//===--- ParseCXXInlineMethods.cpp - C++ class inline methods parsing------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements parsing for C++ class inline methods. // //===----------------------------------------------------------------------===// #include "clang/Parse/Parser.h" #include "RAIIObjectsForParser.h" #include "clang/AST/DeclTemplate.h" #include "clang/Parse/ParseDiagnostic.h" #include "clang/Sema/DeclSpec.h" #include "clang/Sema/Scope.h" using namespace clang; /// ParseCXXInlineMethodDef - We parsed and verified that the specified /// Declarator is a well formed C++ inline method definition. Now lex its body /// and store its tokens for parsing after the C++ class is complete. NamedDecl *Parser::ParseCXXInlineMethodDef(AccessSpecifier AS, AttributeList *AccessAttrs, ParsingDeclarator &D, const ParsedTemplateInfo &TemplateInfo, const VirtSpecifiers& VS, SourceLocation PureSpecLoc) { assert(D.isFunctionDeclarator() && "This isn't a function declarator!"); assert(Tok.isOneOf(tok::l_brace, tok::colon, tok::kw_try, tok::equal) && "Current token not a '{', ':', '=', or 'try'!"); MultiTemplateParamsArg TemplateParams( TemplateInfo.TemplateParams ? TemplateInfo.TemplateParams->data() : nullptr, TemplateInfo.TemplateParams ? TemplateInfo.TemplateParams->size() : 0); NamedDecl *FnD; if (D.getDeclSpec().isFriendSpecified()) FnD = Actions.ActOnFriendFunctionDecl(getCurScope(), D, TemplateParams); else { FnD = Actions.ActOnCXXMemberDeclarator(getCurScope(), AS, D, TemplateParams, nullptr, VS, ICIS_NoInit); if (FnD) { Actions.ProcessDeclAttributeList(getCurScope(), FnD, AccessAttrs); if (PureSpecLoc.isValid()) Actions.ActOnPureSpecifier(FnD, PureSpecLoc); } } HandleMemberFunctionDeclDelays(D, FnD); D.complete(FnD); if (TryConsumeToken(tok::equal)) { if (!FnD) { SkipUntil(tok::semi); return nullptr; } bool Delete = false; SourceLocation KWLoc; SourceLocation KWEndLoc = Tok.getEndLoc().getLocWithOffset(-1); if (TryConsumeToken(tok::kw_delete, KWLoc)) { Diag(KWLoc, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_defaulted_deleted_function : diag::ext_defaulted_deleted_function) << 1 /* deleted */; Actions.SetDeclDeleted(FnD, KWLoc); Delete = true; if (auto *DeclAsFunction = dyn_cast<FunctionDecl>(FnD)) { DeclAsFunction->setRangeEnd(KWEndLoc); } } else if (TryConsumeToken(tok::kw_default, KWLoc)) { Diag(KWLoc, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_defaulted_deleted_function : diag::ext_defaulted_deleted_function) << 0 /* defaulted */; Actions.SetDeclDefaulted(FnD, KWLoc); if (auto *DeclAsFunction = dyn_cast<FunctionDecl>(FnD)) { DeclAsFunction->setRangeEnd(KWEndLoc); } } else { llvm_unreachable("function definition after = not 'delete' or 'default'"); } if (Tok.is(tok::comma)) { Diag(KWLoc, diag::err_default_delete_in_multiple_declaration) << Delete; SkipUntil(tok::semi); } else if (ExpectAndConsume(tok::semi, diag::err_expected_after, Delete ? "delete" : "default")) { SkipUntil(tok::semi); } return FnD; } // In delayed template parsing mode, if we are within a class template // or if we are about to parse function member template then consume // the tokens and store them for parsing at the end of the translation unit. if (getLangOpts().DelayedTemplateParsing && D.getFunctionDefinitionKind() == FDK_Definition && !D.getDeclSpec().isConstexprSpecified() && !(FnD && FnD->getAsFunction() && FnD->getAsFunction()->getReturnType()->getContainedAutoType()) && ((Actions.CurContext->isDependentContext() || (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate && TemplateInfo.Kind != ParsedTemplateInfo::ExplicitSpecialization)) && !Actions.IsInsideALocalClassWithinATemplateFunction())) { CachedTokens Toks; LexTemplateFunctionForLateParsing(Toks); if (FnD) { FunctionDecl *FD = FnD->getAsFunction(); Actions.CheckForFunctionRedefinition(FD); Actions.MarkAsLateParsedTemplate(FD, FnD, Toks); } return FnD; } // Consume the tokens and store them for later parsing. LexedMethod* LM = new LexedMethod(this, FnD); getCurrentClass().LateParsedDeclarations.push_back(LM); LM->TemplateScope = getCurScope()->isTemplateParamScope(); CachedTokens &Toks = LM->Toks; tok::TokenKind kind = Tok.getKind(); // Consume everything up to (and including) the left brace of the // function body. if (ConsumeAndStoreFunctionPrologue(Toks)) { // We didn't find the left-brace we expected after the // constructor initializer; we already printed an error, and it's likely // impossible to recover, so don't try to parse this method later. // Skip over the rest of the decl and back to somewhere that looks // reasonable. SkipMalformedDecl(); delete getCurrentClass().LateParsedDeclarations.back(); getCurrentClass().LateParsedDeclarations.pop_back(); return FnD; } else { // Consume everything up to (and including) the matching right brace. ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/false); } // If we're in a function-try-block, we need to store all the catch blocks. if (kind == tok::kw_try) { while (Tok.is(tok::kw_catch)) { ConsumeAndStoreUntil(tok::l_brace, Toks, /*StopAtSemi=*/false); ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/false); } } if (FnD) { // If this is a friend function, mark that it's late-parsed so that // it's still known to be a definition even before we attach the // parsed body. Sema needs to treat friend function definitions // differently during template instantiation, and it's possible for // the containing class to be instantiated before all its member // function definitions are parsed. // // If you remove this, you can remove the code that clears the flag // after parsing the member. if (D.getDeclSpec().isFriendSpecified()) { FunctionDecl *FD = FnD->getAsFunction(); Actions.CheckForFunctionRedefinition(FD); FD->setLateTemplateParsed(true); } } else { // If semantic analysis could not build a function declaration, // just throw away the late-parsed declaration. delete getCurrentClass().LateParsedDeclarations.back(); getCurrentClass().LateParsedDeclarations.pop_back(); } return FnD; } /// ParseCXXNonStaticMemberInitializer - We parsed and verified that the /// specified Declarator is a well formed C++ non-static data member /// declaration. Now lex its initializer and store its tokens for parsing /// after the class is complete. void Parser::ParseCXXNonStaticMemberInitializer(Decl *VarD) { assert(Tok.isOneOf(tok::l_brace, tok::equal) && "Current token not a '{' or '='!"); LateParsedMemberInitializer *MI = new LateParsedMemberInitializer(this, VarD); getCurrentClass().LateParsedDeclarations.push_back(MI); CachedTokens &Toks = MI->Toks; tok::TokenKind kind = Tok.getKind(); if (kind == tok::equal) { Toks.push_back(Tok); ConsumeToken(); } if (kind == tok::l_brace) { // Begin by storing the '{' token. Toks.push_back(Tok); ConsumeBrace(); // Consume everything up to (and including) the matching right brace. ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/true); } else { // Consume everything up to (but excluding) the comma or semicolon. ConsumeAndStoreInitializer(Toks, CIK_DefaultInitializer); } // Store an artificial EOF token to ensure that we don't run off the end of // the initializer when we come to parse it. Token Eof; Eof.startToken(); Eof.setKind(tok::eof); Eof.setLocation(Tok.getLocation()); Eof.setEofData(VarD); Toks.push_back(Eof); } Parser::LateParsedDeclaration::~LateParsedDeclaration() {} void Parser::LateParsedDeclaration::ParseLexedMethodDeclarations() {} void Parser::LateParsedDeclaration::ParseLexedMemberInitializers() {} void Parser::LateParsedDeclaration::ParseLexedMethodDefs() {} Parser::LateParsedClass::LateParsedClass(Parser *P, ParsingClass *C) : Self(P), Class(C) {} Parser::LateParsedClass::~LateParsedClass() { Self->DeallocateParsedClasses(Class); } void Parser::LateParsedClass::ParseLexedMethodDeclarations() { Self->ParseLexedMethodDeclarations(*Class); } void Parser::LateParsedClass::ParseLexedMemberInitializers() { Self->ParseLexedMemberInitializers(*Class); } void Parser::LateParsedClass::ParseLexedMethodDefs() { Self->ParseLexedMethodDefs(*Class); } void Parser::LateParsedMethodDeclaration::ParseLexedMethodDeclarations() { Self->ParseLexedMethodDeclaration(*this); } void Parser::LexedMethod::ParseLexedMethodDefs() { Self->ParseLexedMethodDef(*this); } void Parser::LateParsedMemberInitializer::ParseLexedMemberInitializers() { Self->ParseLexedMemberInitializer(*this); } /// ParseLexedMethodDeclarations - We finished parsing the member /// specification of a top (non-nested) C++ class. Now go over the /// stack of method declarations with some parts for which parsing was /// delayed (such as default arguments) and parse them. void Parser::ParseLexedMethodDeclarations(ParsingClass &Class) { bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope; ParseScope ClassTemplateScope(this, Scope::TemplateParamScope, HasTemplateScope); TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth); if (HasTemplateScope) { Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate); ++CurTemplateDepthTracker; } // The current scope is still active if we're the top-level class. // Otherwise we'll need to push and enter a new scope. bool HasClassScope = !Class.TopLevelClass; ParseScope ClassScope(this, Scope::ClassScope|Scope::DeclScope, HasClassScope); if (HasClassScope) Actions.ActOnStartDelayedMemberDeclarations(getCurScope(), Class.TagOrTemplate); for (size_t i = 0; i < Class.LateParsedDeclarations.size(); ++i) { Class.LateParsedDeclarations[i]->ParseLexedMethodDeclarations(); } if (HasClassScope) Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(), Class.TagOrTemplate); } void Parser::ParseLexedMethodDeclaration(LateParsedMethodDeclaration &LM) { // If this is a member template, introduce the template parameter scope. ParseScope TemplateScope(this, Scope::TemplateParamScope, LM.TemplateScope); TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth); if (LM.TemplateScope) { Actions.ActOnReenterTemplateScope(getCurScope(), LM.Method); ++CurTemplateDepthTracker; } // Start the delayed C++ method declaration Actions.ActOnStartDelayedCXXMethodDeclaration(getCurScope(), LM.Method); // Introduce the parameters into scope and parse their default // arguments. ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope | Scope::FunctionDeclarationScope | Scope::DeclScope); for (unsigned I = 0, N = LM.DefaultArgs.size(); I != N; ++I) { auto Param = cast<ParmVarDecl>(LM.DefaultArgs[I].Param); // Introduce the parameter into scope. bool HasUnparsed = Param->hasUnparsedDefaultArg(); Actions.ActOnDelayedCXXMethodParameter(getCurScope(), Param); if (CachedTokens *Toks = LM.DefaultArgs[I].Toks) { // Mark the end of the default argument so that we know when to stop when // we parse it later on. Token LastDefaultArgToken = Toks->back(); Token DefArgEnd; DefArgEnd.startToken(); DefArgEnd.setKind(tok::eof); DefArgEnd.setLocation(LastDefaultArgToken.getEndLoc()); DefArgEnd.setEofData(Param); Toks->push_back(DefArgEnd); // Parse the default argument from its saved token stream. Toks->push_back(Tok); // So that the current token doesn't get lost PP.EnterTokenStream(&Toks->front(), Toks->size(), true, false); // Consume the previously-pushed token. ConsumeAnyToken(); // Consume the '='. assert(Tok.is(tok::equal) && "Default argument not starting with '='"); SourceLocation EqualLoc = ConsumeToken(); // The argument isn't actually potentially evaluated unless it is // used. EnterExpressionEvaluationContext Eval(Actions, Sema::PotentiallyEvaluatedIfUsed, Param); ExprResult DefArgResult; if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); DefArgResult = ParseBraceInitializer(); } else DefArgResult = ParseAssignmentExpression(); DefArgResult = Actions.CorrectDelayedTyposInExpr(DefArgResult); if (DefArgResult.isInvalid()) { Actions.ActOnParamDefaultArgumentError(Param, EqualLoc); } else { if (Tok.isNot(tok::eof) || Tok.getEofData() != Param) { // The last two tokens are the terminator and the saved value of // Tok; the last token in the default argument is the one before // those. assert(Toks->size() >= 3 && "expected a token in default arg"); Diag(Tok.getLocation(), diag::err_default_arg_unparsed) << SourceRange(Tok.getLocation(), (*Toks)[Toks->size() - 3].getLocation()); } Actions.ActOnParamDefaultArgument(Param, EqualLoc, DefArgResult.get()); } // There could be leftover tokens (e.g. because of an error). // Skip through until we reach the 'end of default argument' token. while (Tok.isNot(tok::eof)) ConsumeAnyToken(); if (Tok.is(tok::eof) && Tok.getEofData() == Param) ConsumeAnyToken(); delete Toks; LM.DefaultArgs[I].Toks = nullptr; } else if (HasUnparsed) { assert(Param->hasInheritedDefaultArg()); FunctionDecl *Old = cast<FunctionDecl>(LM.Method)->getPreviousDecl(); ParmVarDecl *OldParam = Old->getParamDecl(I); assert (!OldParam->hasUnparsedDefaultArg()); if (OldParam->hasUninstantiatedDefaultArg()) Param->setUninstantiatedDefaultArg( Param->getUninstantiatedDefaultArg()); else Param->setDefaultArg(OldParam->getInit()); } } // Parse a delayed exception-specification, if there is one. if (CachedTokens *Toks = LM.ExceptionSpecTokens) { // Add the 'stop' token. Token LastExceptionSpecToken = Toks->back(); Token ExceptionSpecEnd; ExceptionSpecEnd.startToken(); ExceptionSpecEnd.setKind(tok::eof); ExceptionSpecEnd.setLocation(LastExceptionSpecToken.getEndLoc()); ExceptionSpecEnd.setEofData(LM.Method); Toks->push_back(ExceptionSpecEnd); // Parse the default argument from its saved token stream. Toks->push_back(Tok); // So that the current token doesn't get lost PP.EnterTokenStream(&Toks->front(), Toks->size(), true, false); // Consume the previously-pushed token. ConsumeAnyToken(); // C++11 [expr.prim.general]p3: // If a declaration declares a member function or member function // template of a class X, the expression this is a prvalue of type // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq // and the end of the function-definition, member-declarator, or // declarator. CXXMethodDecl *Method; if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(LM.Method)) Method = cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl()); else Method = cast<CXXMethodDecl>(LM.Method); Sema::CXXThisScopeRAII ThisScope(Actions, Method->getParent(), Method->getTypeQualifiers(), getLangOpts().CPlusPlus11); // Parse the exception-specification. SourceRange