//===--- ASTMatchFinder.cpp - Structural query framework ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Implements an algorithm to efficiently search for matches on AST nodes. // Uses memoization to support recursive matches like HasDescendant. // // The general idea is to visit all AST nodes with a RecursiveASTVisitor, // calling the Matches(...) method of each matcher we are running on each // AST node. The matcher can recurse via the ASTMatchFinder interface. // //===----------------------------------------------------------------------===// #include "clang/ASTMatchers/ASTMatchFinder.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/RecursiveASTVisitor.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/StringMap.h" #include "llvm/Support/Timer.h" #include <deque> #include <memory> #include <set> namespace clang { namespace ast_matchers { namespace internal { namespace { typedef MatchFinder::MatchCallback MatchCallback; // The maximum number of memoization entries to store. // 10k has been experimentally found to give a good trade-off // of performance vs. memory consumption by running matcher // that match on every statement over a very large codebase. // // FIXME: Do some performance optimization in general and // revisit this number; also, put up micro-benchmarks that we can // optimize this on. static const unsigned MaxMemoizationEntries = 10000; // We use memoization to avoid running the same matcher on the same // AST node twice. This struct is the key for looking up match // result. It consists of an ID of the MatcherInterface (for // identifying the matcher), a pointer to the AST node and the // bound nodes before the matcher was executed. // // We currently only memoize on nodes whose pointers identify the // nodes (\c Stmt and \c Decl, but not \c QualType or \c TypeLoc). // For \c QualType and \c TypeLoc it is possible to implement // generation of keys for each type. // FIXME: Benchmark whether memoization of non-pointer typed nodes // provides enough benefit for the additional amount of code. struct MatchKey { DynTypedMatcher::MatcherIDType MatcherID; ast_type_traits::DynTypedNode Node; BoundNodesTreeBuilder BoundNodes; bool operator<(const MatchKey &Other) const { return std::tie(MatcherID, Node, BoundNodes) < std::tie(Other.MatcherID, Other.Node, Other.BoundNodes); } }; // Used to store the result of a match and possibly bound nodes. struct MemoizedMatchResult { bool ResultOfMatch; BoundNodesTreeBuilder Nodes; }; // A RecursiveASTVisitor that traverses all children or all descendants of // a node. class MatchChildASTVisitor : public RecursiveASTVisitor<MatchChildASTVisitor> { public: typedef RecursiveASTVisitor<MatchChildASTVisitor> VisitorBase; // Creates an AST visitor that matches 'matcher' on all children or // descendants of a traversed node. max_depth is the maximum depth // to traverse: use 1 for matching the children and INT_MAX for // matching the descendants. MatchChildASTVisitor(const DynTypedMatcher *Matcher, ASTMatchFinder *Finder, BoundNodesTreeBuilder *Builder, int MaxDepth, ASTMatchFinder::TraversalKind Traversal, ASTMatchFinder::BindKind Bind) : Matcher(Matcher), Finder(Finder), Builder(Builder), CurrentDepth(0), MaxDepth(MaxDepth), Traversal(Traversal), Bind(Bind), Matches(false) {} // Returns true if a match is found in the subtree rooted at the // given AST node. This is done via a set of mutually recursive // functions. Here's how the recursion is done (the *wildcard can // actually be Decl, Stmt, or Type): // // - Traverse(node) calls BaseTraverse(node) when it needs // to visit the descendants of node. // - BaseTraverse(node) then calls (via VisitorBase::Traverse*(node)) // Traverse*(c) for each child c of 'node'. // - Traverse*(c) in turn calls Traverse(c), completing the // recursion. bool findMatch(const ast_type_traits::DynTypedNode &DynNode) { reset(); if (const Decl *D = DynNode.get<Decl>()) traverse(*D); else if (const Stmt *S = DynNode.get<Stmt>()) traverse(*S); else