//===- unittest/Tooling/ASTMatchersTest.cpp - AST matcher unit tests ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "ASTMatchersTest.h" #include "clang/AST/PrettyPrinter.h" #include "clang/ASTMatchers/ASTMatchFinder.h" #include "clang/ASTMatchers/ASTMatchers.h" #include "clang/Tooling/Tooling.h" #include "llvm/ADT/Triple.h" #include "llvm/Support/Host.h" #include "gtest/gtest.h" namespace clang { namespace ast_matchers { #if GTEST_HAS_DEATH_TEST TEST(HasNameDeathTest, DiesOnEmptyName) { ASSERT_DEBUG_DEATH({ DeclarationMatcher HasEmptyName = recordDecl(hasName("")); EXPECT_TRUE(notMatches("class X {};", HasEmptyName)); }, ""); } TEST(HasNameDeathTest, DiesOnEmptyPattern) { ASSERT_DEBUG_DEATH({ DeclarationMatcher HasEmptyName = recordDecl(matchesName("")); EXPECT_TRUE(notMatches("class X {};", HasEmptyName)); }, ""); } TEST(IsDerivedFromDeathTest, DiesOnEmptyBaseName) { ASSERT_DEBUG_DEATH({ DeclarationMatcher IsDerivedFromEmpty = cxxRecordDecl(isDerivedFrom("")); EXPECT_TRUE(notMatches("class X {};", IsDerivedFromEmpty)); }, ""); } #endif TEST(Finder, DynamicOnlyAcceptsSomeMatchers) { MatchFinder Finder; EXPECT_TRUE(Finder.addDynamicMatcher(decl(), nullptr)); EXPECT_TRUE(Finder.addDynamicMatcher(callExpr(), nullptr)); EXPECT_TRUE(Finder.addDynamicMatcher(constantArrayType(hasSize(42)), nullptr)); // Do not accept non-toplevel matchers. EXPECT_FALSE(Finder.addDynamicMatcher(isArrow(), nullptr)); EXPECT_FALSE(Finder.addDynamicMatcher(hasSize(2), nullptr)); EXPECT_FALSE(Finder.addDynamicMatcher(hasName("x"), nullptr)); } TEST(Decl, MatchesDeclarations) { EXPECT_TRUE(notMatches("", decl(usingDecl()))); EXPECT_TRUE(matches("namespace x { class X {}; } using x::X;", decl(usingDecl()))); } TEST(NameableDeclaration, MatchesVariousDecls) { DeclarationMatcher NamedX = namedDecl(hasName("X")); EXPECT_TRUE(matches("typedef int X;", NamedX)); EXPECT_TRUE(matches("int X;", NamedX)); EXPECT_TRUE(matches("class foo { virtual void X(); };", NamedX)); EXPECT_TRUE(matches("void foo() try { } catch(int X) { }", NamedX)); EXPECT_TRUE(matches("void foo() { int X; }", NamedX)); EXPECT_TRUE(matches("namespace X { }", NamedX)); EXPECT_TRUE(matches("enum X { A, B, C };", NamedX)); EXPECT_TRUE(notMatches("#define X 1", NamedX)); } TEST(NameableDeclaration, REMatchesVariousDecls) { DeclarationMatcher NamedX = namedDecl(matchesName("::X")); EXPECT_TRUE(matches("typedef int Xa;", NamedX)); EXPECT_TRUE(matches("int Xb;", NamedX)); EXPECT_TRUE(matches("class foo { virtual void Xc(); };", NamedX)); EXPECT_TRUE(matches("void foo() try { } catch(int Xdef) { }", NamedX)); EXPECT_TRUE(matches("void foo() { int Xgh; }", NamedX)); EXPECT_TRUE(matches("namespace Xij { }", NamedX)); EXPECT_TRUE(matches("enum X { A, B, C };", NamedX)); EXPECT_TRUE(notMatches("#define Xkl 1", NamedX)); DeclarationMatcher StartsWithNo = namedDecl(matchesName("::no")); EXPECT_TRUE(matches("int no_foo;", StartsWithNo)); EXPECT_TRUE(matches("class foo { virtual void nobody(); };", StartsWithNo)); DeclarationMatcher Abc = namedDecl(matchesName("a.*b.*c")); EXPECT_TRUE(matches("int abc;", Abc)); EXPECT_TRUE(matches("int aFOObBARc;", Abc)); EXPECT_TRUE(notMatches("int cab;", Abc)); EXPECT_TRUE(matches("int cabc;", Abc)); DeclarationMatcher StartsWithK = namedDecl(matchesName(":k[^:]*$")); EXPECT_TRUE(matches("int k;", StartsWithK)); EXPECT_TRUE(matches("int kAbc;", StartsWithK)); EXPECT_TRUE(matches("namespace x { int kTest; }", StartsWithK)); EXPECT_TRUE(matches("class C { int k; };", StartsWithK)); EXPECT_TRUE(notMatches("class C { int ckc; };", StartsWithK)); } TEST(DeclarationMatcher, MatchClass) { DeclarationMatcher ClassMatcher(recordDecl()); llvm::Triple Triple(llvm::sys::getDefaultTargetTriple()); if (Triple.getOS() != llvm::Triple::Win32 || Triple.getEnvironment() != llvm::Triple::MSVC) EXPECT_FALSE(matches("", ClassMatcher)); else // Matches class type_info. EXPECT_TRUE(matches("", ClassMatcher)); DeclarationMatcher ClassX = recordDecl(recordDecl(hasName("X"))); EXPECT_TRUE(matches("class X;", ClassX)); EXPECT_TRUE(matches("class X {};", ClassX)); EXPECT_TRUE(matches("template<class T> class X {};", ClassX)); EXPECT_TRUE(notMatches("", ClassX)); } TEST(DeclarationMatcher, ClassIsDerived) { DeclarationMatcher IsDerivedFromX = cxxRecordDecl(isDerivedFrom("X")); EXPECT_TRUE(matches("class X {}; class Y : public X {};", IsDerivedFromX)); EXPECT_TRUE(notMatches("class X {};", IsDerivedFromX)); EXPECT_TRUE(notMatches("class X;", IsDerivedFromX)); EXPECT_TRUE(notMatches("class Y;", IsDerivedFromX)); EXPECT_TRUE(notMatches("", IsDerivedFromX)); DeclarationMatcher IsAX = cxxRecordDecl(isSameOrDerivedFrom("X")); EXPECT_TRUE(matches("class X {}; class Y : public X {};", IsAX)); EXPECT_TRUE(matches("class X {};", IsAX)); EXPECT_TRUE(matches("class X;", IsAX)); EXPECT_TRUE(notMatches("class Y;", IsAX)); EXPECT_TRUE(notMatches("", IsAX)); DeclarationMatcher ZIsDerivedFromX = cxxRecordDecl(hasName("Z"), isDerivedFrom("X")); EXPECT_TRUE( matches("class X {}; class Y : public X {}; class Z : public Y {};", ZIsDerivedFromX)); EXPECT_TRUE( matches("class X {};" "template<class T> class Y : public X {};" "class Z : public Y<int> {};", ZIsDerivedFromX)); EXPECT_TRUE(matches("class X {}; template<class T> class Z : public X {};", ZIsDerivedFromX)); EXPECT_TRUE( matches("template<class T> class X {}; " "template<class T> class Z : public X<T> {};", ZIsDerivedFromX)); EXPECT_TRUE( matches("template<class T, class U=T> class X {}; " "template<class T> class Z : public X<T> {};", ZIsDerivedFromX)); EXPECT_TRUE( notMatches("template<class X> class A { class Z : public X {}; };", ZIsDerivedFromX)); EXPECT_TRUE( matches("template<class X> class A { public: class Z : public X {}; }; " "class X{}; void y() { A<X>::Z z; }", ZIsDerivedFromX)); EXPECT_TRUE( matches("template <class T> class X {}; " "template<class Y> class A { class Z : public X<Y> {}; };", ZIsDerivedFromX)); EXPECT_TRUE( notMatches("template<template<class T> class X> class A { " " class Z : public X<int> {}; };", ZIsDerivedFromX)); EXPECT_TRUE( matches("template<template<class T> class X> class A { " " public: class Z : public X<int> {}; }; " "template<class T> class X {}; void y() { A<X>::Z z; }", ZIsDerivedFromX)); EXPECT_TRUE( notMatches("template<class X> class A { class Z : public X::D {}; };", ZIsDerivedFromX)); EXPECT_TRUE( matches("template<class X> class A { public: " " class Z : public X::D {}; }; " "class Y { public: class X {}; typedef X D; }; " "void y() { A<Y>::Z z; }", ZIsDerivedFromX)); EXPECT_TRUE( matches("class X {}; typedef X Y; class Z : public Y {};", ZIsDerivedFromX)); EXPECT_TRUE( matches("template<class T> class Y { typedef typename T::U X; " " class Z : public X {}; };", ZIsDerivedFromX)); EXPECT_TRUE(matches("class X {}; class Z : public ::X {};", ZIsDerivedFromX)); EXPECT_TRUE( notMatches("template<class T> class X {}; " "template<class T> class A { class Z : public X<T>::D {}; };", ZIsDerivedFromX)); EXPECT_TRUE( matches("template<class T> class X { public: typedef X<T> D; }; " "template<class T> class A { public: " " class Z : public X<T>::D {}; }; void y() { A<int>::Z z; }", ZIsDerivedFromX)); EXPECT_TRUE( notMatches("template<class X> class A { class Z : public X::D::E {}; };", ZIsDerivedFromX)); EXPECT_TRUE( matches("class X {}; typedef X V; typedef V W; class Z : public W {};", ZIsDerivedFromX)); EXPECT_TRUE( matches("class X {}; class Y : public X {}; " "typedef Y V; typedef V W; class Z : public W {};", ZIsDerivedFromX)); EXPECT_TRUE( matches("template<class T, class U> class X {}; " "template<class T> class A { class Z : public X<T, int> {}; };", ZIsDerivedFromX)); EXPECT_TRUE( notMatches("template<class X> class D { typedef X A; typedef A B; " " typedef B C; class Z : public C {}; };", ZIsDerivedFromX)); EXPECT_TRUE( matches("class X {}; typedef X A; typedef A B; " "class Z : public B {};", ZIsDerivedFromX)); EXPECT_TRUE( matches("class X {}; typedef X A; typedef A B; typedef B C; " "class Z : public C {};", ZIsDerivedFromX)); EXPECT_TRUE( matches("class U {}; typedef U X; typedef X V; " "class Z : public V {};", ZIsDerivedFromX)); EXPECT_TRUE( matches("class Base {}; typedef Base X; " "class Z : public Base {};", ZIsDerivedFromX)); EXPECT_TRUE( matches("class Base {}; typedef Base Base2; typedef Base2 X; " "class Z : public Base {};", ZIsDerivedFromX)); EXPECT_TRUE( notMatches("class Base {}; class Base2 {}; typedef Base2 X; " "class Z : public Base {};", ZIsDerivedFromX)); EXPECT_TRUE( matches("class A {}; typedef A X; typedef A Y; " "class Z : public Y {};", ZIsDerivedFromX)); EXPECT_TRUE( notMatches("template <typename T> class Z;" "template <> class Z<void> {};" "template <typename T> class Z : public Z<void> {};", IsDerivedFromX)); EXPECT_TRUE( matches("template <typename T> class X;" "template <> class X<void> {};" "template <typename T> class X : public X<void> {};", IsDerivedFromX)); EXPECT_TRUE(matches( "class X {};" "template <typename T> class Z;" "template <> class Z<void> {};" "template <typename T> class Z : public Z<void>, public X {};", ZIsDerivedFromX)); EXPECT_TRUE( notMatches("template<int> struct X;" "template<int i> struct X : public X<i-1> {};", cxxRecordDecl(isDerivedFrom(recordDecl(hasName("Some")))))); EXPECT_TRUE(matches( "struct A {};" "template<int> struct X;" "template<int i> struct X : public X<i-1> {};" "template<> struct X<0> : public A {};" "struct B : public X<42> {};", cxxRecordDecl(hasName("B"), isDerivedFrom(recordDecl(hasName("A")))))); // FIXME: Once we have better matchers for template type matching, // get rid of the Variable(...) matching and match the right template // declarations directly. const char *RecursiveTemplateOneParameter = "class Base1 {}; class Base2 {};" "template <typename T> class Z;" "template <> class Z<void> : public Base1 {};" "template <> class Z<int> : public Base2 {};" "template <> class Z<float> : public Z<void> {};" "template <> class Z<double> : public Z<int> {};" "template <typename T> class Z : public Z<float>, public Z<double> {};" "void f() { Z<float> z_float; Z<double> z_double; Z<char> z_char; }"; EXPECT_TRUE(matches( RecursiveTemplateOneParameter, varDecl(hasName("z_float"), hasInitializer(hasType(cxxRecordDecl(isDerivedFrom("Base1"))))))); EXPECT_TRUE(notMatches( RecursiveTemplateOneParameter, varDecl(hasName("z_float"), hasInitializer(hasType(cxxRecordDecl(isDerivedFrom("Base2"))))))); EXPECT_TRUE(matches( RecursiveTemplateOneParameter, varDecl(hasName("z_char"), hasInitializer(hasType(cxxRecordDecl(isDerivedFrom("Base1"), isDerivedFrom("Base2"))))))); const char *RecursiveTemplateTwoParameters = "class Base1 {}; class Base2 {};" "template <typename T1, typename T2> class Z;" "template <typename T> class Z<void, T> : public Base1 {};" "template <typename T> class Z<int, T> : public Base2 {};" "template <typename T> class Z<float, T> : public Z<void, T> {};" "template <typename T> class Z<double, T> : public Z<int, T> {};" "template <typename T1, typename T2> class Z : " " public Z<float, T2>, public Z<double, T2> {};" "void f() { Z<float, void> z_float; Z<double, void> z_double; " " Z<char, void> z_char; }"; EXPECT_TRUE(matches( RecursiveTemplateTwoParameters, varDecl(hasName("z_float"), hasInitializer(hasType(cxxRecordDecl(isDerivedFrom("Base1"))))))); EXPECT_TRUE(notMatches( RecursiveTemplateTwoParameters, varDecl(hasName("z_float"), hasInitializer(hasType(cxxRecordDecl(isDerivedFrom("Base2"))))))); EXPECT_TRUE(matches( RecursiveTemplateTwoParameters, varDecl(hasName("z_char"), hasInitializer(hasType(cxxRecordDecl(isDerivedFrom("Base1"), isDerivedFrom("Base2"))))))); EXPECT_TRUE(matches( "namespace ns { class X {}; class Y : public X {}; }", cxxRecordDecl(isDerivedFrom("::ns::X")))); EXPECT_TRUE(notMatches( "class X {}; class Y : public X {};", cxxRecordDecl(isDerivedFrom("::ns::X")))); EXPECT_TRUE(matches( "class X {}; class Y : public X {};", cxxRecordDecl(isDerivedFrom(recordDecl(hasName("X")).bind("test"))))); EXPECT_TRUE(matches( "template<typename T> class X {};" "template<typename T> using Z = X<T>;" "template <typename T> class Y : Z<T> {};", cxxRecordDecl(isDerivedFrom(namedDecl(hasName("X")))))); } TEST(DeclarationMatcher, hasMethod) { EXPECT_TRUE(matches("class A { void func(); };", cxxRecordDecl(hasMethod(hasName("func"))))); EXPECT_TRUE(notMatches("class A { void func(); };", cxxRecordDecl(hasMethod(isPublic())))); } TEST(DeclarationMatcher, ClassDerivedFromDependentTemplateSpecialization) { EXPECT_TRUE(matches( "template <typename T> struct A {" " template <typename T2> struct F {};" "};" "template <typename T> struct B : A<T>::template F<T> {};" "B<int> b;", cxxRecordDecl(hasName("B"), isDerivedFrom(recordDecl())))); } TEST(DeclarationMatcher, hasDeclContext) { EXPECT_TRUE(matches( "namespace N {" " namespace M {" " class D {};" " }" "}", recordDecl(hasDeclContext(namespaceDecl(hasName("M")))))); EXPECT_TRUE(notMatches( "namespace N {" " namespace M {" " class D {};" " }" "}", recordDecl(hasDeclContext(namespaceDecl(hasName("N")))))); EXPECT_TRUE(matches("namespace {" " namespace M {" " class D {};" " }" "}", recordDecl(hasDeclContext(namespaceDecl( hasName("M"), hasDeclContext(namespaceDecl())))))); EXPECT_TRUE(matches("class D{};", decl(hasDeclContext(decl())))); } TEST(DeclarationMatcher, translationUnitDecl) { const std::string Code = "int MyVar1;\n" "namespace NameSpace {\n" "int MyVar2;\n" "} // namespace NameSpace\n"; EXPECT_TRUE(matches( Code, varDecl(hasName("MyVar1"), hasDeclContext(translationUnitDecl())))); EXPECT_FALSE(matches( Code, varDecl(hasName("MyVar2"), hasDeclContext(translationUnitDecl())))); EXPECT_TRUE(matches( Code, varDecl(hasName("MyVar2"), hasDeclContext(decl(hasDeclContext(translationUnitDecl())))))); } TEST(DeclarationMatcher, LinkageSpecification) { EXPECT_TRUE(matches("extern \"C\" { void foo() {}; }", linkageSpecDecl())); EXPECT_TRUE(notMatches("void foo() {};", linkageSpecDecl())); } TEST(ClassTemplate, DoesNotMatchClass) { DeclarationMatcher ClassX = classTemplateDecl(hasName("X")); EXPECT_TRUE(notMatches("class X;", ClassX)); EXPECT_TRUE(notMatches("class X {};", ClassX)); } TEST(ClassTemplate, MatchesClassTemplate) { DeclarationMatcher ClassX = classTemplateDecl(hasName("X")); EXPECT_TRUE(matches("template<typename T> class X {};", ClassX)); EXPECT_TRUE(matches("class Z { template<class T> class X {}; };", ClassX)); } TEST(ClassTemplate, DoesNotMatchClassTemplateExplicitSpecialization) { EXPECT_TRUE(notMatches("template<typename T> class X { };" "template<> class X<int> { int a; };", classTemplateDecl(hasName("X"), hasDescendant(fieldDecl(hasName("a")))))); } TEST(ClassTemplate, DoesNotMatchClassTemplatePartialSpecialization) { EXPECT_TRUE(notMatches("template<typename T, typename U> class X { };" "template<typename T> class X<T, int> { int a; };", classTemplateDecl(hasName("X"), hasDescendant(fieldDecl(hasName("a")))))); } TEST(AllOf, AllOverloadsWork) { const char Program[] = "struct T { };" "int f(int, T*, int, int);" "void g(int x) { T t; f(x, &t, 3, 4); }"; EXPECT_TRUE(matches(Program, callExpr(allOf(callee(functionDecl(hasName("f"))), hasArgument(0, declRefExpr(to(varDecl()))))))); EXPECT_TRUE(matches(Program, callExpr(allOf(callee(functionDecl(hasName("f"))), hasArgument(0, declRefExpr(to(varDecl()))), hasArgument(1, hasType(pointsTo( recordDecl(hasName("T"))))))))); EXPECT_TRUE(matches(Program, callExpr(allOf(callee(functionDecl(hasName("f"))), hasArgument(0, declRefExpr(to(varDecl()))), hasArgument(1, hasType(pointsTo( recordDecl(hasName("T"))))), hasArgument(2, integerLiteral(equals(3))))))); EXPECT_TRUE(matches(Program, callExpr(allOf(callee(functionDecl(hasName("f"))), hasArgument(0, declRefExpr(to(varDecl()))), hasArgument(1, hasType(pointsTo( recordDecl(hasName("T"))))), hasArgument(2, integerLiteral(equals(3))), hasArgument(3, integerLiteral(equals(4))))))); } TEST(ConstructVariadic, MismatchedTypes_Regression) { EXPECT_TRUE( matches("const int a = 0;", internal::DynTypedMatcher::constructVariadic( internal::DynTypedMatcher::VO_AnyOf, ast_type_traits::ASTNodeKind::getFromNodeKind<QualType>(), {isConstQualified(), arrayType()}) .convertTo<QualType>())); } TEST(DeclarationMatcher, MatchAnyOf) { DeclarationMatcher YOrZDerivedFromX = cxxRecordDecl( anyOf(hasName("Y"), allOf(isDerivedFrom("X"), hasName("Z")))); EXPECT_TRUE(matches("class X {}; class Z : public X {};", YOrZDerivedFromX)); EXPECT_TRUE(matches("class Y {};", YOrZDerivedFromX)); EXPECT_TRUE( notMatches("class X {}; class W : public X {};", YOrZDerivedFromX)); EXPECT_TRUE(notMatches("class Z {};", YOrZDerivedFromX)); DeclarationMatcher XOrYOrZOrU = recordDecl(anyOf(hasName("X"), hasName("Y"), hasName("Z"), hasName("U"))); EXPECT_TRUE(matches("class X {};", XOrYOrZOrU)); EXPECT_TRUE(notMatches("class V {};", XOrYOrZOrU)); DeclarationMatcher XOrYOrZOrUOrV = recordDecl(anyOf(hasName("X"), hasName("Y"), hasName("Z"), hasName("U"), hasName("V"))); EXPECT_TRUE(matches("class X {};", XOrYOrZOrUOrV)); EXPECT_TRUE(matches("class Y {};", XOrYOrZOrUOrV)); EXPECT_TRUE(matches("class Z {};", XOrYOrZOrUOrV)); EXPECT_TRUE(matches("class U {};", XOrYOrZOrUOrV)); EXPECT_TRUE(matches("class V {};", XOrYOrZOrUOrV)); EXPECT_TRUE(notMatches("class A {};", XOrYOrZOrUOrV)); StatementMatcher MixedTypes = stmt(anyOf(ifStmt(), binaryOperator())); EXPECT_TRUE(matches("int F() { return 1 + 2; }", MixedTypes)); EXPECT_TRUE(matches("int F() { if (true) return 1; }", MixedTypes)); EXPECT_TRUE(notMatches("int F() { return 1; }", MixedTypes)); EXPECT_TRUE( matches("void f() try { } catch (int) { } catch (...) { }", cxxCatchStmt(anyOf(hasDescendant(varDecl()), isCatchAll())))); } TEST(DeclarationMatcher, MatchHas) { DeclarationMatcher HasClassX = recordDecl(has(recordDecl(hasName("X")))); EXPECT_TRUE(matches("class Y { class X {}; };", HasClassX)); EXPECT_TRUE(matches("class X {};", HasClassX)); DeclarationMatcher YHasClassX = recordDecl(hasName("Y"), has(recordDecl(hasName("X")))); EXPECT_TRUE(matches("class Y { class X {}; };", YHasClassX)); EXPECT_TRUE(notMatches("class X {};", YHasClassX)); EXPECT_TRUE( notMatches("class Y { class Z { class X {}; }; };", YHasClassX)); } TEST(DeclarationMatcher, MatchHasRecursiveAllOf) { DeclarationMatcher Recursive = recordDecl( has(recordDecl( has(recordDecl(hasName("X"))), has(recordDecl(hasName("Y"))), hasName("Z"))), has(recordDecl( has(recordDecl(hasName("A"))), has(recordDecl(hasName("B"))), hasName("C"))), hasName("F")); EXPECT_TRUE(matches( "class F {" " class Z {" " class X {};" " class Y {};" " };" " class C {" " class A {};" " class B {};" " };" "};", Recursive)); EXPECT_TRUE(matches( "class F {" " class Z {" " class A {};" " class X {};" " class Y {};" " };" " class C {" " class X {};" " class A {};" " class B {};" " };" "};", Recursive)); EXPECT_TRUE(matches( "class O1 {" " class O2 {" " class F {" " class Z {" " class A {};" " class X {};" " class Y {};" " };" " class C {" " class X {};" " class A {};" " class B {};" " };" " };" " };" "};", Recursive)); } TEST(DeclarationMatcher, MatchHasRecursiveAnyOf) { DeclarationMatcher Recursive = recordDecl( anyOf( has(recordDecl( anyOf( has(recordDecl( hasName("X"))), has(recordDecl( hasName("Y"))), hasName("Z")))), has(recordDecl( anyOf( hasName("C"), has(recordDecl( hasName("A"))), has(recordDecl( hasName("B")))))), hasName("F"))); EXPECT_TRUE(matches("class F {};", Recursive)); EXPECT_TRUE(matches("class Z {};", Recursive)); EXPECT_TRUE(matches("class C {};", Recursive)); EXPECT_TRUE(matches("class M { class N { class X {}; }; };", Recursive)); EXPECT_TRUE(matches("class M { class N { class B {}; }; };", Recursive)); EXPECT_TRUE( matches("class O1 { class O2 {" " class M { class N { class B {}; }; }; " "}; };", Recursive)); } TEST(DeclarationMatcher, MatchNot) { DeclarationMatcher NotClassX = cxxRecordDecl( isDerivedFrom("Y"), unless(hasName("X"))); EXPECT_TRUE(notMatches("", NotClassX)); EXPECT_TRUE(notMatches("class Y {};", NotClassX)); EXPECT_TRUE(matches("class Y {}; class Z : public Y {};", NotClassX)); EXPECT_TRUE(notMatches("class Y {}; class X : public Y {};", NotClassX)); EXPECT_TRUE( notMatches("class Y {}; class Z {}; class X : public Y {};", NotClassX)); DeclarationMatcher ClassXHasNotClassY = recordDecl( hasName("X"), has(recordDecl(hasName("Z"))), unless( has(recordDecl(hasName("Y"))))); EXPECT_TRUE(matches("class X { class Z {}; };", ClassXHasNotClassY)); EXPECT_TRUE(notMatches("class X { class Y {}; class Z {}; };", ClassXHasNotClassY)); DeclarationMatcher NamedNotRecord = namedDecl(hasName("Foo"), unless(recordDecl())); EXPECT_TRUE(matches("void Foo(){}", NamedNotRecord)); EXPECT_TRUE(notMatches("struct Foo {};", NamedNotRecord)); } TEST(DeclarationMatcher, HasDescendant) { DeclarationMatcher ZDescendantClassX = recordDecl( hasDescendant(recordDecl(hasName("X"))), hasName("Z")); EXPECT_TRUE(matches("class Z { class X {}; };", ZDescendantClassX)); EXPECT_TRUE( matches("class Z { class Y { class X {}; }; };", ZDescendantClassX)); EXPECT_TRUE( matches("class Z { class A { class Y { class X {}; }; }; };", ZDescendantClassX)); EXPECT_TRUE( matches("class Z { class A { class B { class Y { class X {}; }; }; }; };", ZDescendantClassX)); EXPECT_TRUE(notMatches("class Z {};", ZDescendantClassX)); DeclarationMatcher ZDescendantClassXHasClassY = recordDecl( hasDescendant(recordDecl(has(recordDecl(hasName("Y"))), hasName("X"))), hasName("Z")); EXPECT_TRUE(matches("class Z { class X { class Y {}; }; };", ZDescendantClassXHasClassY)); EXPECT_TRUE( matches("class Z { class A { class B { class X { class Y {}; }; }; }; };", ZDescendantClassXHasClassY)); EXPECT_TRUE(notMatches( "class Z {" " class A {" " class B {" " class X {" " class C {" " class Y {};" " };" " };" " }; " " };" "};", ZDescendantClassXHasClassY)); DeclarationMatcher ZDescendantClassXDescendantClassY = recordDecl( hasDescendant(recordDecl(hasDescendant(recordDecl(hasName("Y"))), hasName("X"))), hasName("Z")); EXPECT_TRUE( matches("class Z { class A { class X { class B { class Y {}; }; }; }; };", ZDescendantClassXDescendantClassY)); EXPECT_TRUE(matches( "class Z {" " class A {" " class X {" " class B {" " class Y {};" " };" " class Y {};" " };" " };" "};", ZDescendantClassXDescendantClassY)); } TEST(DeclarationMatcher, HasDescendantMemoization) { DeclarationMatcher CannotMemoize = decl(hasDescendant(typeLoc().bind("x")), has(decl())); EXPECT_TRUE(matches("void f() { int i; }", CannotMemoize)); } TEST(DeclarationMatcher, HasDescendantMemoizationUsesRestrictKind) { auto Name = hasName("i"); auto VD = internal::Matcher<VarDecl>(Name).dynCastTo<Decl>(); auto RD = internal::Matcher<RecordDecl>(Name).dynCastTo<Decl>(); // Matching VD first should not make a cache hit for RD. EXPECT_TRUE(notMatches("void f() { int i; }", decl(hasDescendant(VD), hasDescendant(RD)))); EXPECT_TRUE(notMatches("void f() { int i; }", decl(hasDescendant(RD), hasDescendant(VD)))); // Not matching RD first should not make a cache hit for VD either. EXPECT_TRUE(matches("void f() { int i; }", decl(anyOf(hasDescendant(RD), hasDescendant(VD))))); } TEST(DeclarationMatcher, HasAttr) { EXPECT_TRUE(matches("struct __attribute__((warn_unused)) X {};", decl(hasAttr(clang::attr::WarnUnused)))); EXPECT_FALSE(matches("struct X {};", decl(hasAttr(clang::attr::WarnUnused)))); } TEST(DeclarationMatcher, MatchCudaDecl) { EXPECT_TRUE(matchesWithCuda("__global__ void f() { }" "void g() { f<<<1, 2>>>(); }", cudaKernelCallExpr())); EXPECT_TRUE(matchesWithCuda("__attribute__((device)) void f() {}", hasAttr(clang::attr::CUDADevice))); EXPECT_TRUE(notMatchesWithCuda("void f() {}", cudaKernelCallExpr())); EXPECT_FALSE(notMatchesWithCuda("__attribute__((global)) void f() {}", hasAttr(clang::attr::CUDAGlobal))); } // Implements a run method that returns whether BoundNodes contains a // Decl bound to Id that can be dynamically cast to T. // Optionally checks that the check succeeded a specific number of times. template <typename T> class VerifyIdIsBoundTo : public BoundNodesCallback { public: // Create an object that checks that a node of type \c T was bound to \c Id. // Does not check for a certain number of matches. explicit VerifyIdIsBoundTo(llvm::StringRef Id) : Id(Id), ExpectedCount(-1), Count(0) {} // Create an object that checks that a node of type \c T was bound to \c Id. // Checks that there were exactly \c ExpectedCount matches. VerifyIdIsBoundTo(llvm::StringRef Id, int ExpectedCount) : Id(Id), ExpectedCount(ExpectedCount), Count(0) {} // Create an object that checks that a node of type \c T was bound to \c Id. // Checks that there was exactly one match with the name \c ExpectedName. // Note that \c T must be a NamedDecl for this to work. VerifyIdIsBoundTo(llvm::StringRef Id, llvm::StringRef ExpectedName, int ExpectedCount = 1) : Id(Id), ExpectedCount(ExpectedCount), Count(0), ExpectedName(ExpectedName) {} void onEndOfTranslationUnit() override { if (ExpectedCount != -1) EXPECT_EQ(ExpectedCount, Count); if (!ExpectedName.empty()) EXPECT_EQ(ExpectedName, Name); Count = 0; Name.clear(); } ~VerifyIdIsBoundTo() override { EXPECT_EQ(0, Count); EXPECT_EQ("", Name); } bool run(const BoundNodes *Nodes) override { const BoundNodes::IDToNodeMap &M = Nodes->getMap(); if (Nodes->getNodeAs<T>(Id)) { ++Count; if (const NamedDecl *Named = Nodes->getNodeAs<NamedDecl>(Id)) { Name = Named->getNameAsString(); } else if (const NestedNameSpecifier *NNS = Nodes->getNodeAs<NestedNameSpecifier>(Id)) { llvm::raw_string_ostream OS(Name); NNS->print(OS, PrintingPolicy(LangOptions())); } BoundNodes::IDToNodeMap::const_iterator I = M.find(Id); EXPECT_NE(M.end(), I); if (I != M.end()) EXPECT_EQ(Nodes->getNodeAs<T>(Id), I->second.get<T>()); return true; } EXPECT_TRUE(M.count(Id) == 0 || M.find(Id)->second.template get<T>() == nullptr); return false; } bool run(const BoundNodes *Nodes, ASTContext *Context) override { return run(Nodes); } private: const std::string Id; const int ExpectedCount; int Count; const std::string ExpectedName; std::string Name; }; TEST(HasDescendant, MatchesDescendantTypes) { EXPECT_TRUE(matches("void f() { int i = 3; }", decl(hasDescendant(loc(builtinType()))))); EXPECT_TRUE(matches("void f() { int i = 3; }", stmt(hasDescendant(builtinType())))); EXPECT_TRUE(matches("void f() { int i = 3; }", stmt(hasDescendant(loc(builtinType()))))); EXPECT_TRUE(matches("void f() { int i = 3; }", stmt(hasDescendant(qualType(builtinType()))))); EXPECT_TRUE(notMatches("void f() { float f = 2.0f; }", stmt(hasDescendant(isInteger())))); EXPECT_TRUE(matchAndVerifyResultTrue( "void f() { int a; float c; int d; int e; }", functionDecl(forEachDescendant( varDecl(hasDescendant(isInteger())).bind("x"))), new VerifyIdIsBoundTo<Decl>("x", 3))); } TEST(HasDescendant, MatchesDescendantsOfTypes) { EXPECT_TRUE(matches("void f() { int*** i; }", qualType(hasDescendant(builtinType())))); EXPECT_TRUE(matches("void f() { int*** i; }", qualType(hasDescendant( pointerType(pointee(builtinType())))))); EXPECT_TRUE(matches("void f() { int*** i; }", typeLoc(hasDescendant(loc(builtinType()))))); EXPECT_TRUE(matchAndVerifyResultTrue( "void f() { int*** i; }", qualType(asString("int ***"), forEachDescendant(pointerType().bind("x"))), new VerifyIdIsBoundTo<Type>("x", 2))); } TEST(Has, MatchesChildrenOfTypes) { EXPECT_TRUE(matches("int i;", varDecl(hasName("i"), has(isInteger())))); EXPECT_TRUE(notMatches("int** i;", varDecl(hasName("i"), has(isInteger())))); EXPECT_TRUE(matchAndVerifyResultTrue( "int (*f)(float, int);", qualType(functionType(), forEach(qualType(isInteger()).bind("x"))), new VerifyIdIsBoundTo<QualType>("x", 2))); } TEST(Has, MatchesChildTypes) { EXPECT_TRUE(matches( "int* i;", varDecl(hasName("i"), hasType(qualType(has(builtinType())))))); EXPECT_TRUE(notMatches( "int* i;", varDecl(hasName("i"), hasType(qualType(has(pointerType())))))); } TEST(ValueDecl, Matches) { EXPECT_TRUE(matches("enum EnumType { EnumValue };", valueDecl(hasType(asString("enum EnumType"))))); EXPECT_TRUE(matches("void FunctionDecl();", valueDecl(hasType(asString("void (void)"))))); } TEST(Enum, DoesNotMatchClasses) { EXPECT_TRUE(notMatches("class X {};", enumDecl(hasName("X")))); } TEST(Enum, MatchesEnums) { EXPECT_TRUE(matches("enum X {};", enumDecl(hasName("X")))); } TEST(EnumConstant, Matches) { DeclarationMatcher Matcher = enumConstantDecl(hasName("A")); EXPECT_TRUE(matches("enum X{ A };", Matcher)); EXPECT_TRUE(notMatches("enum X{ B };", Matcher)); EXPECT_TRUE(notMatches("enum X {};", Matcher)); } TEST(StatementMatcher, Has) { StatementMatcher HasVariableI = expr(hasType(pointsTo(recordDecl(hasName("X")))), has(declRefExpr(to(varDecl(hasName("i")))))); EXPECT_TRUE(matches( "class X; X *x(int); void c() { int i; x(i); }", HasVariableI)); EXPECT_TRUE(notMatches( "class X; X *x(int); void c() { int i; x(42); }", HasVariableI)); } TEST(StatementMatcher, HasDescendant) { StatementMatcher HasDescendantVariableI = expr(hasType(pointsTo(recordDecl(hasName("X")))), hasDescendant(declRefExpr(to(varDecl(hasName("i")))))); EXPECT_TRUE(matches( "class X; X *x(bool); bool b(int); void c() { int i; x(b(i)); }", HasDescendantVariableI)); EXPECT_TRUE(notMatches( "class X; X *x(bool); bool b(int); void c() { int i; x(b(42)); }", HasDescendantVariableI)); } TEST(TypeMatcher, MatchesClassType) { TypeMatcher TypeA = hasDeclaration(recordDecl(hasName("A"))); EXPECT_TRUE(matches("class A { public: A *a; };", TypeA)); EXPECT_TRUE(notMatches("class A {};", TypeA)); TypeMatcher TypeDerivedFromA = hasDeclaration(cxxRecordDecl(isDerivedFrom("A"))); EXPECT_TRUE(matches("class A {}; class B : public A { public: B *b; };", TypeDerivedFromA)); EXPECT_TRUE(notMatches("class A {};", TypeA)); TypeMatcher TypeAHasClassB = hasDeclaration( recordDecl(hasName("A"), has(recordDecl(hasName("B"))))); EXPECT_TRUE( matches("class A { public: A *a; class B {}; };", TypeAHasClassB)); EXPECT_TRUE(matchesC("struct S {}; void f(void) { struct S s; }", varDecl(hasType(namedDecl(hasName("S")))))); } TEST(TypeMatcher, MatchesDeclTypes) { // TypedefType -> TypedefNameDecl EXPECT_TRUE(matches("typedef int I; void f(I i);", parmVarDecl(hasType(namedDecl(hasName("I")))))); // ObjCObjectPointerType EXPECT_TRUE(matchesObjC("@interface Foo @end void f(Foo *f);", parmVarDecl(hasType(objcObjectPointerType())))); // ObjCObjectPointerType -> ObjCInterfaceType -> ObjCInterfaceDecl EXPECT_TRUE(matchesObjC( "@interface Foo @end void f(Foo *f);", parmVarDecl(hasType(pointsTo(objcInterfaceDecl(hasName("Foo"))))))); // TemplateTypeParmType EXPECT_TRUE(matches("template <typename T> void f(T t);", parmVarDecl(hasType(templateTypeParmType())))); // TemplateTypeParmType -> TemplateTypeParmDecl EXPECT_TRUE(matches("template <typename T> void f(T t);", parmVarDecl(hasType(namedDecl(hasName("T")))))); // InjectedClassNameType EXPECT_TRUE(matches("template <typename T> struct S {" " void f(S s);" "};", parmVarDecl(hasType(injectedClassNameType())))); EXPECT_TRUE(notMatches("template <typename T> struct S {" " void g(S<T> s);" "};", parmVarDecl(hasType(injectedClassNameType())))); // InjectedClassNameType -> CXXRecordDecl EXPECT_TRUE(matches("template <typename T> struct S {" " void f(S s);" "};", parmVarDecl(hasType(namedDecl(hasName("S")))))); static const char Using[] = "template <typename T>" "struct Base {" " typedef T Foo;" "};" "" "template <typename T>" "struct S : private Base<T> {" " using typename Base<T>::Foo;" " void f(Foo);" "};"; // UnresolvedUsingTypenameDecl EXPECT_TRUE(matches(Using, unresolvedUsingTypenameDecl(hasName("Foo")))); // UnresolvedUsingTypenameType -> UnresolvedUsingTypenameDecl EXPECT_TRUE(matches(Using, parmVarDecl(hasType(namedDecl(hasName("Foo")))))); } TEST(Matcher, BindMatchedNodes) { DeclarationMatcher ClassX = has(recordDecl(hasName("::X")).bind("x")); EXPECT_TRUE(matchAndVerifyResultTrue("class X {};", ClassX, new VerifyIdIsBoundTo<CXXRecordDecl>("x"))); EXPECT_TRUE(matchAndVerifyResultFalse("class X {};", ClassX, new VerifyIdIsBoundTo<CXXRecordDecl>("other-id"))); TypeMatcher TypeAHasClassB = hasDeclaration( recordDecl(hasName("A"), has(recordDecl(hasName("B")).bind("b")))); EXPECT_TRUE(matchAndVerifyResultTrue("class A { public: A *a; class B {}; };", TypeAHasClassB, new VerifyIdIsBoundTo<Decl>("b"))); StatementMatcher MethodX = callExpr(callee(cxxMethodDecl(hasName("x")))).bind("x"); EXPECT_TRUE(matchAndVerifyResultTrue("class A { void x() { x(); } };", MethodX, new VerifyIdIsBoundTo<CXXMemberCallExpr>("x"))); } TEST(Matcher, BindTheSameNameInAlternatives) { StatementMatcher matcher = anyOf( binaryOperator(hasOperatorName("+"), hasLHS(expr().bind("x")), hasRHS(integerLiteral(equals(0)))), binaryOperator(hasOperatorName("+"), hasLHS(integerLiteral(equals(0))), hasRHS(expr().bind("x")))); EXPECT_TRUE(matchAndVerifyResultTrue( // The first branch of the matcher binds x to 0 but then fails. // The second branch binds x to f() and succeeds. "int f() { return 0 + f(); }", matcher, new VerifyIdIsBoundTo<CallExpr>("x"))); } TEST(Matcher, BindsIDForMemoizedResults) { // Using the same matcher in two match expressions will make memoization // kick in. DeclarationMatcher ClassX = recordDecl(hasName("X")).bind("x"); EXPECT_TRUE(matchAndVerifyResultTrue( "class A { class B { class X {}; }; };", DeclarationMatcher(anyOf( recordDecl(hasName("A"), hasDescendant(ClassX)), recordDecl(hasName("B"), hasDescendant(ClassX)))), new VerifyIdIsBoundTo<Decl>("x", 2))); } TEST(HasDeclaration, HasDeclarationOfEnumType) { EXPECT_TRUE(matches("enum X {}; void y(X *x) { x; }", expr(hasType(pointsTo( qualType(hasDeclaration(enumDecl(hasName("X"))))))))); } TEST(HasDeclaration, HasGetDeclTraitTest) { EXPECT_TRUE(internal::has_getDecl<TypedefType>::value); EXPECT_TRUE(internal::has_getDecl<RecordType>::value); EXPECT_FALSE(internal::has_getDecl<TemplateSpecializationType>::value); } TEST(HasDeclaration, HasDeclarationOfTypeWithDecl) { EXPECT_TRUE(matches("typedef int X; X a;", varDecl(hasName("a"), hasType(typedefType(hasDeclaration(decl())))))); // FIXME: Add tests for other types with getDecl() (e.g. RecordType) } TEST(HasDeclaration, HasDeclarationOfTemplateSpecializationType) { EXPECT_TRUE(matches("template <typename T> class A {}; A<int> a;", varDecl(hasType(templateSpecializationType( hasDeclaration(namedDecl(hasName("A")))))))); } TEST(HasType, TakesQualTypeMatcherAndMatchesExpr) { TypeMatcher ClassX = hasDeclaration(recordDecl(hasName("X"))); EXPECT_TRUE( matches("class X {}; void y(X &x) { x; }", expr(hasType(ClassX)))); EXPECT_TRUE( notMatches("class X {}; void y(X *x) { x; }", expr(hasType(ClassX)))); EXPECT_TRUE( matches("class X {}; void y(X *x) { x; }", expr(hasType(pointsTo(ClassX))))); } TEST(HasType, TakesQualTypeMatcherAndMatchesValueDecl) { TypeMatcher ClassX = hasDeclaration(recordDecl(hasName("X"))); EXPECT_TRUE( matches("class X {}; void y() { X x; }", varDecl(hasType(ClassX)))); EXPECT_TRUE( notMatches("class X {}; void y() { X *x; }", varDecl(hasType(ClassX)))); EXPECT_TRUE( matches("class X {}; void y() { X *x; }", varDecl(hasType(pointsTo(ClassX))))); } TEST(HasType, TakesDeclMatcherAndMatchesExpr) { DeclarationMatcher ClassX = recordDecl(hasName("X")); EXPECT_TRUE( matches("class X {}; void y(X &x) { x; }", expr(hasType(ClassX)))); EXPECT_TRUE( notMatches("class X {}; void y(X *x) { x; }", expr(hasType(ClassX)))); } TEST(HasType, TakesDeclMatcherAndMatchesValueDecl) { DeclarationMatcher ClassX = recordDecl(hasName("X")); EXPECT_TRUE( matches("class X {}; void y() { X x; }", varDecl(hasType(ClassX)))); EXPECT_TRUE( notMatches("class X {}; void y() { X *x; }", varDecl(hasType(ClassX)))); } TEST(HasTypeLoc, MatchesDeclaratorDecls) { EXPECT_TRUE(matches("int x;", varDecl(hasName("x"), hasTypeLoc(loc(asString("int")))))); // Make sure we don't crash on implicit constructors. EXPECT_TRUE(notMatches("class X {}; X x;", declaratorDecl(hasTypeLoc(loc(asString("int")))))); } TEST(Matcher, Call) { // FIXME: Do we want to overload Call() to directly take // Matcher<Decl>, too? StatementMatcher MethodX = callExpr(hasDeclaration(cxxMethodDecl(hasName("x")))); EXPECT_TRUE(matches("class Y { void x() { x(); } };", MethodX)); EXPECT_TRUE(notMatches("class Y { void x() {} };", MethodX)); StatementMatcher MethodOnY = cxxMemberCallExpr(on(hasType(recordDecl(hasName("Y"))))); EXPECT_TRUE( matches("class Y { public: void x(); }; void z() { Y y; y.x(); }", MethodOnY)); EXPECT_TRUE( matches("class Y { public: void x(); }; void z(Y &y) { y.x(); }", MethodOnY)); EXPECT_TRUE( notMatches("class Y { public: void x(); }; void z(Y *&y) { y->x(); }", MethodOnY)); EXPECT_TRUE( notMatches("class Y { public: void x(); }; void z(Y y[]) { y->x(); }", MethodOnY)); EXPECT_TRUE( notMatches("class Y { public: void x(); }; void z() { Y *y; y->x(); }", MethodOnY)); StatementMatcher MethodOnYPointer = cxxMemberCallExpr(on(hasType(pointsTo(recordDecl(hasName("Y")))))); EXPECT_TRUE( matches("class Y { public: void x(); }; void z() { Y *y; y->x(); }", MethodOnYPointer)); EXPECT_TRUE( matches("class Y { public: void x(); }; void z(Y *&y) { y->x(); }", MethodOnYPointer)); EXPECT_TRUE( matches("class Y { public: void x(); }; void z(Y y[]) { y->x(); }", MethodOnYPointer)); EXPECT_TRUE( notMatches("class Y { public: void x(); }; void z() { Y y; y.x(); }", MethodOnYPointer)); EXPECT_TRUE( notMatches("class Y { public: void x(); }; void z(Y &y) { y.x(); }", MethodOnYPointer)); } TEST(Matcher, Lambda) { EXPECT_TRUE(matches("auto f = [] (int i) { return i; };", lambdaExpr())); } TEST(Matcher, ForRange) { EXPECT_TRUE(matches("int as[] = { 1, 2, 3 };" "void f() { for (auto &a : as); }", cxxForRangeStmt())); EXPECT_TRUE(notMatches("void f() { for (int i; i<5; ++i); }", cxxForRangeStmt())); } TEST(Matcher, SubstNonTypeTemplateParm) { EXPECT_FALSE(matches("template<int N>\n" "struct A { static const int n = 0; };\n" "struct B : public A<42> {};", substNonTypeTemplateParmExpr())); EXPECT_TRUE(matches("template<int N>\n" "struct A { static const int n = N; };\n" "struct B : public A<42> {};", substNonTypeTemplateParmExpr())); } TEST(Matcher, NonTypeTemplateParmDecl) { EXPECT_TRUE(matches("template <int N> void f();", nonTypeTemplateParmDecl(hasName("N")))); EXPECT_TRUE( notMatches("template <typename T> void f();", nonTypeTemplateParmDecl())); } TEST(Matcher, templateTypeParmDecl) { EXPECT_TRUE(matches("template <typename T> void f();", templateTypeParmDecl(hasName("T")))); EXPECT_TRUE( notMatches("template <int N> void f();", templateTypeParmDecl())); } TEST(Matcher, UserDefinedLiteral) { EXPECT_TRUE(matches("constexpr char operator \"\" _inc (const char i) {" " return i + 1;" "}" "char c = 'a'_inc;", userDefinedLiteral())); } TEST(Matcher, FlowControl) { EXPECT_TRUE(matches("void f() { while(true) { break; } }", breakStmt())); EXPECT_TRUE(matches("void f() { while(true) { continue; } }", continueStmt())); EXPECT_TRUE(matches("void f() { goto FOO; FOO: ;}", gotoStmt())); EXPECT_TRUE(matches("void f() { goto FOO; FOO: ;}", labelStmt())); EXPECT_TRUE(matches("void f() { return; }", returnStmt())); } TEST(HasType, MatchesAsString) { EXPECT_TRUE( matches("class Y { public: void x(); }; void z() {Y* y; y->x(); }", cxxMemberCallExpr(on(hasType(asString("class Y *")))))); EXPECT_TRUE( matches("class X { void x(int x) {} };", cxxMethodDecl(hasParameter(0, hasType(asString("int")))))); EXPECT_TRUE(matches("namespace ns { struct A {}; } struct B { ns::A a; };", fieldDecl(hasType(asString("ns::A"))))); EXPECT_TRUE(matches("namespace { struct A {}; } struct B { A a; };", fieldDecl(hasType(asString("struct (anonymous namespace)::A"))))); } TEST(Matcher, OverloadedOperatorCall) { StatementMatcher OpCall = cxxOperatorCallExpr(); // Unary operator EXPECT_TRUE(matches("class Y { }; " "bool operator!(Y x) { return false; }; " "Y y; bool c = !y;", OpCall)); // No match -- special operators like "new", "delete" // FIXME: operator new takes size_t, for which we need stddef.h, for which // we need to figure out include paths in the test. // EXPECT_TRUE(NotMatches("#include <stddef.h>\n" // "class Y { }; " // "void *operator new(size_t size) { return 0; } " // "Y *y = new Y;", OpCall)); EXPECT_TRUE(notMatches("class Y { }; " "void operator delete(void *p) { } " "void a() {Y *y = new Y; delete y;}", OpCall)); // Binary operator EXPECT_TRUE(matches("class Y { }; " "bool operator&&(Y x, Y y) { return true; }; " "Y a; Y b; bool c = a && b;", OpCall)); // No match -- normal operator, not an overloaded one. EXPECT_TRUE(notMatches("bool x = true, y = true; bool t = x && y;", OpCall)); EXPECT_TRUE(notMatches("int t = 5 << 2;", OpCall)); } TEST(Matcher, HasOperatorNameForOverloadedOperatorCall) { StatementMatcher OpCallAndAnd = cxxOperatorCallExpr(hasOverloadedOperatorName("&&")); EXPECT_TRUE(matches("class Y { }; " "bool operator&&(Y x, Y y) { return true; }; " "Y a; Y b; bool c = a && b;", OpCallAndAnd)); StatementMatcher OpCallLessLess = cxxOperatorCallExpr(hasOverloadedOperatorName("<<")); EXPECT_TRUE(notMatches("class Y { }; " "bool operator&&(Y x, Y y) { return true; }; " "Y a; Y b; bool c = a && b;", OpCallLessLess)); StatementMatcher OpStarCall = cxxOperatorCallExpr(hasOverloadedOperatorName("*")); EXPECT_TRUE(matches("class Y; int operator*(Y &); void f(Y &y) { *y; }", OpStarCall)); DeclarationMatcher ClassWithOpStar = cxxRecordDecl(hasMethod(hasOverloadedOperatorName("*"))); EXPECT_TRUE(matches("class Y { int operator*(); };", ClassWithOpStar)); EXPECT_TRUE(notMatches("class Y { void myOperator(); };", ClassWithOpStar)) ; DeclarationMatcher AnyOpStar = functionDecl(hasOverloadedOperatorName("*")); EXPECT_TRUE(matches("class Y; int operator*(Y &);", AnyOpStar)); EXPECT_TRUE(matches("class Y { int operator*(); };", AnyOpStar)); } TEST(Matcher, NestedOverloadedOperatorCalls) { EXPECT_TRUE(matchAndVerifyResultTrue( "class Y { }; " "Y& operator&&(Y& x, Y& y) { return x; }; " "Y a; Y b; Y c; Y d = a && b && c;", cxxOperatorCallExpr(hasOverloadedOperatorName("&&")).bind("x"), new VerifyIdIsBoundTo<CXXOperatorCallExpr>("x", 2))); EXPECT_TRUE(matches("class Y { }; " "Y& operator&&(Y& x, Y& y) { return x; }; " "Y a; Y b; Y c; Y d = a && b && c;", cxxOperatorCallExpr(hasParent(cxxOperatorCallExpr())))); EXPECT_TRUE( matches("class Y { }; " "Y& operator&&(Y& x, Y& y) { return x; }; " "Y a; Y b; Y c; Y d = a && b && c;", cxxOperatorCallExpr(hasDescendant(cxxOperatorCallExpr())))); } TEST(Matcher, ThisPointerType) { StatementMatcher MethodOnY = cxxMemberCallExpr(thisPointerType(recordDecl(hasName("Y")))); EXPECT_TRUE( matches("class Y { public: void x(); }; void z() { Y y; y.x(); }", MethodOnY)); EXPECT_TRUE( matches("class Y { public: void x(); }; void z(Y &y) { y.x(); }", MethodOnY)); EXPECT_TRUE( matches("class Y { public: void x(); }; void z(Y *&y) { y->x(); }", MethodOnY)); EXPECT_TRUE( matches("class Y { public: void x(); }; void z(Y y[]) { y->x(); }", MethodOnY)); EXPECT_TRUE( matches("class Y { public: void x(); }; void z() { Y *y; y->x(); }", MethodOnY)); EXPECT_TRUE(matches( "class Y {" " public: virtual void x();" "};" "class X : public Y {" " public: virtual void x();" "};" "void z() { X *x; x->Y::x(); }", MethodOnY)); } TEST(Matcher, VariableUsage) { StatementMatcher Reference = declRefExpr(to( varDecl(hasInitializer( cxxMemberCallExpr(thisPointerType(recordDecl(hasName("Y")))))))); EXPECT_TRUE(matches( "class Y {" " public:" " bool x() const;" "};" "void z(const Y &y) {" " bool b = y.x();" " if (b) {}" "}", Reference)); EXPECT_TRUE(notMatches( "class Y {" " public:" " bool x() const;" "};" "void z(const Y &y) {" " bool b = y.x();" "}", Reference)); } TEST(Matcher, VarDecl_Storage) { auto M = varDecl(hasName("X"), hasLocalStorage()); EXPECT_TRUE(matches("void f() { int X; }", M)); EXPECT_TRUE(notMatches("int X;", M)); EXPECT_TRUE(notMatches("void f() { static int X; }", M)); M = varDecl(hasName("X"), hasGlobalStorage()); EXPECT_TRUE(notMatches("void f() { int X; }", M)); EXPECT_TRUE(matches("int X;", M)); EXPECT_TRUE(matches("void f() { static int X; }", M)); } TEST(Matcher, VarDecl_StorageDuration) { std::string T = "void f() { int x; static int y; } int a;"; EXPECT_TRUE(matches(T, varDecl(hasName("x"), hasAutomaticStorageDuration()))); EXPECT_TRUE( notMatches(T, varDecl(hasName("y"), hasAutomaticStorageDuration()))); EXPECT_TRUE( notMatches(T, varDecl(hasName("a"), hasAutomaticStorageDuration()))); EXPECT_TRUE(matches(T, varDecl(hasName("y"), hasStaticStorageDuration()))); EXPECT_TRUE(matches(T, varDecl(hasName("a"), hasStaticStorageDuration()))); EXPECT_TRUE(notMatches(T, varDecl(hasName("x"), hasStaticStorageDuration()))); // FIXME: It is really hard to test with thread_local itself because not all // targets support TLS, which causes this to be an error depending on what // platform the test is being run on. We do not have access to the TargetInfo // object to be able to test whether the platform supports TLS or not. EXPECT_TRUE(notMatches(T, varDecl(hasName("x"), hasThreadStorageDuration()))); EXPECT_TRUE(notMatches(T, varDecl(hasName("y"), hasThreadStorageDuration()))); EXPECT_TRUE(notMatches(T, varDecl(hasName("a"), hasThreadStorageDuration()))); } TEST(Matcher, FindsVarDeclInFunctionParameter) { EXPECT_TRUE(matches( "void f(int i) {}", varDecl(hasName("i")))); } TEST(Matcher, CalledVariable) { StatementMatcher CallOnVariableY = cxxMemberCallExpr(on(declRefExpr(to(varDecl(hasName("y")))))); EXPECT_TRUE(matches( "class Y { public: void x() { Y y; y.x(); } };", CallOnVariableY)); EXPECT_TRUE(matches( "class Y { public: void x() const { Y y; y.x(); } };", CallOnVariableY)); EXPECT_TRUE(matches( "class Y { public: void x(); };" "class X : public Y { void z() { X y; y.x(); } };", CallOnVariableY)); EXPECT_TRUE(matches( "class Y { public: void x(); };" "class X : public Y { void z() { X *y; y->x(); } };", CallOnVariableY)); EXPECT_TRUE(notMatches( "class Y { public: void x(); };" "class X : public Y { void z() { unsigned long y; ((X*)y)->x(); } };", CallOnVariableY)); } TEST(UnaryExprOrTypeTraitExpr, MatchesSizeOfAndAlignOf) { EXPECT_TRUE(matches("void x() { int a = sizeof(a); }", unaryExprOrTypeTraitExpr())); EXPECT_TRUE(notMatches("void x() { int a = sizeof(a); }", alignOfExpr(anything()))); // FIXME: Uncomment once alignof is enabled. // EXPECT_TRUE(matches("void x() { int a = alignof(a); }", // unaryExprOrTypeTraitExpr())); // EXPECT_TRUE(notMatches("void x() { int a = alignof(a); }", // sizeOfExpr())); } TEST(UnaryExpressionOrTypeTraitExpression, MatchesCorrectType) { EXPECT_TRUE(matches("void x() { int a = sizeof(a); }", sizeOfExpr( hasArgumentOfType(asString("int"))))); EXPECT_TRUE(notMatches("void x() { int a = sizeof(a); }", sizeOfExpr( hasArgumentOfType(asString("float"))))); EXPECT_TRUE(matches( "struct A {}; void x() { A a; int b = sizeof(a); }", sizeOfExpr(hasArgumentOfType(hasDeclaration(recordDecl(hasName("A"))))))); EXPECT_TRUE(notMatches("void x() { int a = sizeof(a); }", sizeOfExpr( hasArgumentOfType(hasDeclaration(recordDecl(hasName("string"))))))); } TEST(MemberExpression, DoesNotMatchClasses) { EXPECT_TRUE(notMatches("class Y { void x() {} };", memberExpr())); } TEST(MemberExpression, MatchesMemberFunctionCall) { EXPECT_TRUE(matches("class Y { void x() { x(); } };", memberExpr())); } TEST(MemberExpression, MatchesVariable) { EXPECT_TRUE( matches("class Y { void x() { this->y; } int y; };", memberExpr())); EXPECT_TRUE( matches("class Y { void x() { y; } int y; };", memberExpr())); EXPECT_TRUE( matches("class Y { void x() { Y y; y.y; } int y; };", memberExpr())); } TEST(MemberExpression, MatchesStaticVariable) { EXPECT_TRUE(matches("class Y { void x() { this->y; } static int y; };", memberExpr())); EXPECT_TRUE(notMatches("class Y { void x() { y; } static int y; };", memberExpr())); EXPECT_TRUE(notMatches("class Y { void x() { Y::y; } static int y; };", memberExpr())); } TEST(IsInteger, MatchesIntegers) { EXPECT_TRUE(matches("int i = 0;", varDecl(hasType(isInteger())))); EXPECT_TRUE(matches( "long long i = 0; void f(long long) { }; void g() {f(i);}", callExpr(hasArgument(0, declRefExpr( to(varDecl(hasType(isInteger())))))))); } TEST(IsInteger, ReportsNoFalsePositives) { EXPECT_TRUE(notMatches("int *i;", varDecl(hasType(isInteger())))); EXPECT_TRUE(notMatches("struct T {}; T t; void f(T *) { }; void g() {f(&t);}", callExpr(hasArgument(0, declRefExpr( to(varDecl(hasType(isInteger())))))))); } TEST(IsAnyCharacter, MatchesCharacters) { EXPECT_TRUE(matches("char i = 0;", varDecl(hasType(isAnyCharacter())))); } TEST(IsAnyCharacter, ReportsNoFalsePositives) { EXPECT_TRUE(notMatches("int i;", varDecl(hasType(isAnyCharacter())))); } TEST(IsArrow, MatchesMemberVariablesViaArrow) { EXPECT_TRUE(matches("class Y { void x() { this->y; } int y; };", memberExpr(isArrow()))); EXPECT_TRUE(matches("class Y { void x() { y; } int y; };", memberExpr(isArrow()))); EXPECT_TRUE(notMatches("class Y { void x() { (*this).y; } int y; };", memberExpr(isArrow()))); } TEST(IsArrow, MatchesStaticMemberVariablesViaArrow) { EXPECT_TRUE(matches("class Y { void x() { this->y; } static int y; };", memberExpr(isArrow()))); EXPECT_TRUE(notMatches("class Y { void x() { y; } static int y; };", memberExpr(isArrow()))); EXPECT_TRUE(notMatches("class Y { void x() { (*this).y; } static int y; };", memberExpr(isArrow()))); } TEST(IsArrow, MatchesMemberCallsViaArrow) { EXPECT_TRUE(matches("class Y { void x() { this->x(); } };", memberExpr(isArrow()))); EXPECT_TRUE(matches("class Y { void x() { x(); } };", memberExpr(isArrow()))); EXPECT_TRUE(notMatches("class Y { void x() { Y y; y.x(); } };", memberExpr(isArrow()))); } TEST(Callee, MatchesDeclarations) { StatementMatcher CallMethodX = callExpr(callee(cxxMethodDecl(hasName("x")))); EXPECT_TRUE(matches("class Y { void x() { x(); } };", CallMethodX)); EXPECT_TRUE(notMatches("class Y { void x() {} };", CallMethodX)); CallMethodX = callExpr(callee(cxxConversionDecl())); EXPECT_TRUE( matches("struct Y { operator int() const; }; int i = Y();", CallMethodX)); EXPECT_TRUE(notMatches("struct Y { operator int() const; }; Y y = Y();", CallMethodX)); } TEST(ConversionDeclaration, IsExplicit) { EXPECT_TRUE(matches("struct S { explicit operator int(); };", cxxConversionDecl(isExplicit()))); EXPECT_TRUE(notMatches("struct S { operator int(); };", cxxConversionDecl(isExplicit()))); } TEST(Callee, MatchesMemberExpressions) { EXPECT_TRUE(matches("class Y { void x() { this->x(); } };", callExpr(callee(memberExpr())))); EXPECT_TRUE( notMatches("class Y { void x() { this->x(); } };", callExpr(callee(callExpr())))); } TEST(Function, MatchesFunctionDeclarations) { StatementMatcher CallFunctionF = callExpr(callee(functionDecl(hasName("f")))); EXPECT_TRUE(matches("void f() { f(); }", CallFunctionF)); EXPECT_TRUE(notMatches("void f() { }", CallFunctionF)); if (llvm::Triple(llvm::sys::getDefaultTargetTriple()).getOS() != llvm::Triple::Win32) { // FIXME: Make this work for MSVC. // Dependent contexts, but a non-dependent call. EXPECT_TRUE(matches("void f(); template <int N> void g() { f(); }", CallFunctionF)); EXPECT_TRUE( matches("void f(); template <int N> struct S { void g() { f(); } };", CallFunctionF)); } // Depedent calls don't match. EXPECT_TRUE( notMatches("void f(int); template <typename T> void g(T t) { f(t); }", CallFunctionF)); EXPECT_TRUE( notMatches("void f(int);" "template <typename T> struct S { void g(T t) { f(t); } };", CallFunctionF)); EXPECT_TRUE(matches("void f(...);", functionDecl(isVariadic()))); EXPECT_TRUE(notMatches("void f(int);", functionDecl(isVariadic()))); EXPECT_TRUE(notMatches("template <typename... Ts> void f(Ts...);", functionDecl(isVariadic()))); EXPECT_TRUE(notMatches("void f();", functionDecl(isVariadic()))); EXPECT_TRUE(notMatchesC("void f();", functionDecl(isVariadic()))); } TEST(FunctionTemplate, MatchesFunctionTemplateDeclarations) { EXPECT_TRUE( matches("template <typename T> void f(T t) {}", functionTemplateDecl(hasName("f")))); } TEST(FunctionTemplate, DoesNotMatchFunctionDeclarations) { EXPECT_TRUE( notMatches("void f(double d); void f(int t) {}", functionTemplateDecl(hasName("f")))); } TEST(FunctionTemplate, DoesNotMatchFunctionTemplateSpecializations) { EXPECT_TRUE( notMatches("void g(); template <typename T> void f(T t) {}" "template <> void f(int t) { g(); }", functionTemplateDecl(hasName("f"), hasDescendant(declRefExpr(to( functionDecl(hasName("g")))))))); } TEST(Matcher, Argument) { StatementMatcher CallArgumentY = callExpr( hasArgument(0, declRefExpr(to(varDecl(hasName("y")))))); EXPECT_TRUE(matches("void x(int) { int y; x(y); }", CallArgumentY)); EXPECT_TRUE( matches("class X { void x(int) { int y; x(y); } };", CallArgumentY)); EXPECT_TRUE(notMatches("void x(int) { int z; x(z); }", CallArgumentY)); StatementMatcher WrongIndex = callExpr( hasArgument(42, declRefExpr(to(varDecl(hasName("y")))))); EXPECT_TRUE(notMatches("void x(int) { int y; x(y); }", WrongIndex)); } TEST(Matcher, AnyArgument) { StatementMatcher CallArgumentY = callExpr( hasAnyArgument(declRefExpr(to(varDecl(hasName("y")))))); EXPECT_TRUE(matches("void x(int, int) { int y; x(1, y); }", CallArgumentY)); EXPECT_TRUE(matches("void x(int, int) { int y; x(y, 42); }", CallArgumentY)); EXPECT_TRUE(notMatches("void x(int, int) { x(1, 2); }", CallArgumentY)); } TEST(Matcher, ArgumentCount) { StatementMatcher Call1Arg = callExpr(argumentCountIs(1)); EXPECT_TRUE(matches("void x(int) { x(0); }", Call1Arg)); EXPECT_TRUE(matches("class X { void x(int) { x(0); } };", Call1Arg)); EXPECT_TRUE(notMatches("void x(int, int) { x(0, 0); }", Call1Arg)); } TEST(Matcher, ParameterCount) { DeclarationMatcher Function1Arg = functionDecl(parameterCountIs(1)); EXPECT_TRUE(matches("void f(int i) {}", Function1Arg)); EXPECT_TRUE(matches("class X { void f(int i) {} };", Function1Arg)); EXPECT_TRUE(notMatches("void f() {}", Function1Arg)); EXPECT_TRUE(notMatches("void f(int i, int j, int k) {}", Function1Arg)); } TEST(Matcher, References) { DeclarationMatcher ReferenceClassX = varDecl( hasType(references(recordDecl(hasName("X"))))); EXPECT_TRUE(matches("class X {}; void y(X y) { X &x = y; }", ReferenceClassX)); EXPECT_TRUE( matches("class X {}; void y(X y) { const X &x = y; }", ReferenceClassX)); // The match here is on the implicit copy constructor code for // class X, not on code 'X x = y'. EXPECT_TRUE( matches("class X {}; void y(X y) { X x = y; }", ReferenceClassX)); EXPECT_TRUE( notMatches("class X {}; extern X x;", ReferenceClassX)); EXPECT_TRUE( notMatches("class X {}; void y(X *y) { X *&x = y; }", ReferenceClassX)); } TEST(QualType, hasCanonicalType) { EXPECT_TRUE(notMatches("typedef int &int_ref;" "int a;" "int_ref b = a;", varDecl(hasType(qualType(referenceType()))))); EXPECT_TRUE( matches("typedef int &int_ref;" "int a;" "int_ref b = a;", varDecl(hasType(qualType(hasCanonicalType(referenceType())))))); } TEST(QualType, hasLocalQualifiers) { EXPECT_TRUE(notMatches("typedef