SpecificationRange; SmallVector<ParsedType, 4> DynamicExceptions; SmallVector<SourceRange, 4> DynamicExceptionRanges; ExprResult NoexceptExpr; CachedTokens *ExceptionSpecTokens; ExceptionSpecificationType EST = tryParseExceptionSpecification(/*Delayed=*/false, SpecificationRange, DynamicExceptions, DynamicExceptionRanges, NoexceptExpr, ExceptionSpecTokens); if (Tok.isNot(tok::eof) || Tok.getEofData() != LM.Method) Diag(Tok.getLocation(), diag::err_except_spec_unparsed); // Attach the exception-specification to the method. Actions.actOnDelayedExceptionSpecification(LM.Method, EST, SpecificationRange, DynamicExceptions, DynamicExceptionRanges, NoexceptExpr.isUsable()? NoexceptExpr.get() : nullptr); // There could be leftover tokens (e.g. because of an error). // Skip through until we reach the original token position. while (Tok.isNot(tok::eof)) ConsumeAnyToken(); // Clean up the remaining EOF token. if (Tok.is(tok::eof) && Tok.getEofData() == LM.Method) ConsumeAnyToken(); delete Toks; LM.ExceptionSpecTokens = nullptr; } PrototypeScope.Exit(); // Finish the delayed C++ method declaration. Actions.ActOnFinishDelayedCXXMethodDeclaration(getCurScope(), LM.Method); } /// ParseLexedMethodDefs - We finished parsing the member specification of a top /// (non-nested) C++ class. Now go over the stack of lexed methods that were /// collected during its parsing and parse them all. void Parser::ParseLexedMethodDefs(ParsingClass &Class) { bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope; ParseScope ClassTemplateScope(this, Scope::TemplateParamScope, HasTemplateScope); TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth); if (HasTemplateScope) { Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate); ++CurTemplateDepthTracker; } bool HasClassScope = !Class.TopLevelClass; ParseScope ClassScope(this, Scope::ClassScope|Scope::DeclScope, HasClassScope); for (size_t i = 0; i < Class.LateParsedDeclarations.size(); ++i) { Class.LateParsedDeclarations[i]->ParseLexedMethodDefs(); } } void Parser::ParseLexedMethodDef(LexedMethod &LM) { // If this is a member template, introduce the template parameter scope. ParseScope TemplateScope(this, Scope::TemplateParamScope, LM.TemplateScope); TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth); if (LM.TemplateScope) { Actions.ActOnReenterTemplateScope(getCurScope(), LM.D); ++CurTemplateDepthTracker; } assert(!LM.Toks.empty() && "Empty body!"); Token LastBodyToken = LM.Toks.back(); Token BodyEnd; BodyEnd.startToken(); BodyEnd.setKind(tok::eof); BodyEnd.setLocation(LastBodyToken.getEndLoc()); BodyEnd.setEofData(LM.D); LM.Toks.push_back(BodyEnd); // Append the current token at the end of the new token stream so that it // doesn't get lost. LM.Toks.push_back(Tok); PP.EnterTokenStream(LM.Toks.data(), LM.Toks.size(), true, false); // Consume the previously pushed token. ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true); assert(Tok.isOneOf(tok::l_brace, tok::colon, tok::kw_try) && "Inline method not starting with '{', ':' or 'try'"); // Parse the method body. Function body parsing code is similar enough // to be re-used for method bodies as well. ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope); Actions.ActOnStartOfFunctionDef(getCurScope(), LM.D); if (Tok.is(tok::kw_try)) { ParseFunctionTryBlock(LM.D, FnScope); while (Tok.isNot(tok::eof)) ConsumeAnyToken(); if (Tok.is(tok::eof) && Tok.getEofData() == LM.D) ConsumeAnyToken(); return; } if (Tok.is(tok::colon)) { ParseConstructorInitializer(LM.D); // Error recovery. if (!Tok.is(tok::l_brace)) { FnScope.Exit(); Actions.ActOnFinishFunctionBody(LM.D, nullptr); while (Tok.isNot(tok::eof)) ConsumeAnyToken(); if (Tok.is(tok::eof) && Tok.getEofData() == LM.D) ConsumeAnyToken(); return; } } else Actions.ActOnDefaultCtorInitializers(LM.D); assert((Actions.getDiagnostics().hasErrorOccurred() || !isa<FunctionTemplateDecl>(LM.D) || cast<FunctionTemplateDecl>(LM.D)->getTemplateParameters()->getDepth() < TemplateParameterDepth) && "TemplateParameterDepth should be greater than the depth of " "current template being instantiated!"); ParseFunctionStatementBody(LM.D, FnScope); // Clear the late-template-parsed bit if we set it before. if (LM.D) LM.D->getAsFunction()->setLateTemplateParsed(false); while (Tok.isNot(tok::eof)) ConsumeAnyToken(); if (Tok.is(tok::eof) && Tok.getEofData() == LM.D) ConsumeAnyToken(); if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(LM.D)) Actions.ActOnFinishInlineMethodDef(MD); } /// ParseLexedMemberInitializers - We finished parsing the member specification /// of a top (non-nested) C++ class. Now go over the stack of lexed data member /// initializers that were collected during its parsing and parse them all. void Parser::ParseLexedMemberInitializers(ParsingClass &Class) { bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope; ParseScope ClassTemplateScope(this, Scope::TemplateParamScope, HasTemplateScope); TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth); if (HasTemplateScope) { Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate); ++CurTemplateDepthTracker; } // Set or update the scope flags. bool AlreadyHasClassScope = Class.TopLevelClass; unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope; ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope); ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope); if (!AlreadyHasClassScope) Actions.ActOnStartDelayedMemberDeclarations(getCurScope(), Class.TagOrTemplate); if (!Class.LateParsedDeclarations.empty()) { // C++11 [expr.prim.general]p4: // Otherwise, if a member-declarator declares a non-static data member // (9.2) of a class X, the expression this is a prvalue of type "pointer // to X" within the optional brace-or-equal-initializer. It shall not // appear elsewhere in the member-declarator. Sema::CXXThisScopeRAII ThisScope(Actions, Class.TagOrTemplate, /*TypeQuals=*/(unsigned)0); for (size_t i = 0; i < Class.LateParsedDeclarations.size(); ++i) { Class.LateParsedDeclarations[i]->ParseLexedMemberInitializers(); } } if (!AlreadyHasClassScope) Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(), Class.TagOrTemplate); Actions.ActOnFinishDelayedMemberInitializers(Class.TagOrTemplate); } void Parser::ParseLexedMemberInitializer(LateParsedMemberInitializer &MI) { if (!MI.Field || MI.Field->isInvalidDecl()) return; // Append the current token at the end of the new token stream so that it // doesn't get lost. MI.Toks.push_back(Tok); PP.EnterTokenStream(MI.Toks.data(), MI.Toks.size(), true, false); // Consume the previously pushed token. ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true); SourceLocation EqualLoc; Actions.ActOnStartCXXInClassMemberInitializer(); ExprResult Init = ParseCXXMemberInitializer(MI.Field, /*IsFunction=*/false, EqualLoc); Actions.ActOnFinishCXXInClassMemberInitializer(MI.Field, EqualLoc, Init.get()); // The next token should be our artificial terminating EOF token. if (Tok.isNot(tok::eof)) { if (!Init.isInvalid()) { SourceLocation EndLoc = PP.getLocForEndOfToken(PrevTokLocation); if (!EndLoc.isValid()) EndLoc = Tok.getLocation(); // No fixit; we can't recover as if there were a semicolon here. Diag(EndLoc, diag::err_expected_semi_decl_list); } // Consume tokens until we hit the artificial EOF. while (Tok.isNot(tok::eof)) ConsumeAnyToken(); } // Make sure this is *our* artificial EOF token. if (Tok.getEofData() == MI.Field) ConsumeAnyToken(); } /// ConsumeAndStoreUntil - Consume and store the token at the passed token /// container until the token 'T' is reached (which gets /// consumed/stored too, if ConsumeFinalToken). /// If StopAtSemi is true, then we will stop early at a ';' character. /// Returns true if token 'T1' or 'T2' was found. /// NOTE: This is a specialized version of Parser::SkipUntil. bool Parser::ConsumeAndStoreUntil(tok::TokenKind T1, tok::TokenKind T2, CachedTokens &Toks, bool StopAtSemi, bool ConsumeFinalToken) { // We always want this function to consume at least one token if the first // token isn't T and if not at EOF. bool isFirstTokenConsumed = true; while (1) { // If we found one of the tokens, stop and return true. if (Tok.is(T1) || Tok.is(T2)) { if (ConsumeFinalToken) { Toks.push_back(Tok); ConsumeAnyToken(); } return true; } switch (Tok.getKind()) { case tok::eof: case tok::annot_module_begin: case tok::annot_module_end: case tok::annot_module_include: // Ran out of tokens. return false; case tok::l_paren: // Recursively consume properly-nested parens. Toks.push_back(Tok); ConsumeParen(); ConsumeAndStoreUntil(tok::r_paren, Toks, /*StopAtSemi=*/false); break; case tok::l_square: // Recursively consume properly-nested square brackets. Toks.push_back(Tok); ConsumeBracket(); ConsumeAndStoreUntil(tok::r_square, Toks, /*StopAtSemi=*/false); break; case tok::l_brace: // Recursively consume properly-nested braces. Toks.push_back(Tok); ConsumeBrace(); ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/false); break; // Okay, we found a ']' or '}' or ')', which we think should be balanced. // Since the user wasn't looking for this token (if they were, it would // already be handled), this isn't balanced. If there is a LHS token at a // higher level, we will assume that this matches the unbalanced token // and return it. Otherwise, this is a spurious RHS token, which we skip. case tok::r_paren: if (ParenCount && !isFirstTokenConsumed) return false; // Matches something. Toks.push_back(Tok); ConsumeParen(); break; case tok::r_square: if (BracketCount && !isFirstTokenConsumed) return false; // Matches