if (const NestedNameSpecifier *NNS = DynNode.get<NestedNameSpecifier>()) traverse(*NNS); else if (const NestedNameSpecifierLoc *NNSLoc = DynNode.get<NestedNameSpecifierLoc>()) traverse(*NNSLoc); else if (const QualType *Q = DynNode.get<QualType>()) traverse(*Q); else if (const TypeLoc *T = DynNode.get<TypeLoc>()) traverse(*T); // FIXME: Add other base types after adding tests. // It's OK to always overwrite the bound nodes, as if there was // no match in this recursive branch, the result set is empty // anyway. *Builder = ResultBindings; return Matches; } // The following are overriding methods from the base visitor class. // They are public only to allow CRTP to work. They are *not *part // of the public API of this class. bool TraverseDecl(Decl *DeclNode) { ScopedIncrement ScopedDepth(&CurrentDepth); return (DeclNode == nullptr) || traverse(*DeclNode); } bool TraverseStmt(Stmt *StmtNode) { ScopedIncrement ScopedDepth(&CurrentDepth); const Stmt *StmtToTraverse = StmtNode; if (Traversal == ASTMatchFinder::TK_IgnoreImplicitCastsAndParentheses) { const Expr *ExprNode = dyn_cast_or_null<Expr>(StmtNode); if (ExprNode) { StmtToTraverse = ExprNode->IgnoreParenImpCasts(); } } return (StmtToTraverse == nullptr) || traverse(*StmtToTraverse); } // We assume that the QualType and the contained type are on the same // hierarchy level. Thus, we try to match either of them. bool TraverseType(QualType TypeNode) { if (TypeNode.isNull()) return true; ScopedIncrement ScopedDepth(&CurrentDepth); // Match the Type. if (!match(*TypeNode)) return false; // The QualType is matched inside traverse. return traverse(TypeNode); } // We assume that the TypeLoc, contained QualType and contained Type all are // on the same hierarchy level. Thus, we try to match all of them. bool TraverseTypeLoc(TypeLoc TypeLocNode) { if (TypeLocNode.isNull()) return true; ScopedIncrement ScopedDepth(&CurrentDepth); // Match the Type. if (!match(*TypeLocNode.getType())) return false; // Match the QualType. if (!match(TypeLocNode.getType())) return false; // The TypeLoc is matched inside traverse. return traverse(TypeLocNode); } bool TraverseNestedNameSpecifier(NestedNameSpecifier *NNS) { ScopedIncrement ScopedDepth(&CurrentDepth); return (NNS == nullptr) || traverse(*NNS); } bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS) { if (!NNS) return true; ScopedIncrement ScopedDepth(&CurrentDepth); if (!match(*NNS.getNestedNameSpecifier())) return false; return traverse(NNS); } bool shouldVisitTemplateInstantiations() const { return true; } bool shouldVisitImplicitCode() const { return true; } private: // Used for updating the depth during traversal. struct ScopedIncrement { explicit ScopedIncrement(int *Depth) : Depth(Depth) { ++(*Depth); } ~ScopedIncrement() { --(*Depth); } private: int *Depth; }; // Resets the state of this object. void reset() { Matches = false; CurrentDepth = 0; } // Forwards the call to the corresponding Traverse*() method in the // base visitor class. bool baseTraverse(const Decl &DeclNode) { return VisitorBase::TraverseDecl(const_cast<Decl*>(&DeclNode)); } bool baseTraverse(const Stmt &StmtNode) { return VisitorBase::TraverseStmt(const_cast<Stmt*>(&StmtNode)); } bool baseTraverse(QualType TypeNode) { return VisitorBase::TraverseType(TypeNode); } bool baseTraverse(TypeLoc TypeLocNode) { return VisitorBase::TraverseTypeLoc(TypeLocNode); } bool baseTraverse(const NestedNameSpecifier &NNS) { return VisitorBase::TraverseNestedNameSpecifier( const_cast<NestedNameSpecifier*>(&NNS)); } bool baseTraverse(NestedNameSpecifierLoc NNS) { return VisitorBase::TraverseNestedNameSpecifierLoc(NNS); } // Sets 'Matched' to true if 'Matcher' matches 'Node' and: // 0 < CurrentDepth <= MaxDepth. // // Returns 'true' if traversal should continue after this function // returns, i.e. if no match is found or 'Bind' is 'BK_All'. template <typename T> bool match(const T &Node) { if (CurrentDepth == 0 || CurrentDepth > MaxDepth) { return