const int const_int; const_int i = 1;", varDecl(hasType(hasLocalQualifiers())))); EXPECT_TRUE(matches("int *const j = nullptr;", varDecl(hasType(hasLocalQualifiers())))); EXPECT_TRUE(matches("int *volatile k;", varDecl(hasType(hasLocalQualifiers())))); EXPECT_TRUE(notMatches("int m;", varDecl(hasType(hasLocalQualifiers())))); } TEST(HasParameter, CallsInnerMatcher) { EXPECT_TRUE(matches("class X { void x(int) {} };", cxxMethodDecl(hasParameter(0, varDecl())))); EXPECT_TRUE(notMatches("class X { void x(int) {} };", cxxMethodDecl(hasParameter(0, hasName("x"))))); } TEST(HasParameter, DoesNotMatchIfIndexOutOfBounds) { EXPECT_TRUE(notMatches("class X { void x(int) {} };", cxxMethodDecl(hasParameter(42, varDecl())))); } TEST(HasType, MatchesParameterVariableTypesStrictly) { EXPECT_TRUE(matches( "class X { void x(X x) {} };", cxxMethodDecl(hasParameter(0, hasType(recordDecl(hasName("X"))))))); EXPECT_TRUE(notMatches( "class X { void x(const X &x) {} };", cxxMethodDecl(hasParameter(0, hasType(recordDecl(hasName("X"))))))); EXPECT_TRUE(matches("class X { void x(const X *x) {} };", cxxMethodDecl(hasParameter( 0, hasType(pointsTo(recordDecl(hasName("X")))))))); EXPECT_TRUE(matches("class X { void x(const X &x) {} };", cxxMethodDecl(hasParameter( 0, hasType(references(recordDecl(hasName("X")))))))); } TEST(HasAnyParameter, MatchesIndependentlyOfPosition) { EXPECT_TRUE(matches( "class Y {}; class X { void x(X x, Y y) {} };", cxxMethodDecl(hasAnyParameter(hasType(recordDecl(hasName("X"))))))); EXPECT_TRUE(matches( "class Y {}; class X { void x(Y y, X x) {} };", cxxMethodDecl(hasAnyParameter(hasType(recordDecl(hasName("X"))))))); } TEST(Returns, MatchesReturnTypes) { EXPECT_TRUE(matches("class Y { int f() { return 1; } };", functionDecl(returns(asString("int"))))); EXPECT_TRUE(notMatches("class Y { int f() { return 1; } };", functionDecl(returns(asString("float"))))); EXPECT_TRUE(matches("class Y { Y getMe() { return *this; } };", functionDecl(returns(hasDeclaration( recordDecl(hasName("Y"))))))); } TEST(IsExternC, MatchesExternCFunctionDeclarations) { EXPECT_TRUE(matches("extern \"C\" void f() {}", functionDecl(isExternC()))); EXPECT_TRUE(matches("extern \"C\" { void f() {} }", functionDecl(isExternC()))); EXPECT_TRUE(notMatches("void f() {}", functionDecl(isExternC()))); } TEST(IsDeleted, MatchesDeletedFunctionDeclarations) { EXPECT_TRUE( notMatches("void Func();", functionDecl(hasName("Func"), isDeleted()))); EXPECT_TRUE(matches("void Func() = delete;", functionDecl(hasName("Func"), isDeleted()))); } TEST(IsNoThrow, MatchesNoThrowFunctionDeclarations) { EXPECT_TRUE(notMatches("void f();", functionDecl(isNoThrow()))); EXPECT_TRUE(notMatches("void f() throw(int);", functionDecl(isNoThrow()))); EXPECT_TRUE( notMatches("void f() noexcept(false);", functionDecl(isNoThrow()))); EXPECT_TRUE(matches("void f() throw();", functionDecl(isNoThrow()))); EXPECT_TRUE(matches("void f() noexcept;", functionDecl(isNoThrow()))); } TEST(isConstexpr, MatchesConstexprDeclarations) { EXPECT_TRUE(matches("constexpr int foo = 42;", varDecl(hasName("foo"), isConstexpr()))); EXPECT_TRUE(matches("constexpr int bar();", functionDecl(hasName("bar"), isConstexpr()))); } TEST(HasAnyParameter, DoesntMatchIfInnerMatcherDoesntMatch) { EXPECT_TRUE(notMatches( "class Y {}; class X { void x(int) {} };", cxxMethodDecl(hasAnyParameter(hasType(recordDecl(hasName("X"))))))); } TEST(HasAnyParameter, DoesNotMatchThisPointer) { EXPECT_TRUE(notMatches("class Y {}; class X { void x() {} };", cxxMethodDecl(hasAnyParameter( hasType(pointsTo(recordDecl(hasName("X")))))))); } TEST(HasName, MatchesParameterVariableDeclarations) { EXPECT_TRUE(matches("class Y {}; class X { void x(int x) {} };", cxxMethodDecl(hasAnyParameter(hasName("x"))))); EXPECT_TRUE(notMatches("class Y {}; class X { void x(int) {} };", cxxMethodDecl(hasAnyParameter(hasName("x"))))); } TEST(Matcher, MatchesClassTemplateSpecialization) { EXPECT_TRUE(matches("template<typename T> struct A {};" "template<> struct A<int> {};", classTemplateSpecializationDecl())); EXPECT_TRUE(matches("template<typename T> struct A {}; A<int> a;", classTemplateSpecializationDecl())); EXPECT_TRUE(notMatches("template<typename T> struct A {};", classTemplateSpecializationDecl())); } TEST(DeclaratorDecl, MatchesDeclaratorDecls) { EXPECT_TRUE(matches("int x;", declaratorDecl())); EXPECT_TRUE(notMatches("class A {};", declaratorDecl())); } TEST(ParmVarDecl, MatchesParmVars) { EXPECT_TRUE(matches("void f(int x);", parmVarDecl())); EXPECT_TRUE(notMatches("void f();", parmVarDecl())); } TEST(Matcher, MatchesTypeTemplateArgument) { EXPECT_TRUE(matches( "template<typename T> struct B {};" "B<int> b;", classTemplateSpecializationDecl(hasAnyTemplateArgument(refersToType( asString("int")))))); } TEST(Matcher, MatchesDeclarationReferenceTemplateArgument) { EXPECT_TRUE(matches( "struct B { int next; };" "template<int(B::*next_ptr)> struct A {};" "A<&B::next> a;", classTemplateSpecializationDecl(hasAnyTemplateArgument( refersToDeclaration(fieldDecl(hasName("next"))))))); EXPECT_TRUE(notMatches( "template <typename T> struct A {};" "A<int> a;", classTemplateSpecializationDecl(hasAnyTemplateArgument( refersToDeclaration(decl()))))); EXPECT_TRUE(matches( "struct B { int next; };" "template<int(B::*next_ptr)> struct A {};" "A<&B::next> a;", templateSpecializationType(hasAnyTemplateArgument(isExpr( hasDescendant(declRefExpr(to(fieldDecl(hasName("next")))))))))); EXPECT_TRUE(notMatches( "template <typename T> struct A {};" "A<int> a;", templateSpecializationType(hasAnyTemplateArgument( refersToDeclaration(decl()))))); } TEST(Matcher, MatchesSpecificArgument) { EXPECT_TRUE(matches( "template<typename T, typename U> class A {};" "A<bool, int> a;", classTemplateSpecializationDecl(hasTemplateArgument( 1, refersToType(asString("int")))))); EXPECT_TRUE(notMatches( "template<typename T, typename U> class A {};" "A<int, bool> a;", classTemplateSpecializationDecl(hasTemplateArgument( 1, refersToType(asString("int")))))); EXPECT_TRUE(matches( "template<typename T, typename U> class A {};" "A<bool, int> a;", templateSpecializationType(hasTemplateArgument( 1, refersToType(asString("int")))))); EXPECT_TRUE(notMatches( "template<typename T, typename U> class A {};" "A<int, bool> a;", templateSpecializationType(hasTemplateArgument( 1, refersToType(asString("int")))))); } TEST(TemplateArgument, Matches) { EXPECT_TRUE(matches("template<typename T> struct C {}; C<int> c;", classTemplateSpecializationDecl( hasAnyTemplateArgument(templateArgument())))); EXPECT_TRUE(matches( "template<typename T> struct C {}; C<int> c;", templateSpecializationType(hasAnyTemplateArgument(templateArgument())))); } TEST(TemplateArgumentCountIs, Matches) { EXPECT_TRUE( matches("template<typename T> struct C {}; C<int> c;", classTemplateSpecializationDecl(templateArgumentCountIs(1)))); EXPECT_TRUE( notMatches("template<typename T> struct C {}; C<int> c;", classTemplateSpecializationDecl(templateArgumentCountIs(2)))); EXPECT_TRUE(matches("template<typename T> struct C {}; C<int> c;", templateSpecializationType(templateArgumentCountIs(1)))); EXPECT_TRUE( notMatches("template<typename T> struct C {}; C<int> c;", templateSpecializationType(templateArgumentCountIs(2)))); } TEST(IsIntegral, Matches) { EXPECT_TRUE(matches("template<int T> struct C {}; C<42> c;", classTemplateSpecializationDecl( hasAnyTemplateArgument(isIntegral())))); EXPECT_TRUE(notMatches("template<typename T> struct C {}; C<int> c;", classTemplateSpecializationDecl(hasAnyTemplateArgument( templateArgument(isIntegral()))))); } TEST(RefersToIntegralType, Matches) { EXPECT_TRUE(matches("template<int T> struct C {}; C<42> c;", classTemplateSpecializationDecl( hasAnyTemplateArgument(refersToIntegralType( asString("int")))))); EXPECT_TRUE(notMatches("template<unsigned T> struct C {}; C<42> c;", classTemplateSpecializationDecl(hasAnyTemplateArgument( refersToIntegralType(asString("int")))))); } TEST(EqualsIntegralValue, Matches) { EXPECT_TRUE(matches("template<int T> struct C {}; C<42> c;", classTemplateSpecializationDecl( hasAnyTemplateArgument(equalsIntegralValue("42"))))); EXPECT_TRUE(matches("template<int T> struct C {}; C<-42> c;", classTemplateSpecializationDecl( hasAnyTemplateArgument(equalsIntegralValue("-42"))))); EXPECT_TRUE(matches("template<int T> struct C {}; C<-0042> c;", classTemplateSpecializationDecl( hasAnyTemplateArgument(equalsIntegralValue("-34"))))); EXPECT_TRUE(notMatches("template<int T> struct C {}; C<42> c;", classTemplateSpecializationDecl(hasAnyTemplateArgument( equalsIntegralValue("0042"))))); } TEST(Matcher, MatchesAccessSpecDecls) { EXPECT_TRUE(matches("class C { public: int i; };", accessSpecDecl())); EXPECT_TRUE( matches("class C { public: int i; };", accessSpecDecl(isPublic()))); EXPECT_TRUE( notMatches("class C { public: int i; };", accessSpecDecl(isProtected()))); EXPECT_TRUE( notMatches("class C { public: int i; };", accessSpecDecl(isPrivate()))); EXPECT_TRUE(notMatches("class C { int i; };", accessSpecDecl())); } TEST(Matcher, MatchesFinal) { EXPECT_TRUE(matches("class X final {};", cxxRecordDecl(isFinal()))); EXPECT_TRUE(matches("class X { virtual void f() final; };", cxxMethodDecl(isFinal()))); EXPECT_TRUE(notMatches("class X {};", cxxRecordDecl(isFinal()))); EXPECT_TRUE( notMatches("class X { virtual void f(); };", cxxMethodDecl(isFinal()))); } TEST(Matcher, MatchesVirtualMethod) { EXPECT_TRUE(matches("class X { virtual int f(); };", cxxMethodDecl(isVirtual(), hasName("::X::f")))); EXPECT_TRUE(notMatches("class X { int f(); };", cxxMethodDecl(isVirtual()))); } TEST(Matcher, MatchesPureMethod) { EXPECT_TRUE(matches("class X { virtual int f() = 0; };", cxxMethodDecl(isPure(), hasName("::X::f")))); EXPECT_TRUE(notMatches("class X { int f(); };", cxxMethodDecl(isPure()))); } TEST(Matcher, MatchesCopyAssignmentOperator) { EXPECT_TRUE(matches("class X { X &operator=(X); };", cxxMethodDecl(isCopyAssignmentOperator()))); EXPECT_TRUE(matches("class X { X &operator=(X &); };", cxxMethodDecl(isCopyAssignmentOperator()))); EXPECT_TRUE(matches("class X { X &operator=(const X &); };", cxxMethodDecl(isCopyAssignmentOperator()))); EXPECT_TRUE(matches("class X { X &operator=(volatile X &); };", cxxMethodDecl(isCopyAssignmentOperator()))); EXPECT_TRUE(matches("class X { X &operator=(const volatile X &); };", cxxMethodDecl(isCopyAssignmentOperator()))); EXPECT_TRUE(notMatches("class X { X &operator=(X &&); };", cxxMethodDecl(isCopyAssignmentOperator()))); } TEST(Matcher, MatchesConstMethod) { EXPECT_TRUE( matches("struct A { void foo() const; };", cxxMethodDecl(isConst()))); EXPECT_TRUE( notMatches("struct A { void foo(); };", cxxMethodDecl(isConst()))); } TEST(Matcher, MatchesOverridingMethod) { EXPECT_TRUE(matches("class X { virtual int f(); }; " "class Y : public X { int f(); };", cxxMethodDecl(isOverride(), hasName("::Y::f")))); EXPECT_TRUE(notMatches("class X { virtual int f(); }; " "class Y : public X { int f(); };", cxxMethodDecl(isOverride(), hasName("::X::f")))); EXPECT_TRUE(notMatches("class X { int f(); }; " "class Y : public X { int f(); };", cxxMethodDecl(isOverride()))); EXPECT_TRUE(notMatches("class X { int f(); int f(int); }; ", cxxMethodDecl(isOverride()))); EXPECT_TRUE( matches("template <typename Base> struct Y : Base { void f() override;};", cxxMethodDecl(isOverride(), hasName("::Y::f")))); } TEST(Matcher, ConstructorCall) { StatementMatcher Constructor = cxxConstructExpr(); EXPECT_TRUE( matches("class X { public: X(); }; void x() { X x; }", Constructor)); EXPECT_TRUE( matches("class X { public: X(); }; void x() { X x = X(); }", Constructor)); EXPECT_TRUE( matches("class X { public: X(int); }; void x() { X x = 0; }", Constructor)); EXPECT_TRUE(matches("class X {}; void x(int) { X x; }", Constructor)); } TEST(Matcher, ConstructorArgument) { StatementMatcher Constructor = cxxConstructExpr( hasArgument(0, declRefExpr(to(varDecl(hasName("y")))))); EXPECT_TRUE( matches("class X { public: X(int); }; void x() { int y; X x(y); }", Constructor)); EXPECT_TRUE( matches("class X { public: X(int); }; void x() { int y; X x = X(y); }", Constructor)); EXPECT_TRUE( matches("class X { public: X(int); }; void x() { int y; X x = y; }", Constructor)); EXPECT_TRUE( notMatches("class X { public: X(int); }; void x() { int z; X x(z); }", Constructor)); StatementMatcher WrongIndex = cxxConstructExpr( hasArgument(42, declRefExpr(to(varDecl(hasName("y")))))); EXPECT_TRUE( notMatches("class X { public: X(int); }; void x() { int y; X x(y); }", WrongIndex)); } TEST(Matcher, ConstructorArgumentCount) { StatementMatcher Constructor1Arg = cxxConstructExpr(argumentCountIs(1)); EXPECT_TRUE( matches("class X { public: X(int); }; void x() { X x(0); }", Constructor1Arg)); EXPECT_TRUE( matches("class X { public: X(int); }; void x() { X x = X(0); }", Constructor1Arg)); EXPECT_TRUE( matches("class X { public: X(int); }; void x() { X x = 0; }", Constructor1Arg)); EXPECT_TRUE( notMatches("class X { public: X(int, int); }; void x() { X x(0, 0); }", Constructor1Arg)); } TEST(Matcher, ConstructorListInitialization) { StatementMatcher ConstructorListInit = cxxConstructExpr(isListInitialization()); EXPECT_TRUE( matches("class X { public: X(int); }; void x() { X x{0}; }", ConstructorListInit)); EXPECT_FALSE( matches("class X { public: X(int); }; void x() { X x(0); }", ConstructorListInit)); } TEST(Matcher,ThisExpr) { EXPECT_TRUE( matches("struct X { int a; int f () { return a; } };", cxxThisExpr())); EXPECT_TRUE( notMatches("struct X { int f () { int a; return a; } };", cxxThisExpr())); } TEST(Matcher, BindTemporaryExpression) { StatementMatcher TempExpression = cxxBindTemporaryExpr(); std::string ClassString = "class string { public: string(); ~string(); }; "; EXPECT_TRUE( matches(ClassString + "string GetStringByValue();" "void FunctionTakesString(string s);" "void run() { FunctionTakesString(GetStringByValue()); }", TempExpression)); EXPECT_TRUE( notMatches(ClassString + "string* GetStringPointer(); " "void FunctionTakesStringPtr(string* s);" "void run() {" " string* s = GetStringPointer();" " FunctionTakesStringPtr(GetStringPointer());" " FunctionTakesStringPtr(s);" "}", TempExpression)); EXPECT_TRUE( notMatches("class no_dtor {};" "no_dtor GetObjByValue();" "void ConsumeObj(no_dtor param);" "void run() { ConsumeObj(GetObjByValue()); }", TempExpression)); } TEST(MaterializeTemporaryExpr, MatchesTemporary) { std::string ClassString = "class string { public: string(); int length(); }; "; EXPECT_TRUE( matches(ClassString + "string GetStringByValue();" "void FunctionTakesString(string s);" "void run() { FunctionTakesString(GetStringByValue()); }", materializeTemporaryExpr())); EXPECT_TRUE( notMatches(ClassString + "string* GetStringPointer(); " "void FunctionTakesStringPtr(string* s);" "void run() {" " string* s = GetStringPointer();" " FunctionTakesStringPtr(GetStringPointer());" " FunctionTakesStringPtr(s);" "}", materializeTemporaryExpr())); EXPECT_TRUE( notMatches(ClassString + "string GetStringByValue();" "void run() { int k = GetStringByValue().length(); }", materializeTemporaryExpr())); EXPECT_TRUE( notMatches(ClassString + "string GetStringByValue();" "void run() { GetStringByValue(); }", materializeTemporaryExpr())); } TEST(ConstructorDeclaration, SimpleCase) { EXPECT_TRUE(matches("class Foo { Foo(int i); };", cxxConstructorDecl(ofClass(hasName("Foo"))))); EXPECT_TRUE(notMatches("class Foo { Foo(int i); };", cxxConstructorDecl(ofClass(hasName("Bar"))))); } TEST(ConstructorDeclaration, IsImplicit) { // This one doesn't match because the constructor is not added by the // compiler (it is not needed). EXPECT_TRUE(notMatches("class Foo { };", cxxConstructorDecl(isImplicit()))); // The compiler added the implicit default constructor. EXPECT_TRUE(matches("class Foo { }; Foo* f = new Foo();", cxxConstructorDecl(isImplicit()))); EXPECT_TRUE(matches("class Foo { Foo(){} };", cxxConstructorDecl(unless(isImplicit())))); // The compiler added an implicit assignment operator. EXPECT_TRUE(matches("struct A { int x; } a = {0}, b = a; void f() { a = b; }", cxxMethodDecl(isImplicit(), hasName("operator=")))); } TEST(ConstructorDeclaration, IsExplicit) { EXPECT_TRUE(matches("struct S { explicit S(int); };", cxxConstructorDecl(isExplicit()))); EXPECT_TRUE(notMatches("struct S { S(int); };", cxxConstructorDecl(isExplicit()))); } TEST(ConstructorDeclaration, Kinds) { EXPECT_TRUE(matches("struct S { S(); };", cxxConstructorDecl(isDefaultConstructor()))); EXPECT_TRUE(notMatches("struct S { S(); };", cxxConstructorDecl(isCopyConstructor()))); EXPECT_TRUE(notMatches("struct S { S(); };", cxxConstructorDecl(isMoveConstructor()))); EXPECT_TRUE(notMatches("struct S { S(const S&); };", cxxConstructorDecl(isDefaultConstructor()))); EXPECT_TRUE(matches("struct S { S(const S&); };", cxxConstructorDecl(isCopyConstructor()))); EXPECT_TRUE(notMatches("struct S { S(const S&); };", cxxConstructorDecl(isMoveConstructor()))); EXPECT_TRUE(notMatches("struct S { S(S&&); };", cxxConstructorDecl(isDefaultConstructor()))); EXPECT_TRUE(notMatches("struct S { S(S&&); };", cxxConstructorDecl(isCopyConstructor()))); EXPECT_TRUE(matches("struct S { S(S&&); };", cxxConstructorDecl(isMoveConstructor()))); } TEST(DestructorDeclaration, MatchesVirtualDestructor) { EXPECT_TRUE(matches("class Foo { virtual ~Foo(); };", cxxDestructorDecl(ofClass(hasName("Foo"))))); } TEST(DestructorDeclaration, DoesNotMatchImplicitDestructor) { EXPECT_TRUE(notMatches("class Foo {};", cxxDestructorDecl(ofClass(hasName("Foo"))))); } TEST(HasAnyConstructorInitializer, SimpleCase) { EXPECT_TRUE( notMatches("class Foo { Foo() { } };", cxxConstructorDecl(hasAnyConstructorInitializer(anything())))); EXPECT_TRUE( matches("class Foo {" " Foo() : foo_() { }" " int foo_;" "};", cxxConstructorDecl(hasAnyConstructorInitializer(anything())))); } TEST(HasAnyConstructorInitializer, ForField) { static const char Code[] = "class Baz { };" "class Foo {" " Foo() : foo_() { }" " Baz foo_;" " Baz bar_;" "};"; EXPECT_TRUE(matches(Code, cxxConstructorDecl(hasAnyConstructorInitializer( forField(hasType(recordDecl(hasName("Baz")))))))); EXPECT_TRUE(matches(Code, cxxConstructorDecl(hasAnyConstructorInitializer( forField(hasName("foo_")))))); EXPECT_TRUE(notMatches(Code, cxxConstructorDecl(hasAnyConstructorInitializer( forField(hasType(recordDecl(hasName("Bar")))))))); } TEST(HasAnyConstructorInitializer, WithInitializer) { static