something. Toks.push_back(Tok); ConsumeBracket(); break; case tok::r_brace: if (BraceCount && !isFirstTokenConsumed) return false; // Matches something. Toks.push_back(Tok); ConsumeBrace(); break; case tok::code_completion: Toks.push_back(Tok); ConsumeCodeCompletionToken(); break; case tok::string_literal: case tok::wide_string_literal: case tok::utf8_string_literal: case tok::utf16_string_literal: case tok::utf32_string_literal: Toks.push_back(Tok); ConsumeStringToken(); break; case tok::semi: if (StopAtSemi) return false; // FALL THROUGH. default: // consume this token. Toks.push_back(Tok); ConsumeToken(); break; } isFirstTokenConsumed = false; } } /// \brief Consume tokens and store them in the passed token container until /// we've passed the try keyword and constructor initializers and have consumed /// the opening brace of the function body. The opening brace will be consumed /// if and only if there was no error. /// /// \return True on error. bool Parser::ConsumeAndStoreFunctionPrologue(CachedTokens &Toks) { if (Tok.is(tok::kw_try)) { Toks.push_back(Tok); ConsumeToken(); } if (Tok.isNot(tok::colon)) { // Easy case, just a function body. // Grab any remaining garbage to be diagnosed later. We stop when we reach a // brace: an opening one is the function body, while a closing one probably // means we've reached the end of the class. ConsumeAndStoreUntil(tok::l_brace, tok::r_brace, Toks, /*StopAtSemi=*/true, /*ConsumeFinalToken=*/false); if (Tok.isNot(tok::l_brace)) return Diag(Tok.getLocation(), diag::err_expected) << tok::l_brace; Toks.push_back(Tok); ConsumeBrace(); return false; } Toks.push_back(Tok); ConsumeToken(); // We can't reliably skip over a mem-initializer-id, because it could be // a template-id involving not-yet-declared names. Given: // // S ( ) : a < b < c > ( e ) // // 'e' might be an initializer or part of a template argument, depending // on whether 'b' is a template. // Track whether we might be inside a template argument. We can give // significantly better diagnostics if we know that we're not. bool MightBeTemplateArgument = false; while (true) { // Skip over the mem-initializer-id, if possible. if (Tok.is(tok::kw_decltype)) { Toks.push_back(Tok); SourceLocation OpenLoc = ConsumeToken(); if (Tok.isNot(tok::l_paren)) return Diag(Tok.getLocation(), diag::err_expected_lparen_after) << "decltype"; Toks.push_back(Tok); ConsumeParen(); if (!ConsumeAndStoreUntil(tok::r_paren, Toks, /*StopAtSemi=*/true)) { Diag(Tok.getLocation(), diag::err_expected) << tok::r_paren; Diag(OpenLoc, diag::note_matching) << tok::l_paren; return true; } } do { // Walk over a component of a nested-name-specifier. if (Tok.is(tok::coloncolon)) { Toks.push_back(Tok); ConsumeToken(); if (Tok.is(tok::kw_template)) { Toks.push_back(Tok); ConsumeToken(); } } if (Tok.isOneOf(tok::identifier, tok::kw_template)) { Toks.push_back(Tok); ConsumeToken(); } else if (Tok.is(tok::code_completion)) { Toks.push_back(Tok); ConsumeCodeCompletionToken(); // Consume the rest of the initializers permissively. // FIXME: We should be able to perform code-completion here even if // there isn't a subsequent '{' token. MightBeTemplateArgument = true; break; } else { break; } } while (Tok.is(tok::coloncolon)); if (Tok.is(tok::less)) MightBeTemplateArgument = true; if (MightBeTemplateArgument) { // We may be inside a template argument list. Grab up to the start of the // next parenthesized initializer or braced-init-list. This *might* be the // initializer, or it might be a subexpression in the template argument // list. // FIXME: Count angle brackets, and clear MightBeTemplateArgument // if all angles are closed. if (!ConsumeAndStoreUntil(tok::l_paren, tok::l_brace, Toks, /*StopAtSemi=*/true, /*ConsumeFinalToken=*/false)) { // We're not just missing the initializer, we're also missing the // function body! return Diag(Tok.getLocation(), diag::err_expected) << tok::l_brace; } } else if (Tok.isNot(tok::l_paren) && Tok.isNot(tok::l_brace)) { // We found something weird in a mem-initializer-id. if (getLangOpts().CPlusPlus11) return Diag(Tok.getLocation(), diag::err_expected_either) << tok::l_paren << tok::l_brace; else return Diag(Tok.getLocation(), diag::err_expected) << tok::l_paren; } tok::TokenKind kind = Tok.getKind(); Toks.push_back(Tok); bool IsLParen = (kind == tok::l_paren); SourceLocation OpenLoc = Tok.getLocation(); if (IsLParen) { ConsumeParen(); } else { assert(kind == tok::l_brace && "Must be left paren or brace here."); ConsumeBrace(); // In C++03, this has to be the start of the function body, which // means the initializer is malformed; we'll diagnose it later. if (!getLangOpts().CPlusPlus11) return false; } // Grab the initializer (or the subexpression of the template argument). // FIXME: If we support lambdas here, we'll need