true; } if (Bind != ASTMatchFinder::BK_All) { BoundNodesTreeBuilder RecursiveBuilder(*Builder); if (Matcher->matches(ast_type_traits::DynTypedNode::create(Node), Finder, &RecursiveBuilder)) { Matches = true; ResultBindings.addMatch(RecursiveBuilder); return false; // Abort as soon as a match is found. } } else { BoundNodesTreeBuilder RecursiveBuilder(*Builder); if (Matcher->matches(ast_type_traits::DynTypedNode::create(Node), Finder, &RecursiveBuilder)) { // After the first match the matcher succeeds. Matches = true; ResultBindings.addMatch(RecursiveBuilder); } } return true; } // Traverses the subtree rooted at 'Node'; returns true if the // traversal should continue after this function returns. template <typename T> bool traverse(const T &Node) { static_assert(IsBaseType<T>::value, "traverse can only be instantiated with base type"); if (!match(Node)) return false; return baseTraverse(Node); } const DynTypedMatcher *const Matcher; ASTMatchFinder *const Finder; BoundNodesTreeBuilder *const Builder; BoundNodesTreeBuilder ResultBindings; int CurrentDepth; const int MaxDepth; const ASTMatchFinder::TraversalKind Traversal; const ASTMatchFinder::BindKind Bind; bool Matches; }; // Controls the outermost traversal of the AST and allows to match multiple // matchers. class MatchASTVisitor : public RecursiveASTVisitor<MatchASTVisitor>, public ASTMatchFinder { public: MatchASTVisitor(const MatchFinder::MatchersByType *Matchers, const MatchFinder::MatchFinderOptions &Options) : Matchers(Matchers), Options(Options), ActiveASTContext(nullptr) {} ~MatchASTVisitor() override { if (Options.CheckProfiling) { Options.CheckProfiling->Records = std::move(TimeByBucket); } } void onStartOfTranslationUnit() { const bool EnableCheckProfiling = Options.CheckProfiling.hasValue(); TimeBucketRegion Timer; for (MatchCallback *MC : Matchers->AllCallbacks) { if (EnableCheckProfiling) Timer.setBucket(&TimeByBucket[MC->getID()]); MC->onStartOfTranslationUnit(); } } void onEndOfTranslationUnit() { const bool EnableCheckProfiling = Options.CheckProfiling.hasValue(); TimeBucketRegion Timer; for (MatchCallback *MC : Matchers->AllCallbacks) { if (EnableCheckProfiling) Timer.setBucket(&TimeByBucket[MC->getID()]); MC->onEndOfTranslationUnit(); } } void set_active_ast_context(ASTContext *NewActiveASTContext) { ActiveASTContext = NewActiveASTContext; } // The following Visit*() and Traverse*() functions "override" // methods in RecursiveASTVisitor. bool VisitTypedefNameDecl(TypedefNameDecl *DeclNode) { // When we see 'typedef A B', we add name 'B' to the set of names // A's canonical type maps to. This is necessary for implementing // isDerivedFrom(x) properly, where x can be the name of the base // class or any of its aliases. // // In general, the is-alias-of (as defined by typedefs) relation // is tree-shaped, as you can typedef a type more than once. For // example, // // typedef A B; // typedef A C; // typedef C D; // typedef C E; // // gives you // // A // |- B // `- C // |- D // `- E // // It is wrong to assume that the relation is a chain. A correct // implementation of isDerivedFrom() needs to recognize that B and // E are aliases, even though neither is a typedef of the other. // Therefore, we cannot simply walk through one typedef chain to // find out whether the type name matches. const Type *TypeNode = DeclNode->getUnderlyingType().getTypePtr(); const Type *CanonicalType = // root of the typedef tree ActiveASTContext->getCanonicalType(TypeNode); TypeAliases[CanonicalType].insert(DeclNode); return true; } bool TraverseDecl(Decl *DeclNode); bool TraverseStmt(Stmt *StmtNode); bool TraverseType(QualType TypeNode); bool TraverseTypeLoc(TypeLoc TypeNode); bool TraverseNestedNameSpecifier(NestedNameSpecifier *NNS); bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS); // Matches children or descendants of 'Node' with 'BaseMatcher'. bool memoizedMatchesRecursively(const ast_type_traits::DynTypedNode &Node, const DynTypedMatcher &Matcher, BoundNodesTreeBuilder *Builder, int MaxDepth, TraversalKind Traversal, BindKind Bind) { // For AST-nodes that don't have an identity, we can't memoize. if (!Node.getMemoizationData() || !Builder->isComparable()) return matchesRecursively(Node, Matcher, Builder, MaxDepth, Traversal, Bind); MatchKey Key; Key.MatcherID = Matcher.getID(); Key.Node = Node; // Note that we key on the bindings *before* the match. Key.BoundNodes = *Builder; MemoizationMap::iterator I = ResultCache.find(Key); if (I != ResultCache.end()) { *Builder = I->second.Nodes; return I->second.ResultOfMatch; } MemoizedMatchResult Result; Result.Nodes = *Builder; Result.ResultOfMatch = matchesRecursively(Node, Matcher, &Result.Nodes, MaxDepth, Traversal, Bind); MemoizedMatchResult &CachedResult = ResultCache[Key]; CachedResult = std::move(Result); *Builder = CachedResult.Nodes; return CachedResult.ResultOfMatch; } // Matches children or descendants of 'Node' with 'BaseMatcher'. bool matchesRecursively(const ast_type_traits::DynTypedNode &Node, const DynTypedMatcher &Matcher, BoundNodesTreeBuilder *Builder, int MaxDepth, TraversalKind Traversal, BindKind Bind) { MatchChildASTVisitor Visitor( &Matcher, this, Builder, MaxDepth, Traversal, Bind); return Visitor.findMatch(Node); } bool classIsDerivedFrom(const CXXRecordDecl *Declaration, const Matcher<NamedDecl> &Base, BoundNodesTreeBuilder *Builder) override; // Implements ASTMatchFinder::matchesChildOf. bool matchesChildOf(const ast_type_traits::DynTypedNode &Node, const DynTypedMatcher &Matcher, BoundNodesTreeBuilder *Builder, TraversalKind Traversal, BindKind Bind) override { if (ResultCache.size() > MaxMemoizationEntries) ResultCache.clear(); return memoizedMatchesRecursively(Node, Matcher, Builder, 1, Traversal, Bind); } // Implements ASTMatchFinder::matchesDescendantOf. bool matchesDescendantOf(const ast_type_traits::DynTypedNode &Node, const DynTypedMatcher &Matcher, BoundNodesTreeBuilder *Builder, BindKind Bind) override { if (ResultCache.size() > MaxMemoizationEntries) ResultCache.clear(); return memoizedMatchesRecursively(Node, Matcher, Builder, INT_MAX, TK_AsIs, Bind); } // Implements ASTMatchFinder::matchesAncestorOf. bool matchesAncestorOf(const ast_type_traits::DynTypedNode &Node, const DynTypedMatcher &Matcher, BoundNodesTreeBuilder *Builder, AncestorMatchMode MatchMode) override { // Reset the cache outside of the recursive call to make sure we // don't invalidate any iterators. if (ResultCache.size() > MaxMemoizationEntries) ResultCache.clear(); return memoizedMatchesAncestorOfRecursively(Node, Matcher, Builder, MatchMode); } // Matches all registered matchers on the given node and calls the // result callback for every node that matches. void match(const ast_type_traits::DynTypedNode &Node) { // FIXME: Improve this with a switch or a visitor pattern. if (auto *N = Node.get<Decl>()) { match(*N); } else if (auto *N = Node.get<Stmt>()) { match(*N); } else if (auto *N = Node.get<Type>()) { match(*N); } else if (auto *N = Node.get<QualType>()) { match(*N); } else if (auto *N = Node.get<NestedNameSpecifier>()) { match(*N); } else if (auto *N = Node.get<NestedNameSpecifierLoc>()) { match(*N); } else if (auto *N = Node.get<TypeLoc>()) { match(*N); } } template <typename T> void match(const T &Node) { matchDispatch(&Node); } // Implements ASTMatchFinder::getASTContext. ASTContext &getASTContext() const override { return *ActiveASTContext; } bool shouldVisitTemplateInstantiations() const { return true; } bool shouldVisitImplicitCode() const { return true; } private: class TimeBucketRegion { public: TimeBucketRegion() : Bucket(nullptr) {} ~TimeBucketRegion() { setBucket(nullptr); } /// \brief Start timing for \p NewBucket. /// /// If there was a bucket already set, it will finish the timing for that /// other bucket. /// \p NewBucket will be timed until the next call to \c setBucket() or /// until the \c TimeBucketRegion is destroyed. /// If \p NewBucket is the same as the currently timed