const char Code[] = "class Foo {" " Foo() : foo_(0) { }" " int foo_;" "};"; EXPECT_TRUE(matches(Code, cxxConstructorDecl(hasAnyConstructorInitializer( withInitializer(integerLiteral(equals(0))))))); EXPECT_TRUE(notMatches(Code, cxxConstructorDecl(hasAnyConstructorInitializer( withInitializer(integerLiteral(equals(1))))))); } TEST(HasAnyConstructorInitializer, IsWritten) { static const char Code[] = "struct Bar { Bar(){} };" "class Foo {" " Foo() : foo_() { }" " Bar foo_;" " Bar bar_;" "};"; EXPECT_TRUE(matches(Code, cxxConstructorDecl(hasAnyConstructorInitializer( allOf(forField(hasName("foo_")), isWritten()))))); EXPECT_TRUE(notMatches(Code, cxxConstructorDecl(hasAnyConstructorInitializer( allOf(forField(hasName("bar_")), isWritten()))))); EXPECT_TRUE(matches(Code, cxxConstructorDecl(hasAnyConstructorInitializer( allOf(forField(hasName("bar_")), unless(isWritten())))))); } TEST(HasAnyConstructorInitializer, IsBaseInitializer) { static const char Code[] = "struct B {};" "struct D : B {" " int I;" " D(int i) : I(i) {}" "};" "struct E : B {" " E() : B() {}" "};"; EXPECT_TRUE(matches(Code, cxxConstructorDecl(allOf( hasAnyConstructorInitializer(allOf(isBaseInitializer(), isWritten())), hasName("E"))))); EXPECT_TRUE(notMatches(Code, cxxConstructorDecl(allOf( hasAnyConstructorInitializer(allOf(isBaseInitializer(), isWritten())), hasName("D"))))); EXPECT_TRUE(matches(Code, cxxConstructorDecl(allOf( hasAnyConstructorInitializer(allOf(isMemberInitializer(), isWritten())), hasName("D"))))); EXPECT_TRUE(notMatches(Code, cxxConstructorDecl(allOf( hasAnyConstructorInitializer(allOf(isMemberInitializer(), isWritten())), hasName("E"))))); } TEST(Matcher, NewExpression) { StatementMatcher New = cxxNewExpr(); EXPECT_TRUE(matches("class X { public: X(); }; void x() { new X; }", New)); EXPECT_TRUE( matches("class X { public: X(); }; void x() { new X(); }", New)); EXPECT_TRUE( matches("class X { public: X(int); }; void x() { new X(0); }", New)); EXPECT_TRUE(matches("class X {}; void x(int) { new X; }", New)); } TEST(Matcher, NewExpressionArgument) { StatementMatcher New = cxxConstructExpr( hasArgument(0, declRefExpr(to(varDecl(hasName("y")))))); EXPECT_TRUE( matches("class X { public: X(int); }; void x() { int y; new X(y); }", New)); EXPECT_TRUE( matches("class X { public: X(int); }; void x() { int y; new X(y); }", New)); EXPECT_TRUE( notMatches("class X { public: X(int); }; void x() { int z; new X(z); }", New)); StatementMatcher WrongIndex = cxxConstructExpr( hasArgument(42, declRefExpr(to(varDecl(hasName("y")))))); EXPECT_TRUE( notMatches("class X { public: X(int); }; void x() { int y; new X(y); }", WrongIndex)); } TEST(Matcher, NewExpressionArgumentCount) { StatementMatcher New = cxxConstructExpr(argumentCountIs(1)); EXPECT_TRUE( matches("class X { public: X(int); }; void x() { new X(0); }", New)); EXPECT_TRUE( notMatches("class X { public: X(int, int); }; void x() { new X(0, 0); }", New)); } TEST(Matcher, DeleteExpression) { EXPECT_TRUE(matches("struct A {}; void f(A* a) { delete a; }", cxxDeleteExpr())); } TEST(Matcher, DefaultArgument) { StatementMatcher Arg = cxxDefaultArgExpr(); EXPECT_TRUE(matches("void x(int, int = 0) { int y; x(y); }", Arg)); EXPECT_TRUE( matches("class X { void x(int, int = 0) { int y; x(y); } };", Arg)); EXPECT_TRUE(notMatches("void x(int, int = 0) { int y; x(y, 0); }", Arg)); } TEST(Matcher, StringLiterals) { StatementMatcher Literal = stringLiteral(); EXPECT_TRUE(matches("const char *s = \"string\";", Literal)); // wide string EXPECT_TRUE(matches("const wchar_t *s = L\"string\";", Literal)); // with escaped characters EXPECT_TRUE(matches("const char *s = \"\x05five\";", Literal)); // no matching -- though the data type is the same, there is no string literal EXPECT_TRUE(notMatches("const char s[1] = {'a'};", Literal)); } TEST(Matcher, CharacterLiterals) { StatementMatcher CharLiteral = characterLiteral(); EXPECT_TRUE(matches("const char c = 'c';", CharLiteral)); // wide character EXPECT_TRUE(matches("const char c = L'c';", CharLiteral)); // wide character, Hex encoded, NOT MATCHED! EXPECT_TRUE(notMatches("const wchar_t c = 0x2126;", CharLiteral)); EXPECT_TRUE(notMatches("const char c = 0x1;", CharLiteral)); } TEST(Matcher, IntegerLiterals) { StatementMatcher HasIntLiteral = integerLiteral(); EXPECT_TRUE(matches("int i = 10;", HasIntLiteral)); EXPECT_TRUE(matches("int i = 0x1AB;", HasIntLiteral)); EXPECT_TRUE(matches("int i = 10L;", HasIntLiteral)); EXPECT_TRUE(matches("int i = 10U;", HasIntLiteral)); // Non-matching cases (character literals, float and double) EXPECT_TRUE(notMatches("int i = L'a';", HasIntLiteral)); // this is actually a character // literal cast to int EXPECT_TRUE(notMatches("int i = 'a';", HasIntLiteral)); EXPECT_TRUE(notMatches("int i = 1e10;", HasIntLiteral)); EXPECT_TRUE(notMatches("int i = 10.0;", HasIntLiteral)); } TEST(Matcher, FloatLiterals) { StatementMatcher HasFloatLiteral = floatLiteral(); EXPECT_TRUE(matches("float i = 10.0;", HasFloatLiteral)); EXPECT_TRUE(matches("float i = 10.0f;", HasFloatLiteral)); EXPECT_TRUE(matches("double i = 10.0;", HasFloatLiteral)); EXPECT_TRUE(matches("double i = 10.0L;", HasFloatLiteral)); EXPECT_TRUE(matches("double i = 1e10;", HasFloatLiteral)); EXPECT_TRUE(matches("double i = 5.0;", floatLiteral(equals(5.0)))); EXPECT_TRUE(matches("double i = 5.0;", floatLiteral(equals(5.0f)))); EXPECT_TRUE( matches("double i = 5.0;", floatLiteral(equals(llvm::APFloat(5.0))))); EXPECT_TRUE(notMatches("float i = 10;", HasFloatLiteral)); EXPECT_TRUE(notMatches("double i = 5.0;", floatLiteral(equals(6.0)))); EXPECT_TRUE(notMatches("double i = 5.0;", floatLiteral(equals(6.0f)))); EXPECT_TRUE( notMatches("double i = 5.0;", floatLiteral(equals(llvm::APFloat(6.0))))); } TEST(Matcher, NullPtrLiteral) { EXPECT_TRUE(matches("int* i = nullptr;", cxxNullPtrLiteralExpr())); } TEST(Matcher, GNUNullExpr) { EXPECT_TRUE(matches("int* i = __null;", gnuNullExpr())); } TEST(Matcher, AsmStatement) { EXPECT_TRUE(matches("void foo() { __asm(\"mov al, 2\"); }", asmStmt())); } TEST(Matcher, Conditions) { StatementMatcher Condition = ifStmt(hasCondition(cxxBoolLiteral(equals(true)))); EXPECT_TRUE(matches("void x() { if (true) {} }", Condition)); EXPECT_TRUE(notMatches("void x() { if (false) {} }", Condition)); EXPECT_TRUE(notMatches("void x() { bool a = true; if (a) {} }", Condition)); EXPECT_TRUE(notMatches("void x() { if (true || false) {} }", Condition)); EXPECT_TRUE(notMatches("void x() { if (1) {} }", Condition)); } TEST(IfStmt, ChildTraversalMatchers) { EXPECT_TRUE(matches("void f() { if (false) true; else false; }", ifStmt(hasThen(cxxBoolLiteral(equals(true)))))); EXPECT_TRUE(notMatches("void f() { if (false) false; else true; }", ifStmt(hasThen(cxxBoolLiteral(equals(true)))))); EXPECT_TRUE(matches("void f() { if (false) false; else true; }", ifStmt(hasElse(cxxBoolLiteral(equals(true)))))); EXPECT_TRUE(notMatches("void f() { if (false) true; else false; }", ifStmt(hasElse(cxxBoolLiteral(equals(true)))))); } TEST(MatchBinaryOperator, HasOperatorName) { StatementMatcher OperatorOr = binaryOperator(hasOperatorName("||")); EXPECT_TRUE(matches("void x() { true || false; }", OperatorOr)); EXPECT_TRUE(notMatches("void x() { true && false; }", OperatorOr)); } TEST(MatchBinaryOperator, HasLHSAndHasRHS) { StatementMatcher OperatorTrueFalse = binaryOperator(hasLHS(cxxBoolLiteral(equals(true))), hasRHS(cxxBoolLiteral(equals(false)))); EXPECT_TRUE(matches("void x() { true || false; }", OperatorTrueFalse)); EXPECT_TRUE(matches("void x() { true && false; }", OperatorTrueFalse)); EXPECT_TRUE(notMatches("void x() { false || true; }", OperatorTrueFalse)); StatementMatcher OperatorIntPointer = arraySubscriptExpr( hasLHS(hasType(isInteger())), hasRHS(hasType(pointsTo(qualType())))); EXPECT_TRUE(matches("void x() { 1[\"abc\"]; }", OperatorIntPointer)); EXPECT_TRUE(notMatches("void x() { \"abc\"[1]; }", OperatorIntPointer)); } TEST(MatchBinaryOperator, HasEitherOperand) { StatementMatcher HasOperand = binaryOperator(hasEitherOperand(cxxBoolLiteral(equals(false)))); EXPECT_TRUE(matches("void x() { true || false; }", HasOperand)); EXPECT_TRUE(matches("void x() { false && true; }", HasOperand)); EXPECT_TRUE(notMatches("void x() { true || true; }", HasOperand)); } TEST(Matcher, BinaryOperatorTypes) { // Integration test that verifies the AST provides all binary operators in // a way we expect. // FIXME: Operator ',' EXPECT_TRUE( matches("void x() { 3, 4; }", binaryOperator(hasOperatorName(",")))); EXPECT_TRUE( matches("bool b; bool c = (b = true);", binaryOperator(hasOperatorName("=")))); EXPECT_TRUE( matches("bool b = 1 != 2;", binaryOperator(hasOperatorName("!=")))); EXPECT_TRUE( matches("bool b = 1 == 2;", binaryOperator(hasOperatorName("==")))); EXPECT_TRUE(matches("bool b = 1 < 2;", binaryOperator(hasOperatorName("<")))); EXPECT_TRUE( matches("bool b = 1 <= 2;", binaryOperator(hasOperatorName("<=")))); EXPECT_TRUE( matches("int i = 1 << 2;", binaryOperator(hasOperatorName("<<")))); EXPECT_TRUE( matches("int i = 1; int j = (i <<= 2);", binaryOperator(hasOperatorName("<<=")))); EXPECT_TRUE(matches("bool b = 1 > 2;", binaryOperator(hasOperatorName(">")))); EXPECT_TRUE( matches("bool b = 1 >= 2;", binaryOperator(hasOperatorName(">=")))); EXPECT_TRUE( matches("int i = 1 >> 2;", binaryOperator(hasOperatorName(">>")))); EXPECT_TRUE( matches("int i = 1; int j = (i >>= 2);", binaryOperator(hasOperatorName(">>=")))); EXPECT_TRUE( matches("int i = 42 ^ 23;", binaryOperator(hasOperatorName("^")))); EXPECT_TRUE( matches("int i = 42; int j = (i ^= 42);", binaryOperator(hasOperatorName("^=")))); EXPECT_TRUE( matches("int i = 42 % 23;", binaryOperator(hasOperatorName("%")))); EXPECT_TRUE( matches("int i = 42; int j = (i %= 42);", binaryOperator(hasOperatorName("%=")))); EXPECT_TRUE( matches("bool b = 42 &23;", binaryOperator(hasOperatorName("&")))); EXPECT_TRUE( matches("bool b = true && false;", binaryOperator(hasOperatorName("&&")))); EXPECT_TRUE( matches("bool b = true; bool c = (b &= false);", binaryOperator(hasOperatorName("&=")))); EXPECT_TRUE( matches("bool b = 42 | 23;", binaryOperator(hasOperatorName("|")))); EXPECT_TRUE( matches("bool b = true || false;", binaryOperator(hasOperatorName("||")))); EXPECT_TRUE( matches("bool b = true; bool c = (b |= false);", binaryOperator(hasOperatorName("|=")))); EXPECT_TRUE( matches("int i = 42 *23;", binaryOperator(hasOperatorName("*")))); EXPECT_TRUE( matches("int i = 42; int j = (i *= 23);", binaryOperator(hasOperatorName("*=")))); EXPECT_TRUE( matches("int i = 42 / 23;", binaryOperator(hasOperatorName("/")))); EXPECT_TRUE( matches("int i = 42; int j = (i /= 23);", binaryOperator(hasOperatorName("/=")))); EXPECT_TRUE( matches("int i = 42 + 23;", binaryOperator(hasOperatorName("+")))); EXPECT_TRUE( matches("int i = 42; int j = (i += 23);", binaryOperator(hasOperatorName("+=")))); EXPECT_TRUE( matches("int i = 42 - 23;", binaryOperator(hasOperatorName("-")))); EXPECT_TRUE( matches("int i = 42; int j = (i -= 23);", binaryOperator(hasOperatorName("-=")))); EXPECT_TRUE( matches("struct A { void x() { void (A::*a)(); (this->*a)(); } };", binaryOperator(hasOperatorName("->*")))); EXPECT_TRUE( matches("struct A { void x() { void (A::*a)(); ((*this).*a)(); } };", binaryOperator(hasOperatorName(".*")))); // Member expressions as operators are not supported in matches. EXPECT_TRUE( notMatches("struct A { void x(A *a) { a->x(this); } };", binaryOperator(hasOperatorName("->")))); // Initializer assignments are not represented as operator equals. EXPECT_TRUE( notMatches("bool b = true;", binaryOperator(hasOperatorName("=")))); // Array indexing is not represented as operator. EXPECT_TRUE(notMatches("int a[42]; void x() { a[23]; }", unaryOperator())); // Overloaded operators do not match at all. EXPECT_TRUE(notMatches( "struct A { bool operator&&(const A &a) const { return false; } };" "void x() { A a, b; a && b; }", binaryOperator())); } TEST(MatchUnaryOperator, HasOperatorName) { StatementMatcher OperatorNot = unaryOperator(hasOperatorName("!")); EXPECT_TRUE(matches("void x() { !true; } ", OperatorNot)); EXPECT_TRUE(notMatches("void x() { true; } ", OperatorNot)); } TEST(MatchUnaryOperator, HasUnaryOperand) { StatementMatcher OperatorOnFalse = unaryOperator(hasUnaryOperand(cxxBoolLiteral(equals(false)))); EXPECT_TRUE(matches("void x() { !false; }", OperatorOnFalse)); EXPECT_TRUE(notMatches("void x() { !true; }", OperatorOnFalse)); } TEST(Matcher, UnaryOperatorTypes) { // Integration test that verifies the AST provides all unary operators in // a way we expect. EXPECT_TRUE(matches("bool b = !true;", unaryOperator(hasOperatorName("!")))); EXPECT_TRUE( matches("bool b; bool *p = &b;", unaryOperator(hasOperatorName("&")))); EXPECT_TRUE(matches("int i = ~ 1;", unaryOperator(hasOperatorName("~")))); EXPECT_TRUE( matches("bool *p; bool b = *p;", unaryOperator(hasOperatorName("*")))); EXPECT_TRUE( matches("int i; int j = +i;", unaryOperator(hasOperatorName("+")))); EXPECT_TRUE( matches("int i; int j = -i;", unaryOperator(hasOperatorName("-")))); EXPECT_TRUE( matches("int i; int j = ++i;", unaryOperator(hasOperatorName("++")))); EXPECT_TRUE( matches("int i; int j = i++;", unaryOperator(hasOperatorName("++")))); EXPECT_TRUE( matches("int i; int j = --i;", unaryOperator(hasOperatorName("--")))); EXPECT_TRUE( matches("int i; int j = i--;", unaryOperator(hasOperatorName("--")))); // We don't match conversion operators. EXPECT_TRUE(notMatches("int i; double d = (double)i;", unaryOperator())); // Function calls are not represented as operator. EXPECT_TRUE(notMatches("void f(); void x() { f(); }", unaryOperator())); // Overloaded operators do not match at all. // FIXME: We probably want to add that. EXPECT_TRUE(notMatches( "struct A { bool operator!() const { return false; } };" "void x() { A a; !a; }", unaryOperator(hasOperatorName("!")))); } TEST(Matcher, ConditionalOperator) { StatementMatcher Conditional = conditionalOperator( hasCondition(cxxBoolLiteral(equals(true))), hasTrueExpression(cxxBoolLiteral(equals(false)))); EXPECT_TRUE(matches("void x() { true ? false : true; }", Conditional)); EXPECT_TRUE(notMatches("void x() { false ? false : true; }", Conditional)); EXPECT_TRUE(notMatches("void x() { true ? true : false; }", Conditional)); StatementMatcher ConditionalFalse = conditionalOperator( hasFalseExpression(cxxBoolLiteral(equals(false)))); EXPECT_TRUE(matches("void x() { true ? true : false; }", ConditionalFalse)); EXPECT_TRUE( notMatches("void x() { true ? false : true; }", ConditionalFalse)); } TEST(ArraySubscriptMatchers, ArraySubscripts) { EXPECT_TRUE(matches("int i[2]; void f() { i[1] = 1; }", arraySubscriptExpr())); EXPECT_TRUE(notMatches("int i; void f() { i = 1; }", arraySubscriptExpr())); } TEST(ArraySubscriptMatchers, ArrayIndex) { EXPECT_TRUE(matches( "int i[2]; void f() { i[1] = 1; }", arraySubscriptExpr(hasIndex(integerLiteral(equals(1)))))); EXPECT_TRUE(matches( "int i[2]; void f() { 1[i] = 1; }", arraySubscriptExpr(hasIndex(integerLiteral(equals(1)))))); EXPECT_TRUE(notMatches( "int i[2]; void f() { i[1] = 1; }", arraySubscriptExpr(hasIndex(integerLiteral(equals(0)))))); } TEST(ArraySubscriptMatchers, MatchesArrayBase) { EXPECT_TRUE(matches( "int i[2]; void f() { i[1] = 2; }", arraySubscriptExpr(hasBase(implicitCastExpr( hasSourceExpression(declRefExpr())))))); } TEST(Matcher, HasNameSupportsNamespaces) { EXPECT_TRUE(matches("namespace a { namespace b { class C; } }", recordDecl(hasName("a::b::C")))); EXPECT_TRUE(matches("namespace a { namespace b { class C; } }", recordDecl(hasName("::a::b::C")))); EXPECT_TRUE(matches("namespace a { namespace b { class C; } }", recordDecl(hasName("b::C")))); EXPECT_TRUE(matches("namespace a { namespace b { class C; } }", recordDecl(hasName("C")))); EXPECT_TRUE(notMatches("namespace a { namespace b { class C; } }", recordDecl(hasName("c::b::C")))); EXPECT_TRUE(notMatches("namespace a { namespace b { class C; } }", recordDecl(hasName("a::c::C")))); EXPECT_TRUE(notMatches("namespace a { namespace b { class C; } }", recordDecl(hasName("a::b::A")))); EXPECT_TRUE(notMatches("namespace a { namespace b { class C; } }", recordDecl(hasName("::C")))); EXPECT_TRUE(notMatches("namespace a { namespace b { class C; } }", recordDecl(hasName("::b::C")))); EXPECT_TRUE(notMatches("namespace a { namespace b { class C; } }", recordDecl(hasName("z::a::b::C")))); EXPECT_TRUE(notMatches("namespace a { namespace b { class C; } }", recordDecl(hasName("a+b::C")))); EXPECT_TRUE(notMatches("namespace a { namespace b { class AC; } }", recordDecl(hasName("C")))); } TEST(Matcher, HasNameSupportsOuterClasses) { EXPECT_TRUE( matches("class A { class B { class C; }; };", recordDecl(hasName("A::B::C")))); EXPECT_TRUE( matches("class A { class B { class C; }; };", recordDecl(hasName("::A::B::C")))); EXPECT_TRUE( matches("class A { class B { class C; }; };", recordDecl(hasName("B::C")))); EXPECT_TRUE( matches("class A { class B { class C; }; };", recordDecl(hasName("C")))); EXPECT_TRUE( notMatches("class A { class B { class C; }; };", recordDecl(hasName("c::B::C")))); EXPECT_TRUE( notMatches("class A { class B { class C; }; };", recordDecl(hasName("A::c::C")))); EXPECT_TRUE( notMatches("class A { class B { class C; }; };", recordDecl(hasName("A::B::A")))); EXPECT_TRUE( notMatches("class A { class B { class C; }; };", recordDecl(hasName("::C")))); EXPECT_TRUE( notMatches("class A { class B { class C; }; };", recordDecl(hasName("::B::C")))); EXPECT_TRUE(notMatches("class A { class B { class C; }; };", recordDecl(hasName("z::A::B::C")))); EXPECT_TRUE( notMatches("class A { class B { class C; }; };", recordDecl(hasName("A+B::C")))); } TEST(Matcher, IsDefinition) { DeclarationMatcher DefinitionOfClassA = recordDecl(hasName("A"), isDefinition()); EXPECT_TRUE(matches("class A {};", DefinitionOfClassA)); EXPECT_TRUE(notMatches("class A;", DefinitionOfClassA)); DeclarationMatcher DefinitionOfVariableA = varDecl(hasName("a"), isDefinition()); EXPECT_TRUE(matches("int a;", DefinitionOfVariableA)); EXPECT_TRUE(notMatches("extern int