to set StopAtSemi to false // if we might be inside the braces of a lambda-expression. tok::TokenKind CloseKind = IsLParen ? tok::r_paren : tok::r_brace; if (!ConsumeAndStoreUntil(CloseKind, Toks, /*StopAtSemi=*/true)) { Diag(Tok, diag::err_expected) << CloseKind; Diag(OpenLoc, diag::note_matching) << kind; return true; } // Grab pack ellipsis, if present. if (Tok.is(tok::ellipsis)) { Toks.push_back(Tok); ConsumeToken(); } // If we know we just consumed a mem-initializer, we must have ',' or '{' // next. if (Tok.is(tok::comma)) { Toks.push_back(Tok); ConsumeToken(); } else if (Tok.is(tok::l_brace)) { // This is the function body if the ')' or '}' is immediately followed by // a '{'. That cannot happen within a template argument, apart from the // case where a template argument contains a compound literal: // // S ( ) : a < b < c > ( d ) { } // // End of declaration, or still inside the template argument? // // ... and the case where the template argument contains a lambda: // // S ( ) : a < 0 && b < c > ( d ) + [ ] ( ) { return 0; } // ( ) > ( ) { } // // FIXME: Disambiguate these cases. Note that the latter case is probably // going to be made ill-formed by core issue 1607. Toks.push_back(Tok); ConsumeBrace(); return false; } else if (!MightBeTemplateArgument) { return Diag(Tok.getLocation(), diag::err_expected_either) << tok::l_brace << tok::comma; } } } /// \brief Consume and store tokens from the '?' to the ':' in a conditional /// expression. bool Parser::ConsumeAndStoreConditional(CachedTokens &Toks) { // Consume '?'. assert(Tok.is(tok::question)); Toks.push_back(Tok); ConsumeToken(); while (Tok.isNot(tok::colon)) { if (!ConsumeAndStoreUntil(tok::question, tok::colon, Toks, /*StopAtSemi=*/true, /*ConsumeFinalToken=*/false)) return false; // If we found a nested conditional, consume it. if (Tok.is(tok::question) && !ConsumeAndStoreConditional(Toks)) return false; } // Consume ':'. Toks.push_back(Tok); ConsumeToken(); return true; } /// \brief A tentative parsing action that can also revert token annotations. class Parser::UnannotatedTentativeParsingAction : public TentativeParsingAction { public: explicit UnannotatedTentativeParsingAction(Parser &Self, tok::TokenKind EndKind) : TentativeParsingAction(Self), Self(Self), EndKind(EndKind) { // Stash away the old token stream, so we can restore it once the // tentative parse is complete. TentativeParsingAction Inner(Self); Self.ConsumeAndStoreUntil(EndKind, Toks, true, /*ConsumeFinalToken*/false); Inner.Revert(); } void RevertAnnotations() { Revert(); // Put back the original tokens. Self.SkipUntil(EndKind, StopAtSemi | StopBeforeMatch); if (Toks.size()) { Token *Buffer = new Token[Toks.size()]; std::copy(Toks.begin() + 1, Toks.end(), Buffer); Buffer[Toks.size() - 1] = Self.Tok; Self.PP.EnterTokenStream(Buffer, Toks.size(), true, /*Owned*/true); Self.Tok = Toks.front(); } } private: Parser &Self; CachedTokens Toks; tok::TokenKind EndKind; }; /// ConsumeAndStoreInitializer - Consume and store the token at the passed token /// container until the end of the current initializer expression (either a /// default argument or an in-class initializer for a non-static data member). /// /// Returns \c true if we reached the end of something initializer-shaped, /// \c false if we bailed out. bool Parser::ConsumeAndStoreInitializer(CachedTokens &Toks, CachedInitKind CIK) { // We always want this function to consume at least one token if not at EOF. bool IsFirstToken = true; // Number of possible unclosed <s we've seen so far. These might be templates, // and might not, but if there were none of them (or we know for sure that // we're within a template), we can avoid a tentative parse. unsigned AngleCount = 0; unsigned KnownTemplateCount = 0; while (1) { switch (Tok.getKind()) { case tok::comma: // If we might be in a template, perform a tentative parse to check. if (!AngleCount) // Not a template argument: this is the end of the initializer. return true; if (KnownTemplateCount) goto consume_token; // We hit a comma inside angle brackets. This is the hard case. The // rule we follow is: // * For a default argument, if the tokens after the comma form a // syntactically-valid parameter-declaration-clause, in which each // parameter has an initializer, then this comma ends the default // argument. // * For a default initializer, if the tokens after the comma form a // syntactically-valid init-declarator-list, then this comma ends // the default initializer. { UnannotatedTentativeParsingAction PA(*this, CIK == CIK_DefaultInitializer ? tok::semi : tok::r_paren); Sema::TentativeAnalysisScope Scope(Actions); TPResult Result = TPResult::Error; ConsumeToken(); switch (CIK) { case CIK_DefaultInitializer: Result = TryParseInitDeclaratorList(); // If we parsed