) { asn1_context_t *sig_set = asn1_set_get(signed_data_seq); if (sig_set != NULL) { asn1_context_t* sig_seq = asn1_sequence_get(sig_set); if (sig_seq != NULL && asn1_sequence_next(sig_seq) && asn1_sequence_next(sig_seq) && asn1_sequence_next(sig_seq) && asn1_sequence_next(sig_seq)) { uint8_t* sig_der_ptr; if (asn1_octet_string_get(sig_seq, &sig_der_ptr, sig_der_length)) { *sig_der = (uint8_t*) malloc(*sig_der_length); if (*sig_der != NULL) { memcpy(*sig_der, sig_der_ptr, *sig_der_length); } } asn1_context_free(sig_seq); } asn1_context_free(sig_set); } asn1_context_free(signed_data_seq); } asn1_context_free(signed_data_app); } asn1_context_free(pkcs7_seq); } asn1_context_free(ctx); return *sig_der != NULL; } // Look for an RSA signature embedded in the .ZIP file comment given // the path to the zip. Verify it matches one of the given public // keys. // // Return VERIFY_SUCCESS, VERIFY_FAILURE (if any error is encountered // or no key matches the signature). int verify_file(unsigned char* addr, size_t length, const std::vector<Certificate>& keys) { ui->SetProgress(0.0); // An archive with a whole-file signature will end in six bytes: // // (2-byte signature start) $ff $ff (2-byte comment size) // // (As far as the ZIP format is concerned, these are part of the // archive comment.) We start by reading this footer, this tells // us how far back from the end we have to start reading to find // the whole comment. #define FOOTER_SIZE 6 if (length < FOOTER_SIZE) { LOGE("not big enough to contain footer\n"); return VERIFY_FAILURE; } unsigned char* footer = addr + length - FOOTER_SIZE; if (footer[2] != 0xff || footer[3] != 0xff) { LOGE("footer is wrong\n"); return VERIFY_FAILURE; } size_t comment_size = footer[4] + (footer[5] << 8); size_t signature_start = footer[0] + (footer[1] << 8); LOGI("comment is %zu bytes; signature %zu bytes from end\n", comment_size, signature_start); if (signature_start > comment_size) { LOGE("signature start: %zu is larger than comment size: %zu\n", signature_start, comment_size); return VERIFY_FAILURE; } if (signature_start <= FOOTER_SIZE) { LOGE("Signature start is in the footer"); return VERIFY_FAILURE; } #define EOCD_HEADER_SIZE 22 // The end-of-central-directory record is 22 bytes plus any // comment length. size_t eocd_size = comment_size + EOCD_HEADER_SIZE; if (length < eocd_size) { LOGE("not big enough to contain EOCD\n"); return VERIFY_FAILURE; } // Determine how much of the file is covered by the signature. // This is everything except the signature data and length, which // includes all of the EOCD except for the comment length field (2 // bytes) and the comment data. size_t signed_len = length - eocd_size + EOCD_HEADER_SIZE - 2; unsigned char* eocd = addr + length - eocd_size; // If this is really is the EOCD record, it will begin with the // magic number $50 $4b $05 $06. if (eocd[0] != 0x50 || eocd[1] != 0x4b || eocd[2] != 0x05 || eocd[3] != 0x06) { LOGE("signature length doesn't match EOCD marker\n"); return VERIFY_FAILURE; } for (size_t i = 4; i < eocd_size-3; ++i) { if (eocd[i ] == 0x50 && eocd[i+1] == 0x4b && eocd[i+2] == 0x05 && eocd[i+3] == 0x06) { // if the sequence $50 $4b $05 $06 appears anywhere after // the real one, minzip will find the later (wrong) one, // which could be exploitable. Fail verification if // this sequence occurs anywhere after the real one. LOGE("EOCD marker occurs after start of EOCD\n"); return VERIFY_FAILURE; } } bool need_sha1 = false; bool need_sha256 = false; for (const auto& key : keys) { switch (key.hash_len) { case SHA_DIGEST_LENGTH: need_sha1 = true; break; case SHA256_DIGEST_LENGTH: need_sha256 = true; break; } } SHA_CTX sha1_ctx; SHA256_CTX sha256_ctx; SHA1_Init(&sha1_ctx); SHA256_Init(&sha256_ctx); double frac = -1.0; size_t so_far = 0; while (so_far < signed_len) { // On a Nexus 5X, experiment showed 16MiB beat 1MiB by 6% faster for a // 1196MiB full OTA and 60% for an 89MiB incremental OTA. // http://b/28135231. size_t size = std::min(signed_len - so_far, 16 * MiB); if (need_sha1) SHA1_Update(&sha1_ctx, addr + so_far, size); if (need_sha256) SHA256_Update(&sha256_ctx, addr + so_far, size); so_far += size; double f = so_far / (double)signed_len; if (f > frac + 0.02 || size == so_far) { ui->SetProgress(f); frac = f; } } uint8_t sha1[SHA_DIGEST_LENGTH]; SHA1_Final(sha1, &sha1_ctx); uint8_t sha256[SHA256_DIGEST_LENGTH]; SHA256_Final(sha256, &sha256_ctx); uint8_t* sig_der = nullptr; size_t sig_der_length = 