a;", DefinitionOfVariableA)); DeclarationMatcher DefinitionOfMethodA = cxxMethodDecl(hasName("a"), isDefinition()); EXPECT_TRUE(matches("class A { void a() {} };", DefinitionOfMethodA)); EXPECT_TRUE(notMatches("class A { void a(); };", DefinitionOfMethodA)); } TEST(Matcher, OfClass) { StatementMatcher Constructor = cxxConstructExpr(hasDeclaration(cxxMethodDecl( ofClass(hasName("X"))))); EXPECT_TRUE( matches("class X { public: X(); }; void x(int) { X x; }", Constructor)); EXPECT_TRUE( matches("class X { public: X(); }; void x(int) { X x = X(); }", Constructor)); EXPECT_TRUE( notMatches("class Y { public: Y(); }; void x(int) { Y y; }", Constructor)); } TEST(Matcher, VisitsTemplateInstantiations) { EXPECT_TRUE(matches( "class A { public: void x(); };" "template <typename T> class B { public: void y() { T t; t.x(); } };" "void f() { B<A> b; b.y(); }", callExpr(callee(cxxMethodDecl(hasName("x")))))); EXPECT_TRUE(matches( "class A { public: void x(); };" "class C {" " public:" " template <typename T> class B { public: void y() { T t; t.x(); } };" "};" "void f() {" " C::B<A> b; b.y();" "}", recordDecl(hasName("C"), hasDescendant(callExpr( callee(cxxMethodDecl(hasName("x")))))))); } TEST(Matcher, HandlesNullQualTypes) { // FIXME: Add a Type matcher so we can replace uses of this // variable with Type(True()) const TypeMatcher AnyType = anything(); // We don't really care whether this matcher succeeds; we're testing that // it completes without crashing. EXPECT_TRUE(matches( "struct A { };" "template <typename T>" "void f(T t) {" " T local_t(t /* this becomes a null QualType in the AST */);" "}" "void g() {" " f(0);" "}", expr(hasType(TypeMatcher( anyOf( TypeMatcher(hasDeclaration(anything())), pointsTo(AnyType), references(AnyType) // Other QualType matchers should go here. )))))); } // For testing AST_MATCHER_P(). AST_MATCHER_P(Decl, just, internal::Matcher<Decl>, AMatcher) { // Make sure all special variables are used: node, match_finder, // bound_nodes_builder, and the parameter named 'AMatcher'. return AMatcher.matches(Node, Finder, Builder); } TEST(AstMatcherPMacro, Works) { DeclarationMatcher HasClassB = just(has(recordDecl(hasName("B")).bind("b"))); EXPECT_TRUE(matchAndVerifyResultTrue("class A { class B {}; };", HasClassB, new VerifyIdIsBoundTo<Decl>("b"))); EXPECT_TRUE(matchAndVerifyResultFalse("class A { class B {}; };", HasClassB, new VerifyIdIsBoundTo<Decl>("a"))); EXPECT_TRUE(matchAndVerifyResultFalse("class A { class C {}; };", HasClassB, new VerifyIdIsBoundTo<Decl>("b"))); } AST_POLYMORPHIC_MATCHER_P(polymorphicHas, AST_POLYMORPHIC_SUPPORTED_TYPES(Decl, Stmt), internal::Matcher<Decl>, AMatcher) { return Finder->matchesChildOf( Node, AMatcher, Builder, ASTMatchFinder::TK_IgnoreImplicitCastsAndParentheses, ASTMatchFinder::BK_First); } TEST(AstPolymorphicMatcherPMacro, Works) { DeclarationMatcher HasClassB = polymorphicHas(recordDecl(hasName("B")).bind("b")); EXPECT_TRUE(matchAndVerifyResultTrue("class A { class B {}; };", HasClassB, new VerifyIdIsBoundTo<Decl>("b"))); EXPECT_TRUE(matchAndVerifyResultFalse("class A { class B {}; };", HasClassB, new VerifyIdIsBoundTo<Decl>("a"))); EXPECT_TRUE(matchAndVerifyResultFalse("class A { class C {}; };", HasClassB, new VerifyIdIsBoundTo<Decl>("b"))); StatementMatcher StatementHasClassB = polymorphicHas(recordDecl(hasName("B"))); EXPECT_TRUE(matches("void x() { class B {}; }", StatementHasClassB)); } TEST(For, FindsForLoops) { EXPECT_TRUE(matches("void f() { for(;;); }", forStmt())); EXPECT_TRUE(matches("void f() { if(true) for(;;); }", forStmt())); EXPECT_TRUE(notMatches("int as[] = { 1, 2, 3 };" "void f() { for (auto &a : as); }", forStmt())); } TEST(For, ForLoopInternals) { EXPECT_TRUE(matches("void f(){ int i; for (; i < 3 ; ); }", forStmt(hasCondition(anything())))); EXPECT_TRUE(matches("void f() { for (int i = 0; ;); }", forStmt(hasLoopInit(anything())))); } TEST(For, ForRangeLoopInternals) { EXPECT_TRUE(matches("void f(){ int a[] {1, 2}; for (int i : a); }", cxxForRangeStmt(hasLoopVariable(anything())))); EXPECT_TRUE(matches( "void f(){ int a[] {1, 2}; for (int i : a); }", cxxForRangeStmt(hasRangeInit(declRefExpr(to(varDecl(hasName("a")))))))); } TEST(For, NegativeForLoopInternals) { EXPECT_TRUE(notMatches("void f(){ for (int i = 0; ; ++i); }", forStmt(hasCondition(expr())))); EXPECT_TRUE(notMatches("void f() {int i; for (; i < 4; ++i) {} }", forStmt(hasLoopInit(anything())))); } TEST(For, ReportsNoFalsePositives) { EXPECT_TRUE(notMatches("void f() { ; }", forStmt())); EXPECT_TRUE(notMatches("void f() { if(true); }", forStmt())); } TEST(CompoundStatement, HandlesSimpleCases) { EXPECT_TRUE(notMatches("void f();", compoundStmt())); EXPECT_TRUE(matches("void f() {}", compoundStmt())); EXPECT_TRUE(matches("void f() {{}}", compoundStmt())); } TEST(CompoundStatement, DoesNotMatchEmptyStruct) { // It's not a compound statement just because there's "{}" in the source // text. This is an AST search, not grep. EXPECT_TRUE(notMatches("namespace n { struct S {}; }", compoundStmt())); EXPECT_TRUE(matches("namespace n { struct S { void f() {{}} }; }", compoundStmt())); } TEST(HasBody, FindsBodyOfForWhileDoLoops) { EXPECT_TRUE(matches("void f() { for(;;) {} }", forStmt(hasBody(compoundStmt())))); EXPECT_TRUE(notMatches("void f() { for(;;); }", forStmt(hasBody(compoundStmt())))); EXPECT_TRUE(matches("void f() { while(true) {} }", whileStmt(hasBody(compoundStmt())))); EXPECT_TRUE(matches("void f() { do {} while(true); }", doStmt(hasBody(compoundStmt())))); EXPECT_TRUE(matches("void f() { int p[2]; for (auto x : p) {} }", cxxForRangeStmt(hasBody(compoundStmt())))); } TEST(HasAnySubstatement, MatchesForTopLevelCompoundStatement) { // The simplest case: every compound statement is in a function // definition, and the function body itself must be a compound // statement. EXPECT_TRUE(matches("void f() { for (;;); }", compoundStmt(hasAnySubstatement(forStmt())))); } TEST(HasAnySubstatement, IsNotRecursive) { // It's really "has any immediate substatement". EXPECT_TRUE(notMatches("void f() { if (true) for (;;); }", compoundStmt(hasAnySubstatement(forStmt())))); } TEST(HasAnySubstatement, MatchesInNestedCompoundStatements) { EXPECT_TRUE(matches("void f() { if (true) { for (;;); } }", compoundStmt(hasAnySubstatement(forStmt())))); } TEST(HasAnySubstatement, FindsSubstatementBetweenOthers) { EXPECT_TRUE(matches("void f() { 1; 2; 3; for (;;); 4; 5; 6; }", compoundStmt(hasAnySubstatement(forStmt())))); } TEST(StatementCountIs, FindsNoStatementsInAnEmptyCompoundStatement) { EXPECT_TRUE(matches("void f() { }", compoundStmt(statementCountIs(0)))); EXPECT_TRUE(notMatches("void f() {}", compoundStmt(statementCountIs(1)))); } TEST(StatementCountIs, AppearsToMatchOnlyOneCount) { EXPECT_TRUE(matches("void f() { 1; }", compoundStmt(statementCountIs(1)))); EXPECT_TRUE(notMatches("void f() { 1; }", compoundStmt(statementCountIs(0)))); EXPECT_TRUE(notMatches("void f() { 1; }", compoundStmt(statementCountIs(2)))); } TEST(StatementCountIs, WorksWithMultipleStatements) { EXPECT_TRUE(matches("void f() { 1; 2; 3; }", compoundStmt(statementCountIs(3)))); } TEST(StatementCountIs, WorksWithNestedCompoundStatements) { EXPECT_TRUE(matches("void f() { { 1; } { 1; 2; 3; 4; } }", compoundStmt(statementCountIs(1)))); EXPECT_TRUE(matches("void f() { { 1; } { 1; 2; 3; 4; } }", compoundStmt(statementCountIs(2)))); EXPECT_TRUE(notMatches("void f() { { 1; } { 1; 2; 3; 4; } }", compoundStmt(statementCountIs(3)))); EXPECT_TRUE(matches("void f() { { 1; } { 1; 2; 3; 4; } }", compoundStmt(statementCountIs(4)))); } TEST(Member, WorksInSimplestCase) { EXPECT_TRUE(matches("struct { int first; } s; int i(s.first);", memberExpr(member(hasName("first"))))); } TEST(Member, DoesNotMatchTheBaseExpression) { // Don't pick out the wrong part of the member expression, this should // be checking the member (name) only. EXPECT_TRUE(notMatches("struct { int i; } first; int i(first.i);", memberExpr(member(hasName("first"))))); } TEST(Member, MatchesInMemberFunctionCall) { EXPECT_TRUE(matches("void f() {" " struct { void first() {}; } s;" " s.first();" "};", memberExpr(member(hasName("first"))))); } TEST(Member, MatchesMember) { EXPECT_TRUE(matches( "struct A { int i; }; void f() { A a; a.i = 2; }", memberExpr(hasDeclaration(fieldDecl(hasType(isInteger())))))); EXPECT_TRUE(notMatches( "struct A { float f; }; void f() { A a; a.f = 2.0f; }", memberExpr(hasDeclaration(fieldDecl(hasType(isInteger())))))); } TEST(Member, UnderstandsAccess) { EXPECT_TRUE(matches( "struct A { int i; };", fieldDecl(isPublic(), hasName("i")))); EXPECT_TRUE(notMatches( "struct A { int i; };", fieldDecl(isProtected(), hasName("i")))); EXPECT_TRUE(notMatches( "struct A { int i; };", fieldDecl(isPrivate(), hasName("i")))); EXPECT_TRUE(notMatches( "class A { int i; };", fieldDecl(isPublic(), hasName("i")))); EXPECT_TRUE(notMatches( "class A { int i; };", fieldDecl(isProtected(), hasName("i")))); EXPECT_TRUE(matches( "class A { int i; };", fieldDecl(isPrivate(), hasName("i")))); EXPECT_TRUE(notMatches( "class A { protected: int i; };", fieldDecl(isPublic(), hasName("i")))); EXPECT_TRUE(matches("class A { protected: int i; };", fieldDecl(isProtected(), hasName("i")))); EXPECT_TRUE(notMatches( "class A { protected: int i; };", fieldDecl(isPrivate(), hasName("i")))); // Non-member decls have the AccessSpecifier AS_none and thus aren't matched. EXPECT_TRUE(notMatches("int i;", varDecl(isPublic(), hasName("i")))); EXPECT_TRUE(notMatches("int i;", varDecl(isProtected(), hasName("i")))); EXPECT_TRUE(notMatches("int i;", varDecl(isPrivate(), hasName("i")))); } TEST(Member, MatchesMemberAllocationFunction) { // Fails in C++11 mode EXPECT_TRUE(matchesConditionally( "namespace std { typedef typeof(sizeof(int)) size_t; }" "class X { void *operator new(std::size_t); };", cxxMethodDecl(ofClass(hasName("X"))), true, "-std=gnu++98")); EXPECT_TRUE(matches("class X { void operator delete(void*); };", cxxMethodDecl(ofClass(hasName("X"))))); // Fails in C++11 mode EXPECT_TRUE(matchesConditionally( "namespace std { typedef typeof(sizeof(int)) size_t; }" "class X { void operator delete[](void*, std::size_t); };", cxxMethodDecl(ofClass(hasName("X"))), true, "-std=gnu++98")); } TEST(HasObjectExpression, DoesNotMatchMember) { EXPECT_TRUE(notMatches( "class X {}; struct Z { X m; }; void f(Z z) { z.m; }", memberExpr(hasObjectExpression(hasType(recordDecl(hasName("X"))))))); } TEST(HasObjectExpression, MatchesBaseOfVariable) { EXPECT_TRUE(matches( "struct X { int m; }; void f(X x) { x.m; }", memberExpr(hasObjectExpression(hasType(recordDecl(hasName("X"))))))); EXPECT_TRUE(matches( "struct X { int m; }; void f(X* x) { x->m; }", memberExpr(hasObjectExpression( hasType(pointsTo(recordDecl(hasName("X")))))))); } TEST(HasObjectExpression, MatchesObjectExpressionOfImplicitlyFormedMemberExpression) { EXPECT_TRUE(matches( "class X {}; struct S { X m; void f() { this->m; } };", memberExpr(hasObjectExpression( hasType(pointsTo(recordDecl(hasName("S")))))))); EXPECT_TRUE(matches( "class X {}; struct S { X m; void f() { m; } };", memberExpr(hasObjectExpression( hasType(pointsTo(recordDecl(hasName("S")))))))); } TEST(Field, DoesNotMatchNonFieldMembers) { EXPECT_TRUE(notMatches("class X { void m(); };", fieldDecl(hasName("m")))); EXPECT_TRUE(notMatches("class X { class m {}; };", fieldDecl(hasName("m")))); EXPECT_TRUE(notMatches("class X { enum { m }; };", fieldDecl(hasName("m")))); EXPECT_TRUE(notMatches("class X { enum m {}; };", fieldDecl(hasName("m")))); } TEST(Field, MatchesField) { EXPECT_TRUE(matches("class X { int m; };", fieldDecl(hasName("m")))); } TEST(IsVolatileQualified, QualifiersMatch) { EXPECT_TRUE(matches("volatile int i = 42;", varDecl(hasType(isVolatileQualified())))); EXPECT_TRUE(notMatches("volatile int *i;", varDecl(hasType(isVolatileQualified())))); EXPECT_TRUE(matches("typedef volatile int v_int; v_int i = 42;", varDecl(hasType(isVolatileQualified())))); } TEST(IsConstQualified, MatchesConstInt) { EXPECT_TRUE(matches("const int i = 42;", varDecl(hasType(isConstQualified())))); } TEST(IsConstQualified, MatchesConstPointer) { EXPECT_TRUE(matches("int i = 42; int* const p(&i);", varDecl(hasType(isConstQualified())))); } TEST(IsConstQualified, MatchesThroughTypedef) { EXPECT_TRUE(matches("typedef const int const_int; const_int i = 42;", varDecl(hasType(isConstQualified())))); EXPECT_TRUE(matches("typedef int* int_ptr; const int_ptr p(0);", varDecl(hasType(isConstQualified())))); } TEST(IsConstQualified, DoesNotMatchInappropriately) { EXPECT_TRUE(notMatches("typedef int nonconst_int; nonconst_int i = 42;", varDecl(hasType(isConstQualified())))); EXPECT_TRUE(notMatches("int const* p;", varDecl(hasType(isConstQualified())))); } TEST(CastExpression, MatchesExplicitCasts) { EXPECT_TRUE(matches("char *p = reinterpret_cast<char *>(&p);",castExpr())); EXPECT_TRUE(matches("void *p = (void *)(&p);", castExpr())); EXPECT_TRUE(matches("char q, *p = const_cast<char *>(&q);", castExpr())); EXPECT_TRUE(matches("char c = char(0);", castExpr())); } TEST(CastExpression, MatchesImplicitCasts) { // This test creates an implicit cast from int to char. EXPECT_TRUE(matches("char c = 0;", castExpr())); // This test creates an implicit cast from lvalue to rvalue. EXPECT_TRUE(matches("char c = 0, d = c;", castExpr())); } TEST(CastExpression, DoesNotMatchNonCasts) { EXPECT_TRUE(notMatches("char c = '0';", castExpr())); EXPECT_TRUE(notMatches("char c, &q = c;", castExpr())); EXPECT_TRUE(notMatches("int i = (0);", castExpr())); EXPECT_TRUE(notMatches("int i = 0;", castExpr())); } TEST(ReinterpretCast, MatchesSimpleCase) { EXPECT_TRUE(matches("char* p = reinterpret_cast<char*>(&p);", cxxReinterpretCastExpr())); } TEST(ReinterpretCast, DoesNotMatchOtherCasts) { EXPECT_TRUE(notMatches("char* p = (char*)(&p);", cxxReinterpretCastExpr())); EXPECT_TRUE(notMatches("char q, *p = const_cast<char*>(&q);", cxxReinterpretCastExpr())); EXPECT_TRUE(notMatches("void* p = static_cast<void*>(&p);", cxxReinterpretCastExpr())); EXPECT_TRUE(notMatches("struct B { virtual ~B() {} }; struct D : B {};" "B b;" "D* p = dynamic_cast<D*>(&b);", cxxReinterpretCastExpr())); } TEST(FunctionalCast, MatchesSimpleCase) { std::string foo_class = "class Foo { public: Foo(const char*); };"; EXPECT_TRUE(matches(foo_class + "void r() { Foo f = Foo(\"hello world\"); }", cxxFunctionalCastExpr())); } TEST(FunctionalCast, DoesNotMatchOtherCasts) { std::string FooClass = "class Foo { public: Foo(const char*); };"; EXPECT_TRUE( notMatches(FooClass + "void r() { Foo f = (Foo) \"hello world\"; }", cxxFunctionalCastExpr())); EXPECT_TRUE( notMatches(FooClass + "void r() { Foo f = \"hello world\"; }", cxxFunctionalCastExpr())); } TEST(DynamicCast, MatchesSimpleCase) { EXPECT_TRUE(matches("struct B { virtual ~B() {} }; struct D : B {};" "B b;" "D* p = dynamic_cast<D*>(&b);", cxxDynamicCastExpr())); } TEST(StaticCast, MatchesSimpleCase) { EXPECT_TRUE(matches("void* p(static_cast<void*>(&p));", cxxStaticCastExpr())); } TEST(StaticCast, DoesNotMatchOtherCasts) { EXPECT_TRUE(notMatches("char* p = (char*)(&p);", cxxStaticCastExpr())); EXPECT_TRUE(notMatches("char q, *p = const_cast<char*>(&q);", cxxStaticCastExpr())); EXPECT_TRUE(notMatches("void* p = reinterpret_cast<char*>(&p);", cxxStaticCastExpr())); EXPECT_TRUE(notMatches("struct B { virtual ~B() {} }; struct D : B {};" "B b;" "D* p = dynamic_cast<D*>(&b);", cxxStaticCastExpr())); } TEST(CStyleCast, MatchesSimpleCase) { EXPECT_TRUE(matches("int i = (int) 2.2f;", cStyleCastExpr())); } TEST(CStyleCast, DoesNotMatchOtherCasts) { EXPECT_TRUE(notMatches("char* p = static_cast<char*>(0);" "char q, *r = const_cast<char*>(&q);" "void* s = reinterpret_cast<char*>(&s);" "struct B { virtual ~B() {} }; struct D : B {};" "B b;" "D* t = dynamic_cast<D*>(&b);", cStyleCastExpr())); } TEST(HasDestinationType, MatchesSimpleCase) { EXPECT_TRUE(matches("char* p = static_cast<char*>(0);", cxxStaticCastExpr(hasDestinationType( pointsTo(TypeMatcher(anything())))))); } TEST(HasImplicitDestinationType, MatchesSimpleCase) { // This test creates an implicit const cast. EXPECT_TRUE(matches("int x; const int i = x;", implicitCastExpr( hasImplicitDestinationType(isInteger())))); // This test creates an implicit array-to-pointer cast. EXPECT_TRUE(matches("int arr[3]; int *p = arr;", implicitCastExpr(hasImplicitDestinationType( pointsTo(TypeMatcher(anything())))))); } TEST(HasImplicitDestinationType, DoesNotMatchIncorrectly) { // This test creates an implicit cast from int to char. EXPECT_TRUE(notMatches("char c = 0;", implicitCastExpr(hasImplicitDestinationType( unless(anything()))))); // This test creates an implicit array-to-pointer cast. EXPECT_TRUE(notMatches("int arr[3]; int *p = arr;", implicitCastExpr(hasImplicitDestinationType( unless(anything()))))); } TEST(ImplicitCast, MatchesSimpleCase) { // This test creates an implicit const cast. EXPECT_TRUE(matches("int x = 0; const int y = x;", varDecl(hasInitializer(implicitCastExpr())))); // This test creates an implicit cast from int to char. EXPECT_TRUE(matches("char c = 0;", varDecl(hasInitializer(implicitCastExpr())))); // This test creates an implicit array-to-pointer cast. EXPECT_TRUE(matches("int arr[6]; int *p = arr;", varDecl(hasInitializer(implicitCastExpr())))); } TEST(ImplicitCast, DoesNotMatchIncorrectly) { // This test verifies that implicitCastExpr() matches exactly when implicit casts // are present, and that it ignores explicit and paren casts. // These two test cases have no casts. EXPECT_TRUE(notMatches("int x = 0;", varDecl(hasInitializer(implicitCastExpr())))); EXPECT_TRUE(notMatches("int x = 0, &y = x;", varDecl(hasInitializer(implicitCastExpr())))); EXPECT_TRUE(notMatches("int x = 0; double d = (double) x;", varDecl(hasInitializer(implicitCastExpr())))); EXPECT_TRUE(notMatches("const int *p; int *q = const_cast<int *>(p);", varDecl(hasInitializer(implicitCastExpr())))); EXPECT_TRUE(notMatches("int x = (0);", varDecl(hasInitializer(implicitCastExpr())))); } TEST(IgnoringImpCasts, MatchesImpCasts) { // This test checks that ignoringImpCasts matches when implicit casts are // present and its inner matcher alone does not match. // Note that this test creates an implicit const cast. EXPECT_TRUE(matches("int x = 0; const int y = x;", varDecl(hasInitializer(ignoringImpCasts( declRefExpr(to(varDecl(hasName("x"))))))))); // This test creates an implict cast from int to char. EXPECT_TRUE(matches("char x = 0;", varDecl(hasInitializer(ignoringImpCasts( integerLiteral(equals(0))))))); } TEST(IgnoringImpCasts, DoesNotMatchIncorrectly) { // These tests verify that ignoringImpCasts does not match if the inner // matcher does not match. // Note that the first test creates an implicit const cast. EXPECT_TRUE(notMatches("int x; const int y = x;", varDecl(hasInitializer(ignoringImpCasts( unless(anything())))))); EXPECT_TRUE(notMatches("int x; int y = x;", varDecl(hasInitializer(ignoringImpCasts( unless(anything())))))); // These tests verify that ignoringImplictCasts does not look through explicit // casts or parentheses. EXPECT_TRUE(notMatches("char* p = static_cast<char*>(0);", varDecl(hasInitializer(ignoringImpCasts( integerLiteral()))))); EXPECT_TRUE(notMatches("int i = (0);", varDecl(hasInitializer(ignoringImpCasts( integerLiteral()))))); EXPECT_TRUE(notMatches("float i = (float)0;", varDecl(hasInitializer(ignoringImpCasts( integerLiteral()))))); EXPECT_TRUE(notMatches("float i = float(0);", varDecl(hasInitializer(ignoringImpCasts( integerLiteral()))))); } TEST(IgnoringImpCasts, MatchesWithoutImpCasts) { // This test verifies that expressions that do not have implicit casts // still match the inner matcher. EXPECT_TRUE(matches("int x = 0; int &y = x;", varDecl(hasInitializer(ignoringImpCasts( declRefExpr(to(varDecl(hasName("x"))))))))); } TEST(IgnoringParenCasts, MatchesParenCasts) { // This test checks that ignoringParenCasts matches when parentheses and/or // casts are present and its inner matcher alone does not match. EXPECT_TRUE(matches("int x = (0);", varDecl(hasInitializer(ignoringParenCasts( integerLiteral(equals(0))))))); EXPECT_TRUE(matches("int x = (((((0)))));", varDecl(hasInitializer(ignoringParenCasts( integerLiteral(equals(0))))))); // This test creates an implict cast from int to char in addition to the // parentheses. EXPECT_TRUE(matches("char x = (0);", varDecl(hasInitializer(ignoringParenCasts( integerLiteral(equals(0))))))); EXPECT_TRUE(matches("char x = (char)0;", varDecl(hasInitializer(ignoringParenCasts( integerLiteral(equals(0))))))); EXPECT_TRUE(matches("char* p = static_cast<char*>(0);", varDecl(hasInitializer(ignoringParenCasts( integerLiteral(equals(0))))))); } TEST(IgnoringParenCasts, MatchesWithoutParenCasts) { // This test verifies that expressions that do not have any casts still match. EXPECT_TRUE(matches("int x = 0;", varDecl(hasInitializer(ignoringParenCasts( integerLiteral(equals(0))))))); } TEST(IgnoringParenCasts, DoesNotMatchIncorrectly) { // These tests verify that ignoringImpCasts does not match if the inner // matcher does not match. EXPECT_TRUE(notMatches("int x = ((0));", varDecl(hasInitializer(ignoringParenCasts( unless(anything())))))); // This test creates an implicit cast from int to char in addition to the // parentheses. EXPECT_TRUE(notMatches("char x = ((0));", varDecl(hasInitializer(ignoringParenCasts( unless(anything())))))); EXPECT_TRUE(notMatches("char *x = static_cast<char *>((0));", varDecl(hasInitializer(ignoringParenCasts( unless(anything())))))); } TEST(IgnoringParenAndImpCasts, MatchesParenImpCasts) { // This test checks that ignoringParenAndImpCasts matches when // parentheses and/or implicit casts are present and its inner matcher alone // does not match. // Note that this test creates an implicit const cast. EXPECT_TRUE(matches("int x = 0; const int y = x;", varDecl(hasInitializer(ignoringParenImpCasts( declRefExpr(to(varDecl(hasName("x"))))))))); // This test creates an implicit cast from int to char. EXPECT_TRUE(matches("const char x = (0);", varDecl(hasInitializer(ignoringParenImpCasts( integerLiteral(equals(0))))))); } TEST(IgnoringParenAndImpCasts, MatchesWithoutParenImpCasts) { // This test verifies that expressions that do not have parentheses or // implicit casts still match. EXPECT_TRUE(matches("int x = 0; int &y = x;", varDecl(hasInitializer(ignoringParenImpCasts( declRefExpr(to(varDecl(hasName("x"))))))))); EXPECT_TRUE(matches("int x = 0;", varDecl(hasInitializer(ignoringParenImpCasts( integerLiteral(equals(0))))))); } TEST(IgnoringParenAndImpCasts, DoesNotMatchIncorrectly) { // These tests verify that ignoringParenImpCasts does not match if // the inner matcher does not match. // This test creates an implicit cast. EXPECT_TRUE(notMatches("char c = ((3));", varDecl(hasInitializer(ignoringParenImpCasts( unless(anything())))))); // These tests verify that ignoringParenAndImplictCasts does not look // through explicit casts. EXPECT_TRUE(notMatches("float y = (float(0));", varDecl(hasInitializer(ignoringParenImpCasts( integerLiteral()))))); EXPECT_TRUE(notMatches("float y = (float)0;", varDecl(hasInitializer(ignoringParenImpCasts( integerLiteral()))))); EXPECT_TRUE(notMatches("char* p = static_cast<char*>(0);", varDecl(hasInitializer(ignoringParenImpCasts( integerLiteral()))))); } TEST(HasSourceExpression, MatchesImplicitCasts) { EXPECT_TRUE(matches("class string {}; class URL { public: URL(string s); };" "void r() {string a_string; URL url = a_string; }", implicitCastExpr( hasSourceExpression(cxxConstructExpr())))); } TEST(HasSourceExpression, MatchesExplicitCasts) { EXPECT_TRUE(matches("float x = static_cast<float>(42);", explicitCastExpr( hasSourceExpression(hasDescendant( expr(integerLiteral())))))); } TEST(Statement, DoesNotMatchDeclarations) { EXPECT_TRUE(notMatches("class X {};", stmt())); } TEST(Statement, MatchesCompoundStatments) { EXPECT_TRUE(matches("void x() {}", stmt())); } TEST(DeclarationStatement, DoesNotMatchCompoundStatements) { EXPECT_TRUE(notMatches("void x() {}", declStmt())); } TEST(DeclarationStatement, MatchesVariableDeclarationStatements) { EXPECT_TRUE(matches("void x() { int a; }", declStmt())); } TEST(ExprWithCleanups, MatchesExprWithCleanups) { EXPECT_TRUE(matches("struct Foo { ~Foo(); };" "const Foo f = Foo();", varDecl(hasInitializer(exprWithCleanups())))); EXPECT_FALSE(matches("struct Foo { };" "const Foo f = Foo();", varDecl(hasInitializer(exprWithCleanups())))); } TEST(InitListExpression, MatchesInitListExpression) { EXPECT_TRUE(matches("int a[] = { 1, 2 };", initListExpr(hasType(asString("int [2]"))))); EXPECT_TRUE(matches("struct B { int x, y; }; B b = { 5, 6 };", initListExpr(hasType(recordDecl(hasName("B")))))); EXPECT_TRUE(matches("struct S { S(void (*a)()); };" "void f();" "S s[1] = { &f };", declRefExpr(to(functionDecl(hasName("f")))))); EXPECT_TRUE( matches("int i[1] = {42, [0] = 43};", integerLiteral(equals(42)))); } TEST(UsingDeclaration, MatchesUsingDeclarations) { EXPECT_TRUE(matches("namespace X { int x; } using X::x;", usingDecl())); } TEST(UsingDeclaration, MatchesShadowUsingDelcarations) { EXPECT_TRUE(matches("namespace f { int a; } using f::a;", usingDecl(hasAnyUsingShadowDecl(hasName("a"))))); } TEST(UsingDeclaration, MatchesSpecificTarget) { EXPECT_TRUE(matches("namespace f { int a; void b(); } using f::b;", usingDecl(hasAnyUsingShadowDecl( hasTargetDecl(functionDecl()))))); EXPECT_TRUE(notMatches("namespace f { int a; void b(); } using f::a;", usingDecl(hasAnyUsingShadowDecl( hasTargetDecl(functionDecl()))))); } TEST(UsingDeclaration, ThroughUsingDeclaration) { EXPECT_TRUE(matches( "namespace a { void f(); } using a::f; void g() { f(); }", declRefExpr(throughUsingDecl(anything())))); EXPECT_TRUE(notMatches( "namespace a { void f(); } using a::f; void g() { a::f(); }", declRefExpr(throughUsingDecl(anything())))); } TEST(UsingDirectiveDeclaration, MatchesUsingNamespace) { EXPECT_TRUE(matches("namespace X { int x; } using namespace X;", usingDirectiveDecl())); EXPECT_FALSE( matches("namespace X { int x; } using X::x;", usingDirectiveDecl())); } TEST(SingleDecl, IsSingleDecl) { StatementMatcher SingleDeclStmt = declStmt(hasSingleDecl(varDecl(hasInitializer(anything())))); EXPECT_TRUE(matches("void f() {int a = 4;}", SingleDeclStmt)); EXPECT_TRUE(notMatches("void f() {int a;}", SingleDeclStmt)); EXPECT_TRUE(notMatches("void f() {int a = 4, b = 3;}", SingleDeclStmt)); } TEST(DeclStmt, ContainsDeclaration) { DeclarationMatcher MatchesInit = varDecl(hasInitializer(anything())); EXPECT_TRUE(matches("void f() {int a = 4;}", declStmt(containsDeclaration(0, MatchesInit)))); EXPECT_TRUE(matches("void f() {int a = 4, b = 3;}", declStmt(containsDeclaration(0, MatchesInit), containsDeclaration(1, MatchesInit)))); unsigned WrongIndex = 42; EXPECT_TRUE(notMatches("void f() {int a = 4, b = 3;}", declStmt(containsDeclaration(WrongIndex, MatchesInit)))); } TEST(DeclCount, DeclCountIsCorrect) { EXPECT_TRUE(matches("void f() {int i,j;}", declStmt(declCountIs(2)))); EXPECT_TRUE(notMatches("void f() {int i,j; int k;}", declStmt(declCountIs(3)))); EXPECT_TRUE(notMatches("void f() {int i,j, k, l;}", declStmt(declCountIs(3)))); } TEST(While, MatchesWhileLoops) { EXPECT_TRUE(notMatches("void x() {}", whileStmt())); EXPECT_TRUE(matches("void x() { while(true); }", whileStmt())); EXPECT_TRUE(notMatches("void x() { do {} while(true); }", whileStmt())); } TEST(Do, MatchesDoLoops) { EXPECT_TRUE(matches("void x() { do {} while(true); }", doStmt())); EXPECT_TRUE(matches("void x() { do ; while(false); }", doStmt())); } TEST(Do, DoesNotMatchWhileLoops) { EXPECT_TRUE(notMatches("void x() { while(true) {} }", doStmt())); } TEST(SwitchCase, MatchesCase) { EXPECT_TRUE(matches("void x() { switch(42) { case 42:; } }", switchCase())); EXPECT_TRUE(matches("void x() { switch(42) { default:; } }", switchCase())); EXPECT_TRUE(matches("void x() { switch(42) default:; }", switchCase())); EXPECT_TRUE(notMatches("void x() { switch(42) {} }", switchCase())); } TEST(SwitchCase, MatchesSwitch) { EXPECT_TRUE(matches("void x() { switch(42) { case 42:; } }", switchStmt())); EXPECT_TRUE(matches("void x() { switch(42) { default:; } }", switchStmt())); EXPECT_TRUE(matches("void x() { switch(42) default:; }", switchStmt())); EXPECT_TRUE(notMatches("void x() {}", switchStmt())); } TEST(SwitchCase, MatchesEachCase) { EXPECT_TRUE(notMatches("void x() { switch(42); }", switchStmt(forEachSwitchCase(caseStmt())))); EXPECT_TRUE(matches("void x() { switch(42) case 42:; }", switchStmt(forEachSwitchCase(caseStmt())))); EXPECT_TRUE(matches("void x() { switch(42) { case 42:; } }", switchStmt(forEachSwitchCase(caseStmt())))); EXPECT_TRUE(notMatches( "void x() { if (1) switch(42) { case 42: switch (42) { default:; } } }", ifStmt(has(switchStmt(forEachSwitchCase(defaultStmt())))))); EXPECT_TRUE(matches("void x() { switch(42) { case 1+1: case 4:; } }", switchStmt(forEachSwitchCase( caseStmt(hasCaseConstant(integerLiteral())))))); EXPECT_TRUE(notMatches("void x() { switch(42) { case 1+1: case 2+2:; } }", switchStmt(forEachSwitchCase( caseStmt(hasCaseConstant(integerLiteral())))))); EXPECT_TRUE(notMatches("void x() { switch(42) { case 1 ... 2:; } }", switchStmt(forEachSwitchCase( caseStmt(hasCaseConstant(integerLiteral())))))); EXPECT_TRUE(matchAndVerifyResultTrue( "void x() { switch (42) { case 1: case 2: case 3: default:; } }", switchStmt(forEachSwitchCase(caseStmt().bind("x"))), new VerifyIdIsBoundTo<CaseStmt>("x", 3))); } TEST(ForEachConstructorInitializer, MatchesInitializers) { EXPECT_TRUE(matches( "struct X { X() : i(42), j(42) {} int i, j; };", cxxConstructorDecl(forEachConstructorInitializer(cxxCtorInitializer())))); } TEST(ExceptionHandling, SimpleCases) { EXPECT_TRUE(matches("void foo() try { } catch(int X) { }", cxxCatchStmt())); EXPECT_TRUE(matches("void foo() try { } catch(int X) { }", cxxTryStmt())); EXPECT_TRUE( notMatches("void foo() try { } catch(int X) { }", cxxThrowExpr())); EXPECT_TRUE(matches("void foo() try { throw; } catch(int X) { }", cxxThrowExpr())); EXPECT_TRUE(matches("void foo() try { throw 5;} catch(int X) { }", cxxThrowExpr())); EXPECT_TRUE(matches("void foo() try { throw; } catch(...) { }", cxxCatchStmt(isCatchAll()))); EXPECT_TRUE(notMatches("void foo() try { throw; } catch(int) { }", cxxCatchStmt(isCatchAll()))); EXPECT_TRUE(matches("void foo() try {} catch(int X) { }", varDecl(isExceptionVariable()))); EXPECT_TRUE(notMatches("void foo() try { int X; } catch (...) { }", varDecl(isExceptionVariable()))); } TEST(HasConditionVariableStatement, DoesNotMatchCondition) { EXPECT_TRUE(notMatches( "void x() { if(true) {} }", ifStmt(hasConditionVariableStatement(declStmt())))); EXPECT_TRUE(notMatches( "void x() { int x; if((x = 42)) {} }", ifStmt(hasConditionVariableStatement(declStmt())))); } TEST(HasConditionVariableStatement, MatchesConditionVariables) { EXPECT_TRUE(matches( "void x() { if(int* a = 0) {} }", ifStmt(hasConditionVariableStatement(declStmt())))); } TEST(ForEach, BindsOneNode) { EXPECT_TRUE(matchAndVerifyResultTrue("class C { int x; };", recordDecl(hasName("C"), forEach(fieldDecl(hasName("x")).bind("x"))), new VerifyIdIsBoundTo<FieldDecl>("x", 1))); } TEST(ForEach, BindsMultipleNodes) { EXPECT_TRUE(matchAndVerifyResultTrue("class C { int x; int y; int z; };", recordDecl(hasName("C"), forEach(fieldDecl().bind("f"))), new VerifyIdIsBoundTo<FieldDecl>("f", 3))); } TEST(ForEach, BindsRecursiveCombinations) { EXPECT_TRUE(matchAndVerifyResultTrue( "class C { class D { int x; int y; }; class E { int y; int z; }; };", recordDecl(hasName("C"), forEach(recordDecl(forEach(fieldDecl().bind("f"))))), new VerifyIdIsBoundTo<FieldDecl>("f", 4))); } TEST(ForEachDescendant, BindsOneNode) { EXPECT_TRUE(matchAndVerifyResultTrue("class C { class D { int x; }; };", recordDecl(hasName("C"), forEachDescendant(fieldDecl(hasName("x")).bind("x"))), new VerifyIdIsBoundTo<FieldDecl>("x", 1))); } TEST(ForEachDescendant, NestedForEachDescendant) { DeclarationMatcher m = recordDecl( isDefinition(), decl().bind("x"), hasName("C")); EXPECT_TRUE(matchAndVerifyResultTrue( "class A { class B { class C {}; }; };", recordDecl(hasName("A"), anyOf(m, forEachDescendant(m))), new VerifyIdIsBoundTo<Decl>("x", "C"))); // Check that a partial match of 'm' that binds 'x' in the // first part of anyOf(m, anything()) will not overwrite the // binding created by the earlier binding in the hasDescendant. EXPECT_TRUE(matchAndVerifyResultTrue( "class A { class B { class C {}; }; };", recordDecl(hasName("A"), allOf(hasDescendant(m), anyOf(m, anything()))), new VerifyIdIsBoundTo<Decl>("x", "C"))); } TEST(ForEachDescendant, BindsMultipleNodes) { EXPECT_TRUE(matchAndVerifyResultTrue( "class C { class D { int x; int y; }; " " class E { class F { int y; int z; }; }; };", recordDecl(hasName("C"), forEachDescendant(fieldDecl().bind("f"))), new VerifyIdIsBoundTo<FieldDecl>("f", 4))); } TEST(ForEachDescendant, BindsRecursiveCombinations) { EXPECT_TRUE(matchAndVerifyResultTrue( "class C { class D { " " class E { class F { class G { int y; int z; }; }; }; }; };", recordDecl(hasName("C"), forEachDescendant(recordDecl( forEachDescendant(fieldDecl().bind("f"))))), new VerifyIdIsBoundTo<FieldDecl>("f", 8))); } TEST(ForEachDescendant, BindsCombinations) { EXPECT_TRUE(matchAndVerifyResultTrue( "void f() { if(true) {} if (true) {} while (true) {} if (true) {} while " "(true) {} }", compoundStmt(forEachDescendant(ifStmt().bind("if")), forEachDescendant(whileStmt().bind("while"))), new VerifyIdIsBoundTo<IfStmt>("if", 6))); } TEST(Has, DoesNotDeleteBindings) { EXPECT_TRUE(matchAndVerifyResultTrue( "class X { int a; };", recordDecl(decl().bind("x"), has(fieldDecl())), new VerifyIdIsBoundTo<Decl>("x", 1))); } TEST(LoopingMatchers, DoNotOverwritePreviousMatchResultOnFailure) { // Those matchers cover all the cases where an inner matcher is called // and there is not a 1:1 relationship between the match of the outer // matcher and the match of the inner matcher. // The pattern to look for is: // ... return InnerMatcher.matches(...); ... // In which case no special handling is needed. // // On the other hand, if there are multiple alternative matches // (for example forEach*) or matches might be discarded (for example has*) // the implementation must make sure that the discarded matches do not // affect the bindings. // When new such matchers are added, add a test here that: // - matches a simple node, and binds it as the first thing in the matcher: // recordDecl(decl().bind("x"), hasName("X"))) // - uses the matcher under test afterwards in a way that not the first // alternative is matched; for anyOf, that means the first branch // would need to return false; for hasAncestor, it means that not // the direct parent matches the inner matcher. EXPECT_TRUE(matchAndVerifyResultTrue( "class X { int y; };", recordDecl( recordDecl().bind("x"), hasName("::X"), anyOf(forEachDescendant(recordDecl(hasName("Y"))), anything())), new VerifyIdIsBoundTo<CXXRecordDecl>("x", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "class X {};", recordDecl(recordDecl().bind("x"), hasName("::X"), anyOf(unless(anything()), anything())), new VerifyIdIsBoundTo<CXXRecordDecl>("x", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "template<typename T1, typename T2> class X {}; X<float, int> x;", classTemplateSpecializationDecl( decl().bind("x"), hasAnyTemplateArgument(refersToType(asString("int")))), new VerifyIdIsBoundTo<Decl>("x", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "class X { void f(); void g(); };", cxxRecordDecl(decl().bind("x"), hasMethod(hasName("g"))), new VerifyIdIsBoundTo<Decl>("x", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "class X { X() : a(1), b(2) {} double a; int b; };", recordDecl(decl().bind("x"), has(cxxConstructorDecl( hasAnyConstructorInitializer(forField(hasName("b")))))), new VerifyIdIsBoundTo<Decl>("x", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "void x(int, int) { x(0, 42); }", callExpr(expr().bind("x"), hasAnyArgument(integerLiteral(equals(42)))), new VerifyIdIsBoundTo<Expr>("x", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "void x(int, int y) {}", functionDecl(decl().bind("x"), hasAnyParameter(hasName("y"))), new VerifyIdIsBoundTo<Decl>("x", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "void x() { return; if (true) {} }", functionDecl(decl().bind("x"), has(compoundStmt(hasAnySubstatement(ifStmt())))), new VerifyIdIsBoundTo<Decl>("x", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "namespace X { void b(int); void b(); }" "using