a complete, ambiguous init-declarator-list, this // is only syntactically-valid if it's followed by a semicolon. if (Result == TPResult::Ambiguous && Tok.isNot(tok::semi)) Result = TPResult::False; break; case CIK_DefaultArgument: bool InvalidAsDeclaration = false; Result = TryParseParameterDeclarationClause( &InvalidAsDeclaration, /*VersusTemplateArgument=*/true); // If this is an expression or a declaration with a missing // 'typename', assume it's not a declaration. if (Result == TPResult::Ambiguous && InvalidAsDeclaration) Result = TPResult::False; break; } // If what follows could be a declaration, it is a declaration. if (Result != TPResult::False && Result != TPResult::Error) { PA.Revert(); return true; } // In the uncommon case that we decide the following tokens are part // of a template argument, revert any annotations we've performed in // those tokens. We're not going to look them up until we've parsed // the rest of the class, and that might add more declarations. PA.RevertAnnotations(); } // Keep going. We know we're inside a template argument list now. ++KnownTemplateCount; goto consume_token; case tok::eof: case tok::annot_module_begin: case tok::annot_module_end: case tok::annot_module_include: // Ran out of tokens. return false; case tok::less: // FIXME: A '<' can only start a template-id if it's preceded by an // identifier, an operator-function-id, or a literal-operator-id. ++AngleCount; goto consume_token; case tok::question: // In 'a ? b : c', 'b' can contain an unparenthesized comma. If it does, // that is *never* the end of the initializer. Skip to the ':'. if (!ConsumeAndStoreConditional(Toks)) return false; break; case tok::greatergreatergreater: if (!getLangOpts().CPlusPlus11) goto consume_token; if (AngleCount) --AngleCount; if (KnownTemplateCount) --KnownTemplateCount; // Fall through. case tok::greatergreater: if (!getLangOpts().CPlusPlus11) goto consume_token; if (AngleCount) --AngleCount; if (KnownTemplateCount) --KnownTemplateCount; // Fall through. case tok::greater: if (AngleCount) --AngleCount; if (KnownTemplateCount) --KnownTemplateCount; goto consume_token; case tok::kw_template: // 'template' identifier '<' is known to start a template argument list, // and can be used to disambiguate the parse. // FIXME: Support all forms of 'template' unqualified-id '<'. Toks.push_back(Tok); ConsumeToken(); if (Tok.is(tok::identifier)) { Toks.push_back(Tok); ConsumeToken(); if (Tok.is(tok::less)) { ++AngleCount; ++KnownTemplateCount; Toks.push_back(Tok); ConsumeToken(); } } break; case tok::kw_operator: // If 'operator' precedes other punctuation, that punctuation loses // its special behavior. Toks.push_back(Tok); ConsumeToken(); switch (Tok.getKind()) { case tok::comma: case tok::greatergreatergreater: case tok::greatergreater: case tok::greater: case tok::less: Toks.push_back(Tok); ConsumeToken(); break; default: break; } break; case tok::l_paren: // Recursively consume properly-nested parens. Toks.push_back(Tok); ConsumeParen(); ConsumeAndStoreUntil(tok::r_paren, Toks, /*StopAtSemi=*/false); break; case tok::l_square: // Recursively consume properly-nested square brackets. Toks.push_back(Tok); ConsumeBracket(); ConsumeAndStoreUntil(tok::r_square, Toks, /*StopAtSemi=*/false); break; case tok::l_brace: // Recursively consume properly-nested braces. Toks.push_back(Tok); ConsumeBrace(); ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/false); break; // Okay, we found a ']' or '}' or ')', which we think should be balanced. // Since the user wasn't looking for this token (if they were, it would // already be handled), this isn't balanced. If there is a LHS token at a // higher level, we will assume that this matches the unbalanced token // and return it. Otherwise, this is a spurious RHS token, which we // consume and pass on to downstream code to diagnose. case tok::r_paren: if (CIK == CIK_DefaultArgument) return true; // End of the default argument. if (ParenCount && !IsFirstToken) return false; Toks.push_back(Tok); ConsumeParen(); continue; case tok::r_square: if (BracketCount && !IsFirstToken) return false; Toks.push_back(Tok); ConsumeBracket(); continue; case tok::r_brace: if (BraceCount && !IsFirstToken) return false; Toks.push_back(Tok); ConsumeBrace(); continue; case tok::code_completion: Toks.push_back(Tok); ConsumeCodeCompletionToken(); break; case tok::string_literal: case tok::wide_string_literal: case tok::utf8_string_literal: case tok::utf16_string_literal: case tok::utf32_string_literal: Toks.push_back(Tok); ConsumeStringToken(); break; case tok::semi: if (CIK == CIK_DefaultInitializer) return true; // End of the default initializer. // FALL THROUGH. default: consume_token: Toks.push_back(Tok); ConsumeToken(); break; } IsFirstToken = false; } }