bucket, this call /// does nothing. void setBucket(llvm::TimeRecord *NewBucket) { if (Bucket != NewBucket) { auto Now = llvm::TimeRecord::getCurrentTime(true); if (Bucket) *Bucket += Now; if (NewBucket) *NewBucket -= Now; Bucket = NewBucket; } } private: llvm::TimeRecord *Bucket; }; /// \brief Runs all the \p Matchers on \p Node. /// /// Used by \c matchDispatch() below. template <typename T, typename MC> void matchWithoutFilter(const T &Node, const MC &Matchers) { const bool EnableCheckProfiling = Options.CheckProfiling.hasValue(); TimeBucketRegion Timer; for (const auto &MP : Matchers) { if (EnableCheckProfiling) Timer.setBucket(&TimeByBucket[MP.second->getID()]); BoundNodesTreeBuilder Builder; if (MP.first.matches(Node, this, &Builder)) { MatchVisitor Visitor(ActiveASTContext, MP.second); Builder.visitMatches(&Visitor); } } } void matchWithFilter(const ast_type_traits::DynTypedNode &DynNode) { auto Kind = DynNode.getNodeKind(); auto it = MatcherFiltersMap.find(Kind); const auto &Filter = it != MatcherFiltersMap.end() ? it->second : getFilterForKind(Kind); if (Filter.empty()) return; const bool EnableCheckProfiling = Options.CheckProfiling.hasValue(); TimeBucketRegion Timer; auto &Matchers = this->Matchers->DeclOrStmt; for (unsigned short I : Filter) { auto &MP = Matchers[I]; if (EnableCheckProfiling) Timer.setBucket(&TimeByBucket[MP.second->getID()]); BoundNodesTreeBuilder Builder; if (MP.first.matchesNoKindCheck(DynNode, this, &Builder)) { MatchVisitor Visitor(ActiveASTContext, MP.second); Builder.visitMatches(&Visitor); } } } const std::vector<unsigned short> & getFilterForKind(ast_type_traits::ASTNodeKind Kind) { auto &Filter = MatcherFiltersMap[Kind]; auto &Matchers = this->Matchers->DeclOrStmt; assert((Matchers.size() < USHRT_MAX) && "Too many matchers."); for (unsigned I = 0, E = Matchers.size(); I != E; ++I) { if (Matchers[I].first.canMatchNodesOfKind(Kind)) { Filter.push_back(I); } } return Filter; } /// @{ /// \brief Overloads to pair the different node types to their matchers. void matchDispatch(const Decl *Node) { return matchWithFilter(ast_type_traits::DynTypedNode::create(*Node)); } void matchDispatch(const Stmt *Node) { return matchWithFilter(ast_type_traits::DynTypedNode::create(*Node)); } void matchDispatch(const Type *Node) { matchWithoutFilter(QualType(Node, 0), Matchers->Type); } void matchDispatch(const TypeLoc *Node) { matchWithoutFilter(*Node, Matchers->TypeLoc); } void matchDispatch(const QualType *Node) { matchWithoutFilter(*Node, Matchers->Type); } void matchDispatch(const NestedNameSpecifier *Node) { matchWithoutFilter(*Node, Matchers->NestedNameSpecifier); } void matchDispatch(const NestedNameSpecifierLoc *Node) { matchWithoutFilter(*Node, Matchers->NestedNameSpecifierLoc); } void matchDispatch(const void *) { /* Do nothing. */ } /// @} // Returns whether an ancestor of \p Node matches \p Matcher. // // The order of matching ((which can lead to different nodes being bound in // case there are multiple matches) is breadth first search. // // To allow memoization in the very common case of having deeply nested // expressions inside a template function, we first walk up the AST, memoizing // the result of the match along the way, as long as there is only a single // parent. // // Once there are multiple parents, the breadth first search order does not // allow simple memoization on the ancestors. Thus, we only memoize as long // as there is a single parent. bool memoizedMatchesAncestorOfRecursively( const ast_type_traits::DynTypedNode &Node, const DynTypedMatcher &Matcher, BoundNodesTreeBuilder *Builder, AncestorMatchMode MatchMode) { if (Node.get<TranslationUnitDecl>() == ActiveASTContext->getTranslationUnitDecl()) return false; MatchKey Key; Key.MatcherID = Matcher.getID(); Key.Node = Node; Key.BoundNodes = *Builder; // Note that we cannot use insert and reuse the iterator, as recursive // calls to match might invalidate the result cache iterators. MemoizationMap::iterator I = ResultCache.find(Key); if (I != ResultCache.end()) { *Builder = I->second.Nodes; return I->second.ResultOfMatch; } MemoizedMatchResult Result; Result.ResultOfMatch = false; Result.Nodes = *Builder; const auto &Parents = ActiveASTContext->getParents(Node); assert(!Parents.empty() && "Found node that is not in the parent map."); if (Parents.size() == 1) { // Only one parent - do recursive memoization. const ast_type_traits::DynTypedNode Parent = Parents[0]; if (Matcher.matches(Parent, this, &Result.Nodes)) { Result.ResultOfMatch = true; } else if (MatchMode != ASTMatchFinder::AMM_ParentOnly) { // Reset the results to not include the bound nodes from the failed // match above. Result.Nodes = *Builder; Result.ResultOfMatch = memoizedMatchesAncestorOfRecursively( Parent, Matcher, &Result.Nodes, MatchMode); // Once we get back from the recursive call, the result will be the // same as the parent's result. } } else { // Multiple parents - BFS over the rest of the nodes. llvm::DenseSet<const void *> Visited; std::deque<ast_type_traits::DynTypedNode> Queue(Parents.begin(), Parents.end()); while (!Queue.empty()) { Result.Nodes = *Builder; if (Matcher.matches(Queue.front(), this, &Result.Nodes)) { Result.ResultOfMatch = true; break; } if (MatchMode != ASTMatchFinder::AMM_ParentOnly) { for (const auto &Parent : ActiveASTContext->getParents(Queue.front())) { // Make sure we do not visit the same node twice. // Otherwise, we'll visit the common ancestors as often as there // are splits on the way down. if (Visited.insert(Parent.getMemoizationData()).second) Queue.push_back(Parent); } } Queue.pop_front(); } } MemoizedMatchResult &CachedResult = ResultCache[Key]; CachedResult = std::move(Result); *Builder = CachedResult.Nodes; return CachedResult.ResultOfMatch; } // Implements a BoundNodesTree::Visitor that calls a MatchCallback with // the aggregated bound nodes for each match. class MatchVisitor : public BoundNodesTreeBuilder::Visitor { public: MatchVisitor(ASTContext* Context, MatchFinder::MatchCallback* Callback) : Context(Context), Callback(Callback) {} void visitMatch(const BoundNodes& BoundNodesView) override { Callback->run(MatchFinder::MatchResult(BoundNodesView, Context)); } private: ASTContext* Context; MatchFinder::MatchCallback* Callback; }; // Returns true if 'TypeNode' has an alias that matches the given matcher. bool typeHasMatchingAlias(const Type *TypeNode, const Matcher<NamedDecl> Matcher, BoundNodesTreeBuilder *Builder) { const Type *const CanonicalType = ActiveASTContext->getCanonicalType(TypeNode); for (const TypedefNameDecl *Alias : TypeAliases.lookup(CanonicalType)) { BoundNodesTreeBuilder Result(*Builder); if (Matcher.matches(*Alias, this, &Result)) { *Builder = std::move(Result); return true; } } return false; } /// \brief Bucket to record map. /// /// Used to get the appropriate bucket for each matcher. llvm::StringMap<llvm::TimeRecord> TimeByBucket; const MatchFinder::MatchersByType *Matchers; /// \brief Filtered list of matcher indices for each matcher kind. /// /// \c Decl and \c Stmt toplevel matchers usually apply to a specific node /// kind (and derived kinds) so it is a waste to try every matcher on every /// node. /// We precalculate a list of matchers that pass the toplevel restrict check. /// This also allows us to skip the restrict check at matching time. See /// use \c matchesNoKindCheck() above. llvm::DenseMap<ast_type_traits::ASTNodeKind, std::vector<unsigned short>> MatcherFiltersMap; const MatchFinder::MatchFinderOptions &Options; ASTContext *ActiveASTContext; // Maps a canonical type to its TypedefDecls. llvm::DenseMap<const Type*, std::set<const TypedefNameDecl*> > TypeAliases; // Maps (matcher, node) -> the match result for memoization. typedef std::map<MatchKey, MemoizedMatchResult> MemoizationMap; MemoizationMap ResultCache; }; static CXXRecordDecl *getAsCXXRecordDecl(const Type *TypeNode) { // Type::getAs<...