0; uint8_t* signature = eocd + eocd_size - signature_start; size_t signature_size = signature_start - FOOTER_SIZE; LOGI("signature (offset: 0x%zx, length: %zu): %s\n", length - signature_start, signature_size, print_hex(signature, signature_size).c_str()); if (!read_pkcs7(signature, signature_size, &sig_der, &sig_der_length)) { LOGE("Could not find signature DER block\n"); return VERIFY_FAILURE; } /* * Check to make sure at least one of the keys matches the signature. Since * any key can match, we need to try each before determining a verification * failure has happened. */ size_t i = 0; for (const auto& key : keys) { const uint8_t* hash; int hash_nid; switch (key.hash_len) { case SHA_DIGEST_LENGTH: hash = sha1; hash_nid = NID_sha1; break; case SHA256_DIGEST_LENGTH: hash = sha256; hash_nid = NID_sha256; break; default: continue; } // The 6 bytes is the "(signature_start) $ff $ff (comment_size)" that // the signing tool appends after the signature itself. if (key.key_type == Certificate::KEY_TYPE_RSA) { if (!RSA_verify(hash_nid, hash, key.hash_len, sig_der, sig_der_length, key.rsa.get())) { LOGI("failed to verify against RSA key %zu\n", i); continue; } LOGI("whole-file signature verified against RSA key %zu\n", i); free(sig_der); return VERIFY_SUCCESS; } else if (key.key_type == Certificate::KEY_TYPE_EC && key.hash_len == SHA256_DIGEST_LENGTH) { if (!ECDSA_verify(0, hash, key.hash_len, sig_der, sig_der_length, key.ec.get())) { LOGI("failed to verify against EC key %zu\n", i); continue; } LOGI("whole-file signature verified against EC key %zu\n", i); free(sig_der); return VERIFY_SUCCESS; } else { LOGI("Unknown key type %d\n", key.key_type); } i++; } if (need_sha1) { LOGI("SHA-1 digest: %s\n", print_hex(sha1, SHA_DIGEST_LENGTH).c_str()); } if (need_sha256) { LOGI("SHA-256 digest: %s\n", print_hex(sha256, SHA256_DIGEST_LENGTH).c_str()); } free(sig_der); LOGE("failed to verify whole-file signature\n"); return VERIFY_FAILURE; } std::unique_ptr<RSA, RSADeleter> parse_rsa_key(FILE* file, uint32_t exponent) { // Read key length in words and n0inv. n0inv is a precomputed montgomery // parameter derived from the modulus and can be used to speed up // verification. n0inv is 32 bits wide here, assuming the verification logic // uses 32 bit arithmetic. However, BoringSSL may use a word size of 64 bits // internally, in which case we don't have a valid n0inv. Thus, we just // ignore the montgomery parameters and have BoringSSL recompute them // internally. If/When the speedup from using the montgomery parameters // becomes relevant, we can add more sophisticated code here to obtain a // 64-bit n0inv and initialize the montgomery parameters in the key object. uint32_t key_len_words = 0; uint32_t n0inv = 0; if (fscanf(file, " %i , 0x%x", &key_len_words, &n0inv) != 2) { return nullptr; } if (key_len_words > 8192 / 32) { LOGE("key length (%d) too large\n", key_len_words); return nullptr; } // Read the modulus. std::unique_ptr<uint32_t[]> modulus(new uint32_t[key_len_words]); if (fscanf(file, " , { %u", &modulus[0]) != 1) { return nullptr; } for (uint32_t i = 1; i < key_len_words; ++i) { if (fscanf(file, " , %u", &modulus[i]) != 1) { return nullptr; } } // Cconvert from little-endian array of little-endian words to big-endian // byte array suitable as input for BN_bin2bn. std::reverse((uint8_t*)modulus.get(), (uint8_t*)(modulus.get() + key_len_words)); // The next sequence of values is the montgomery parameter R^2. Since we // generally don't have a valid |n0inv|, we ignore this (see comment above). uint32_t rr_value; if (fscanf(file, " } , { %u", &rr_value) != 1) { return nullptr; } for (uint32_t i = 1; i < key_len_words; ++i) { if (fscanf(file, " , %u", &rr_value) != 1) { return nullptr; } } if (fscanf(file, " } } ") != 0) { return nullptr; } // Initialize the key. std::unique_ptr<RSA, RSADeleter> key(RSA_new()); if (!key) { return nullptr; } key->n = BN_bin2bn((uint8_t*)modulus.get(), key_len_words * sizeof(uint32_t), NULL); if (!key->n) { return nullptr; } key->e = BN_new(); if (!key->e || !BN_set_word(key->e, exponent)) { return nullptr; } return key; } struct BNDeleter { void operator()(BIGNUM* bn) { BN_free(bn); } }; std::unique_ptr<EC_KEY, ECKEYDeleter> parse_ec_key(FILE* file) { uint32_t key_len_bytes = 0; if (fscanf(file, " %i", &key_len_bytes) != 1) { return nullptr; } std::unique_ptr<EC_GROUP, void (*)(EC_GROUP*)> group( EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1), EC_GROUP_free); if (!group) { return nullptr; } // Verify that |key_len| matches the group order. if (key_len_bytes != BN_num_bytes(EC_GROUP_get0_order(group.get()))) { return nullptr; } // Read the public key coordinates. Note that the byte order in the file is // little-endian, so we convert to big-endian here. std::unique_ptr<uint8_t[]> bytes(new uint8_t[key_len_bytes]); std::unique_ptr<BIGNUM, BNDeleter> point[2]; for (int i = 0; i < 2; ++i) { unsigned int byte = 0; if (fscanf(file, " , { %u", &byte) != 1) { return nullptr; } bytes[key_len_bytes - 1] = byte; for (size_t i = 1; i < key_len_bytes; ++i) { if (fscanf(file, " , %u", &byte) != 1) { return nullptr; } bytes[key_len_bytes - i - 1] = byte; } point[i].reset(BN_bin2bn(bytes.get(), key_len_bytes, nullptr)); if (!point[i]) { return nullptr; } if (fscanf(file, " }") != 0) { return nullptr; } } if (fscanf(file, " } ") != 0) { return nullptr; } // Create and initialize the key. std::unique_ptr<EC_KEY, ECKEYDeleter> key(EC_KEY_new()); if (!key || !EC_KEY_set_group(key.get(), group.get()) || !EC_KEY_set_public_key_affine_coordinates(key.get(), point[0].get(), point[1].get())) { return nullptr; } return key; } // Reads a file containing one or more public keys as produced by // DumpPublicKey: this is an RSAPublicKey struct as it would appear // as a C source literal, eg: // // "{64,0xc926ad21,{1795090719,...,-695002876},{-857949815,...,1175080310}}" // // For key versions newer than the original 2048-bit e=3 keys // supported by Android, the string is preceded by a version // identifier, eg: // // "v2 {64,0xc926ad21,{1795090719,...,-695002876},{-857949815,...,1175080310}}" // // (Note that the braces and commas in this example are actual // characters the parser expects to find in the file; the ellipses // indicate more numbers omitted from this example.) // // The file may contain multiple keys in this format, separated by // commas. The last key must not be followed by a comma. // // A Certificate is a pair of an RSAPublicKey and a particular hash // (we support SHA-1 and SHA-256; we store the hash length to signify // which is being used). The hash used is implied by the version number. // // 1: 2048-bit RSA key with e=3 and SHA-1 hash // 2: 2048-bit RSA key with e=65537 and SHA-1 hash // 3: 2048-bit RSA key with e=3 and SHA-256 hash // 4: 2048-bit RSA key with e=65537 and SHA-256 hash // 5: 256-bit EC key using the NIST P-256 curve parameters and SHA-256 hash // // Returns true on success, and appends the found keys (at least one) to certs. // Otherwise returns false if the file failed to parse, or if it contains zero // keys. The contents in certs would be unspecified on failure. bool load_keys(const char* filename, std::vector<Certificate>& certs) { std::unique_ptr<FILE, decltype(&fclose)> f(fopen(filename, "r"), fclose); if (!f) { LOGE("opening %s: %s\n", filename, strerror(errno)); return false; } while (true) { certs.emplace_back(0, Certificate::KEY_TYPE_RSA, nullptr, nullptr); Certificate& cert = certs.back(); uint32_t exponent = 0; char start_char; if (fscanf(f.get(), " %c", &start_char) != 1) return false; if (start_char == '{') { // a version 1 key has no version specifier. cert.key_type = Certificate::KEY_TYPE_RSA; exponent = 3; cert.hash_len = SHA_DIGEST_LENGTH; } else if (start_char == 'v') { int version; if (fscanf(f.get(), "%d {", &version) != 1) return false; switch (version) { case 2: cert.key_type = Certificate::KEY_TYPE_RSA; exponent = 65537; cert.hash_len = SHA_DIGEST_LENGTH; break; case 3: cert.key_type = Certificate::KEY_TYPE_RSA; exponent = 3; cert.hash_len = SHA256_DIGEST_LENGTH; break; case 4: cert.key_type = Certificate::KEY_TYPE_RSA; exponent = 65537; cert.hash_len = SHA256_DIGEST_LENGTH; break; case 5: cert.key_type = Certificate::KEY_TYPE_EC; cert.hash_len = SHA256_DIGEST_LENGTH; break; default: return false; } } if (cert.key_type == Certificate::KEY_TYPE_RSA) { cert.rsa = parse_rsa_key(f.get(), exponent); if (!cert.rsa) { return false; } LOGI("read key e=%d hash=%d\n", exponent, cert.hash_len); } else if (cert.key_type == Certificate::KEY_TYPE_EC) { cert.ec = parse_ec_key(f.get()); if (!cert.ec) { return false; } } else { LOGE("Unknown key type %d\n", cert.key_type); return false; } // if the line ends in a comma, this file has more keys. int ch = fgetc(f.get()); if (ch == ',') { // more keys to come. continue; } else if (ch == EOF) { break; } else { LOGE("unexpected character between keys\n"); return false; } } return true; }