>() drills through typedefs. if (TypeNode->getAs<DependentNameType>() != nullptr || TypeNode->getAs<DependentTemplateSpecializationType>() != nullptr || TypeNode->getAs<TemplateTypeParmType>() != nullptr) // Dependent names and template TypeNode parameters will be matched when // the template is instantiated. return nullptr; TemplateSpecializationType const *TemplateType = TypeNode->getAs<TemplateSpecializationType>(); if (!TemplateType) { return TypeNode->getAsCXXRecordDecl(); } if (TemplateType->getTemplateName().isDependent()) // Dependent template specializations will be matched when the // template is instantiated. return nullptr; // For template specialization types which are specializing a template // declaration which is an explicit or partial specialization of another // template declaration, getAsCXXRecordDecl() returns the corresponding // ClassTemplateSpecializationDecl. // // For template specialization types which are specializing a template // declaration which is neither an explicit nor partial specialization of // another template declaration, getAsCXXRecordDecl() returns NULL and // we get the CXXRecordDecl of the templated declaration. CXXRecordDecl *SpecializationDecl = TemplateType->getAsCXXRecordDecl(); if (SpecializationDecl) { return SpecializationDecl; } NamedDecl *Templated = TemplateType->getTemplateName().getAsTemplateDecl()->getTemplatedDecl(); if (CXXRecordDecl *TemplatedRecord = dyn_cast<CXXRecordDecl>(Templated)) { return TemplatedRecord; } // Now it can still be that we have an alias template. TypeAliasDecl *AliasDecl = dyn_cast<TypeAliasDecl>(Templated); assert(AliasDecl); return getAsCXXRecordDecl(AliasDecl->getUnderlyingType().getTypePtr()); } // Returns true if the given class is directly or indirectly derived // from a base type with the given name. A class is not considered to be // derived from itself. bool MatchASTVisitor::classIsDerivedFrom(const CXXRecordDecl *Declaration, const Matcher<NamedDecl> &Base, BoundNodesTreeBuilder *Builder) { if (!Declaration->hasDefinition()) return false; for (const auto &It : Declaration->bases()) { const Type *TypeNode = It.getType().getTypePtr(); if (typeHasMatchingAlias(TypeNode, Base, Builder)) return true; CXXRecordDecl *ClassDecl = getAsCXXRecordDecl(TypeNode); if (!ClassDecl) continue; if (ClassDecl == Declaration) { // This can happen for recursive template definitions; if the // current declaration did not match, we can safely return false. return false; } BoundNodesTreeBuilder Result(*Builder); if (Base.matches(*ClassDecl, this, &Result)) { *Builder = std::move(Result); return true; } if (classIsDerivedFrom(ClassDecl, Base, Builder)) return true; } return false; } bool MatchASTVisitor::TraverseDecl(Decl *DeclNode) { if (!DeclNode) { return true; } match(*DeclNode); return RecursiveASTVisitor<MatchASTVisitor>::TraverseDecl(DeclNode); } bool MatchASTVisitor::TraverseStmt(Stmt *StmtNode) { if (!StmtNode) { return true; } match(*StmtNode); return RecursiveASTVisitor<MatchASTVisitor>::TraverseStmt(StmtNode); } bool MatchASTVisitor::TraverseType(QualType TypeNode) { match(TypeNode); return RecursiveASTVisitor<MatchASTVisitor>::TraverseType(TypeNode); } bool MatchASTVisitor::TraverseTypeLoc(TypeLoc TypeLocNode) { // The RecursiveASTVisitor only visits types if they're not within TypeLocs. // We still want to find those types via matchers, so we match them here. Note // that the TypeLocs are structurally a shadow-hierarchy to the expressed // type, so we visit all involved parts of a compound type when matching on // each TypeLoc. match(TypeLocNode); match(TypeLocNode.getType()); return RecursiveASTVisitor<MatchASTVisitor>::TraverseTypeLoc(TypeLocNode); } bool MatchASTVisitor::TraverseNestedNameSpecifier(NestedNameSpecifier *NNS) { match(*NNS); return RecursiveASTVisitor<MatchASTVisitor>::TraverseNestedNameSpecifier(NNS); } bool MatchASTVisitor::TraverseNestedNameSpecifierLoc( NestedNameSpecifierLoc NNS) { if (!NNS) return true; match(NNS); // We only match the nested name specifier here (as opposed to traversing it) // because the traversal is already done in the parallel "Loc"-hierarchy. if (NNS.hasQualifier()) match(*NNS.getNestedNameSpecifier()); return RecursiveASTVisitor<MatchASTVisitor>::TraverseNestedNameSpecifierLoc(NNS); } class MatchASTConsumer : public ASTConsumer { public: MatchASTConsumer(MatchFinder *Finder, MatchFinder::ParsingDoneTestCallback *ParsingDone) : Finder(Finder), ParsingDone(ParsingDone) {} private: void HandleTranslationUnit(ASTContext &Context) override { if (ParsingDone != nullptr) { ParsingDone->run(); } Finder->matchAST(Context); } MatchFinder *Finder; MatchFinder::ParsingDoneTestCallback *ParsingDone; }; } // end namespace } // end namespace internal MatchFinder::MatchResult::MatchResult(const BoundNodes &Nodes, ASTContext *Context) : Nodes(Nodes), Context(Context), SourceManager(&Context->getSourceManager()) {} MatchFinder::MatchCallback::~MatchCallback() {} MatchFinder::ParsingDoneTestCallback::~ParsingDoneTestCallback() {} MatchFinder::MatchFinder(MatchFinderOptions Options) : Options(std::move(Options)), ParsingDone(nullptr) {} MatchFinder::~MatchFinder() {} void MatchFinder::addMatcher(const DeclarationMatcher &NodeMatch, MatchCallback *Action) { Matchers.DeclOrStmt.emplace_back(NodeMatch, Action); Matchers.AllCallbacks.insert(Action); } void MatchFinder::addMatcher(const TypeMatcher &NodeMatch, MatchCallback *Action) { Matchers.Type.emplace_back(NodeMatch, Action); Matchers.AllCallbacks.insert(Action); } void MatchFinder::addMatcher(const StatementMatcher &NodeMatch, MatchCallback *Action) { Matchers.DeclOrStmt.emplace_back(NodeMatch, Action); Matchers.AllCallbacks.insert(Action); } void MatchFinder::addMatcher(const NestedNameSpecifierMatcher &NodeMatch, MatchCallback *Action) { Matchers.NestedNameSpecifier.emplace_back(NodeMatch, Action); Matchers.AllCallbacks.insert(Action); } void MatchFinder::addMatcher(const NestedNameSpecifierLocMatcher &NodeMatch, MatchCallback *Action) { Matchers.NestedNameSpecifierLoc.emplace_back(NodeMatch, Action); Matchers.AllCallbacks.insert(Action); } void MatchFinder::addMatcher(const TypeLocMatcher &NodeMatch, MatchCallback *Action) { Matchers.TypeLoc.emplace_back(NodeMatch, Action); Matchers.AllCallbacks.insert(Action); } bool MatchFinder::addDynamicMatcher(const internal::DynTypedMatcher &NodeMatch, MatchCallback *Action) { if (NodeMatch.canConvertTo<Decl>()) { addMatcher(NodeMatch.convertTo<Decl>(), Action); return true; } else if (NodeMatch.canConvertTo<QualType>()) { addMatcher(NodeMatch.convertTo<QualType>(), Action); return true; } else if (NodeMatch.canConvertTo<Stmt>()) { addMatcher(NodeMatch.convertTo<Stmt>(), Action); return true; } else if (NodeMatch.canConvertTo<NestedNameSpecifier>()) { addMatcher(NodeMatch.convertTo<NestedNameSpecifier>(), Action); return true; } else if (NodeMatch.canConvertTo<NestedNameSpecifierLoc>()) { addMatcher(NodeMatch.convertTo<NestedNameSpecifierLoc>(), Action); return true; } else if (NodeMatch.canConvertTo<TypeLoc>()) { addMatcher(NodeMatch.convertTo<TypeLoc>(), Action); return true; } return false; } std::unique_ptr<ASTConsumer> MatchFinder::newASTConsumer() { return llvm::make_unique<internal::MatchASTConsumer>(this, ParsingDone); } void MatchFinder::match(const clang::ast_type_traits::DynTypedNode &Node, ASTContext &Context) { internal::MatchASTVisitor Visitor(&Matchers, Options); Visitor.set_active_ast_context(&Context); Visitor.match(Node); } void MatchFinder::matchAST(ASTContext &Context) { internal::MatchASTVisitor Visitor(&Matchers, Options); Visitor.set_active_ast_context(&Context); Visitor.onStartOfTranslationUnit(); Visitor.TraverseDecl(Context.getTranslationUnitDecl()); Visitor.onEndOfTranslationUnit(); } void MatchFinder::registerTestCallbackAfterParsing( MatchFinder::ParsingDoneTestCallback *NewParsingDone) { ParsingDone = NewParsingDone; } StringRef MatchFinder::MatchCallback::getID() const { return "<unknown>"; } } // end namespace ast_matchers } // end namespace clang