X::b;", usingDecl(decl().bind("x"), hasAnyUsingShadowDecl(hasTargetDecl( functionDecl(parameterCountIs(1))))), new VerifyIdIsBoundTo<Decl>("x", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "class A{}; class B{}; class C : B, A {};", cxxRecordDecl(decl().bind("x"), isDerivedFrom("::A")), new VerifyIdIsBoundTo<Decl>("x", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "class A{}; typedef A B; typedef A C; typedef A D;" "class E : A {};", cxxRecordDecl(decl().bind("x"), isDerivedFrom("C")), new VerifyIdIsBoundTo<Decl>("x", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "class A { class B { void f() {} }; };", functionDecl(decl().bind("x"), hasAncestor(recordDecl(hasName("::A")))), new VerifyIdIsBoundTo<Decl>("x", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "template <typename T> struct A { struct B {" " void f() { if(true) {} }" "}; };" "void t() { A<int>::B b; b.f(); }", ifStmt(stmt().bind("x"), hasAncestor(recordDecl(hasName("::A")))), new VerifyIdIsBoundTo<Stmt>("x", 2))); EXPECT_TRUE(matchAndVerifyResultTrue( "class A {};", recordDecl(hasName("::A"), decl().bind("x"), unless(hasName("fooble"))), new VerifyIdIsBoundTo<Decl>("x", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "class A { A() : s(), i(42) {} const char *s; int i; };", cxxConstructorDecl(hasName("::A::A"), decl().bind("x"), forEachConstructorInitializer(forField(hasName("i")))), new VerifyIdIsBoundTo<Decl>("x", 1))); } TEST(ForEachDescendant, BindsCorrectNodes) { EXPECT_TRUE(matchAndVerifyResultTrue( "class C { void f(); int i; };", recordDecl(hasName("C"), forEachDescendant(decl().bind("decl"))), new VerifyIdIsBoundTo<FieldDecl>("decl", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "class C { void f() {} int i; };", recordDecl(hasName("C"), forEachDescendant(decl().bind("decl"))), new VerifyIdIsBoundTo<FunctionDecl>("decl", 1))); } TEST(FindAll, BindsNodeOnMatch) { EXPECT_TRUE(matchAndVerifyResultTrue( "class A {};", recordDecl(hasName("::A"), findAll(recordDecl(hasName("::A")).bind("v"))), new VerifyIdIsBoundTo<CXXRecordDecl>("v", 1))); } TEST(FindAll, BindsDescendantNodeOnMatch) { EXPECT_TRUE(matchAndVerifyResultTrue( "class A { int a; int b; };", recordDecl(hasName("::A"), findAll(fieldDecl().bind("v"))), new VerifyIdIsBoundTo<FieldDecl>("v", 2))); } TEST(FindAll, BindsNodeAndDescendantNodesOnOneMatch) { EXPECT_TRUE(matchAndVerifyResultTrue( "class A { int a; int b; };", recordDecl(hasName("::A"), findAll(decl(anyOf(recordDecl(hasName("::A")).bind("v"), fieldDecl().bind("v"))))), new VerifyIdIsBoundTo<Decl>("v", 3))); EXPECT_TRUE(matchAndVerifyResultTrue( "class A { class B {}; class C {}; };", recordDecl(hasName("::A"), findAll(recordDecl(isDefinition()).bind("v"))), new VerifyIdIsBoundTo<CXXRecordDecl>("v", 3))); } TEST(EachOf, TriggersForEachMatch) { EXPECT_TRUE(matchAndVerifyResultTrue( "class A { int a; int b; };", recordDecl(eachOf(has(fieldDecl(hasName("a")).bind("v")), has(fieldDecl(hasName("b")).bind("v")))), new VerifyIdIsBoundTo<FieldDecl>("v", 2))); } TEST(EachOf, BehavesLikeAnyOfUnlessBothMatch) { EXPECT_TRUE(matchAndVerifyResultTrue( "class A { int a; int c; };", recordDecl(eachOf(has(fieldDecl(hasName("a")).bind("v")), has(fieldDecl(hasName("b")).bind("v")))), new VerifyIdIsBoundTo<FieldDecl>("v", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "class A { int c; int b; };", recordDecl(eachOf(has(fieldDecl(hasName("a")).bind("v")), has(fieldDecl(hasName("b")).bind("v")))), new VerifyIdIsBoundTo<FieldDecl>("v", 1))); EXPECT_TRUE(notMatches( "class A { int c; int d; };", recordDecl(eachOf(has(fieldDecl(hasName("a")).bind("v")), has(fieldDecl(hasName("b")).bind("v")))))); } TEST(IsTemplateInstantiation, MatchesImplicitClassTemplateInstantiation) { // Make sure that we can both match the class by name (::X) and by the type // the template was instantiated with (via a field). EXPECT_TRUE(matches( "template <typename T> class X {}; class A {}; X<A> x;", cxxRecordDecl(hasName("::X"), isTemplateInstantiation()))); EXPECT_TRUE(matches( "template <typename T> class X { T t; }; class A {}; X<A> x;", cxxRecordDecl(isTemplateInstantiation(), hasDescendant( fieldDecl(hasType(recordDecl(hasName("A")))))))); } TEST(IsTemplateInstantiation, MatchesImplicitFunctionTemplateInstantiation) { EXPECT_TRUE(matches( "template <typename T> void f(T t) {} class A {}; void g() { f(A()); }", functionDecl(hasParameter(0, hasType(recordDecl(hasName("A")))), isTemplateInstantiation()))); } TEST(IsTemplateInstantiation, MatchesExplicitClassTemplateInstantiation) { EXPECT_TRUE(matches( "template <typename T> class X { T t; }; class A {};" "template class X<A>;", cxxRecordDecl(isTemplateInstantiation(), hasDescendant( fieldDecl(hasType(recordDecl(hasName("A")))))))); } TEST(IsTemplateInstantiation, MatchesInstantiationOfPartiallySpecializedClassTemplate) { EXPECT_TRUE(matches( "template <typename T> class X {};" "template <typename T> class X<T*> {}; class A {}; X<A*> x;", cxxRecordDecl(hasName("::X"), isTemplateInstantiation()))); } TEST(IsTemplateInstantiation, MatchesInstantiationOfClassTemplateNestedInNonTemplate) { EXPECT_TRUE(matches( "class A {};" "class X {" " template <typename U> class Y { U u; };" " Y<A> y;" "};", cxxRecordDecl(hasName("::X::Y"), isTemplateInstantiation()))); } TEST(IsTemplateInstantiation, DoesNotMatchInstantiationsInsideOfInstantiation) { // FIXME: Figure out whether this makes sense. It doesn't affect the // normal use case as long as the uppermost instantiation always is marked // as template instantiation, but it might be confusing as a predicate. EXPECT_TRUE(matches( "class A {};" "template <typename T> class X {" " template <typename U> class Y { U u; };" " Y<T> y;" "}; X<A> x;", cxxRecordDecl(hasName("::X<A>::Y"), unless(isTemplateInstantiation())))); } TEST(IsTemplateInstantiation, DoesNotMatchExplicitClassTemplateSpecialization) { EXPECT_TRUE(notMatches( "template <typename T> class X {}; class A {};" "template <> class X<A> {}; X<A> x;", cxxRecordDecl(hasName("::X"), isTemplateInstantiation()))); } TEST(IsTemplateInstantiation, DoesNotMatchNonTemplate) { EXPECT_TRUE(notMatches( "class A {}; class Y { A a; };", cxxRecordDecl(isTemplateInstantiation()))); } TEST(IsInstantiated, MatchesInstantiation) { EXPECT_TRUE( matches("template<typename T> class A { T i; }; class Y { A<int> a; };", cxxRecordDecl(isInstantiated()))); } TEST(IsInstantiated, NotMatchesDefinition) { EXPECT_TRUE(notMatches("template<typename T> class A { T i; };", cxxRecordDecl(isInstantiated()))); } TEST(IsInTemplateInstantiation, MatchesInstantiationStmt) { EXPECT_TRUE(matches("template<typename T> struct A { A() { T i; } };" "class Y { A<int> a; }; Y y;", declStmt(isInTemplateInstantiation()))); } TEST(IsInTemplateInstantiation, NotMatchesDefinitionStmt) { EXPECT_TRUE(notMatches("template<typename T> struct A { void x() { T i; } };", declStmt(isInTemplateInstantiation()))); } TEST(IsInstantiated, MatchesFunctionInstantiation) { EXPECT_TRUE( matches("template<typename T> void A(T t) { T i; } void x() { A(0); }", functionDecl(isInstantiated()))); } TEST(IsInstantiated, NotMatchesFunctionDefinition) { EXPECT_TRUE(notMatches("template<typename T> void A(T t) { T i; }", varDecl(isInstantiated()))); } TEST(IsInTemplateInstantiation, MatchesFunctionInstantiationStmt) { EXPECT_TRUE( matches("template<typename T> void A(T t) { T i; } void x() { A(0); }", declStmt(isInTemplateInstantiation()))); } TEST(IsInTemplateInstantiation, NotMatchesFunctionDefinitionStmt) { EXPECT_TRUE(notMatches("template<typename T> void A(T t) { T i; }", declStmt(isInTemplateInstantiation()))); } TEST(IsInTemplateInstantiation, Sharing) { auto Matcher = binaryOperator(unless(isInTemplateInstantiation())); // FIXME: Node sharing is an implementation detail, exposing it is ugly // and makes the matcher behave in non-obvious ways. EXPECT_TRUE(notMatches( "int j; template<typename T> void A(T t) { j += 42; } void x() { A(0); }", Matcher)); EXPECT_TRUE(matches( "int j; template<typename T> void A(T t) { j += t; } void x() { A(0); }", Matcher)); } TEST(IsExplicitTemplateSpecialization, DoesNotMatchPrimaryTemplate) { EXPECT_TRUE(notMatches( "template <typename T> class X {};", cxxRecordDecl(isExplicitTemplateSpecialization()))); EXPECT_TRUE(notMatches( "template <typename T> void f(T t);", functionDecl(isExplicitTemplateSpecialization()))); } TEST(IsExplicitTemplateSpecialization, DoesNotMatchExplicitTemplateInstantiations) { EXPECT_TRUE(notMatches( "template <typename T> class X {};" "template class X<int>; extern template class X<long>;", cxxRecordDecl(isExplicitTemplateSpecialization()))); EXPECT_TRUE(notMatches( "template <typename T> void f(T t) {}" "template void f(int t); extern template void f(long t);", functionDecl(isExplicitTemplateSpecialization()))); } TEST(IsExplicitTemplateSpecialization, DoesNotMatchImplicitTemplateInstantiations) { EXPECT_TRUE(notMatches( "template <typename T> class X {}; X<int> x;", cxxRecordDecl(isExplicitTemplateSpecialization()))); EXPECT_TRUE(notMatches( "template <typename T> void f(T t); void g() { f(10); }", functionDecl(isExplicitTemplateSpecialization()))); } TEST(IsExplicitTemplateSpecialization, MatchesExplicitTemplateSpecializations) { EXPECT_TRUE(matches( "template <typename T> class X {};" "template<> class X<int> {};", cxxRecordDecl(isExplicitTemplateSpecialization()))); EXPECT_TRUE(matches( "template <typename T> void f(T t) {}" "template<> void f(int t) {}", functionDecl(isExplicitTemplateSpecialization()))); } TEST(HasAncenstor, MatchesDeclarationAncestors) { EXPECT_TRUE(matches( "class A { class B { class C {}; }; };", recordDecl(hasName("C"), hasAncestor(recordDecl(hasName("A")))))); } TEST(HasAncenstor, FailsIfNoAncestorMatches) { EXPECT_TRUE(notMatches( "class A { class B { class C {}; }; };", recordDecl(hasName("C"), hasAncestor(recordDecl(hasName("X")))))); } TEST(HasAncestor, MatchesDeclarationsThatGetVisitedLater) { EXPECT_TRUE(matches( "class A { class B { void f() { C c; } class C {}; }; };", varDecl(hasName("c"), hasType(recordDecl(hasName("C"), hasAncestor(recordDecl(hasName("A")))))))); } TEST(HasAncenstor, MatchesStatementAncestors) { EXPECT_TRUE(matches( "void f() { if (true) { while (false) { 42; } } }", integerLiteral(equals(42), hasAncestor(ifStmt())))); } TEST(HasAncestor, DrillsThroughDifferentHierarchies) { EXPECT_TRUE(matches( "void f() { if (true) { int x = 42; } }", integerLiteral(equals(42), hasAncestor(functionDecl(hasName("f")))))); } TEST(HasAncestor, BindsRecursiveCombinations) { EXPECT_TRUE(matchAndVerifyResultTrue( "class C { class D { class E { class F { int y; }; }; }; };", fieldDecl(hasAncestor(recordDecl(hasAncestor(recordDecl().bind("r"))))), new VerifyIdIsBoundTo<CXXRecordDecl>("r", 1))); } TEST(HasAncestor, BindsCombinationsWithHasDescendant) { EXPECT_TRUE(matchAndVerifyResultTrue( "class C { class D { class E { class F { int y; }; }; }; };", fieldDecl(hasAncestor( decl( hasDescendant(recordDecl(isDefinition(), hasAncestor(recordDecl()))) ).bind("d") )), new VerifyIdIsBoundTo<CXXRecordDecl>("d", "E"))); } TEST(HasAncestor, MatchesClosestAncestor) { EXPECT_TRUE(matchAndVerifyResultTrue( "template <typename T> struct C {" " void f(int) {" " struct I { void g(T) { int x; } } i; i.g(42);" " }" "};" "template struct C<int>;", varDecl(hasName("x"), hasAncestor(functionDecl(hasParameter( 0, varDecl(hasType(asString("int"))))).bind("f"))).bind("v"), new VerifyIdIsBoundTo<FunctionDecl>("f", "g", 2))); } TEST(HasAncestor, MatchesInTemplateInstantiations) { EXPECT_TRUE(matches( "template <typename T> struct A { struct B { struct C { T t; }; }; }; " "A<int>::B::C a;", fieldDecl(hasType(asString("int")), hasAncestor(recordDecl(hasName("A")))))); } TEST(HasAncestor, MatchesInImplicitCode) { EXPECT_TRUE(matches( "struct X {}; struct A { A() {} X x; };", cxxConstructorDecl( hasAnyConstructorInitializer(withInitializer(expr( hasAncestor(recordDecl(hasName("A"))))))))); } TEST(HasParent, MatchesOnlyParent) { EXPECT_TRUE(matches( "void f() { if (true) { int x = 42; } }", compoundStmt(hasParent(ifStmt())))); EXPECT_TRUE(notMatches( "void f() { for (;;) { int x = 42; } }", compoundStmt(hasParent(ifStmt())))); EXPECT_TRUE(notMatches( "void f() { if (true) for (;;) { int x = 42; } }", compoundStmt(hasParent(ifStmt())))); } TEST(HasAncestor, MatchesAllAncestors) { EXPECT_TRUE(matches( "template <typename T> struct C { static void f() { 42; } };" "void t() { C<int>::f(); }", integerLiteral( equals(42), allOf( hasAncestor(cxxRecordDecl(isTemplateInstantiation())), hasAncestor(cxxRecordDecl(unless(isTemplateInstantiation()))))))); } TEST(HasParent, MatchesAllParents) { EXPECT_TRUE(matches( "template <typename T> struct C { static void f() { 42; } };" "void t() { C<int>::f(); }", integerLiteral( equals(42), hasParent(compoundStmt(hasParent(functionDecl( hasParent(cxxRecordDecl(isTemplateInstantiation()))))))))); EXPECT_TRUE( matches("template <typename T> struct C { static void f() { 42; } };" "void t() { C<int>::f(); }", integerLiteral( equals(42), hasParent(compoundStmt(hasParent(functionDecl(hasParent( cxxRecordDecl(unless(isTemplateInstantiation())))))))))); EXPECT_TRUE(matches( "template <typename T> struct C { static void f() { 42; } };" "void t() { C<int>::f(); }", integerLiteral(equals(42), hasParent(compoundStmt( allOf(hasParent(functionDecl(hasParent( cxxRecordDecl(isTemplateInstantiation())))), hasParent(functionDecl(hasParent(cxxRecordDecl( unless(isTemplateInstantiation()))))))))))); EXPECT_TRUE( notMatches("template <typename T> struct C { static void f() {} };" "void t() { C<int>::f(); }", compoundStmt(hasParent(recordDecl())))); } TEST(HasParent, NoDuplicateParents) { class HasDuplicateParents : public BoundNodesCallback { public: bool run(const BoundNodes *Nodes) override { return false; } bool run(const BoundNodes *Nodes, ASTContext *Context) override { const Stmt *Node = Nodes->getNodeAs<Stmt>("node"); std::set<const void *> Parents; for (const auto &Parent : Context->getParents(*Node)) { if (!Parents.insert(Parent.getMemoizationData()).second) { return true; } } return false; } }; EXPECT_FALSE(matchAndVerifyResultTrue( "template <typename T> int Foo() { return 1 + 2; }\n" "int x = Foo<int>() + Foo<unsigned>();", stmt().bind("node"), new HasDuplicateParents())); } TEST(TypeMatching, MatchesTypes) { EXPECT_TRUE(matches("struct S {};", qualType().bind("loc"))); } TEST(TypeMatching, MatchesVoid) { EXPECT_TRUE(matches("struct S { void func(); };", cxxMethodDecl(returns(voidType())))); } TEST(TypeMatching, MatchesArrayTypes) { EXPECT_TRUE(matches("int a[] = {2,3};", arrayType())); EXPECT_TRUE(matches("int a[42];", arrayType())); EXPECT_TRUE(matches("void f(int b) { int a[b]; }", arrayType())); EXPECT_TRUE(notMatches("struct A {}; A a[7];", arrayType(hasElementType(builtinType())))); EXPECT_TRUE(matches( "int const a[] = { 2, 3 };", qualType(arrayType(hasElementType(builtinType()))))); EXPECT_TRUE(matches( "int const a[] = { 2, 3 };", qualType(isConstQualified(), arrayType(hasElementType(builtinType()))))); EXPECT_TRUE(matches( "typedef const int T; T x[] = { 1, 2 };", qualType(isConstQualified(), arrayType()))); EXPECT_TRUE(notMatches( "int a[] = { 2, 3 };", qualType(isConstQualified(), arrayType(hasElementType(builtinType()))))); EXPECT_TRUE(notMatches( "int a[] = { 2, 3 };", qualType(arrayType(hasElementType(isConstQualified(), builtinType()))))); EXPECT_TRUE(notMatches( "int const a[] = { 2, 3 };", qualType(arrayType(hasElementType(builtinType())), unless(isConstQualified())))); EXPECT_TRUE(matches("int a[2];", constantArrayType(hasElementType(builtinType())))); EXPECT_TRUE(matches("const int a = 0;", qualType(isInteger()))); } TEST(TypeMatching, DecayedType) { EXPECT_TRUE(matches("void f(int i[]);", valueDecl(hasType(decayedType(hasDecayedType(pointerType())))))); EXPECT_TRUE(notMatches("int i[7];", decayedType())); } TEST(TypeMatching, MatchesComplexTypes) { EXPECT_TRUE(matches("_Complex float f;", complexType())); EXPECT_TRUE(matches( "_Complex float f;", complexType(hasElementType(builtinType())))); EXPECT_TRUE(notMatches( "_Complex float f;", complexType(hasElementType(isInteger())))); } TEST(TypeMatching, MatchesConstantArrayTypes) { EXPECT_TRUE(matches("int a[2];", constantArrayType())); EXPECT_TRUE(notMatches( "void f() { int a[] = { 2, 3 }; int b[a[0]]; }", constantArrayType(hasElementType(builtinType())))); EXPECT_TRUE(matches("int a[42];", constantArrayType(hasSize(42)))); EXPECT_TRUE(matches("int b[2*21];", constantArrayType(hasSize(42)))); EXPECT_TRUE(notMatches("int c[41], d[43];", constantArrayType(hasSize(42)))); } TEST(TypeMatching, MatchesDependentSizedArrayTypes) { EXPECT_TRUE(matches( "template <typename T, int Size> class array { T data[Size]; };", dependentSizedArrayType())); EXPECT_TRUE(notMatches( "int a[42]; int b[] = { 2, 3 }; void f() { int c[b[0]]; }", dependentSizedArrayType())); } TEST(TypeMatching, MatchesIncompleteArrayType) { EXPECT_TRUE(matches("int a[] = { 2, 3 };", incompleteArrayType())); EXPECT_TRUE(matches("void f(int a[]) {}", incompleteArrayType())); EXPECT_TRUE(notMatches("int a[42]; void f() { int b[a[0]]; }", incompleteArrayType())); } TEST(TypeMatching, MatchesVariableArrayType) { EXPECT_TRUE(matches("void f(int b) { int a[b]; }", variableArrayType())); EXPECT_TRUE(notMatches("int a[] = {2, 3}; int b[42];", variableArrayType())); EXPECT_TRUE(matches( "void f(int b) { int a[b]; }", variableArrayType(hasSizeExpr(ignoringImpCasts(declRefExpr(to( varDecl(hasName("b"))))))))); } TEST(TypeMatching, MatchesAtomicTypes) { if (llvm::Triple(llvm::sys::getDefaultTargetTriple()).getOS() != llvm::Triple::Win32) { // FIXME: Make this work for MSVC. EXPECT_TRUE(matches("_Atomic(int) i;", atomicType())); EXPECT_TRUE(matches("_Atomic(int) i;", atomicType(hasValueType(isInteger())))); EXPECT_TRUE(notMatches("_Atomic(float) f;", atomicType(hasValueType(isInteger())))); } } TEST(TypeMatching, MatchesAutoTypes) { EXPECT_TRUE(matches("auto i = 2;", autoType())); EXPECT_TRUE(matches("int v[] = { 2, 3 }; void f() { for (int i : v) {} }", autoType())); // FIXME: Matching against the type-as-written can't work here, because the // type as written was not deduced. //EXPECT_TRUE(matches("auto a = 1;", // autoType(hasDeducedType(isInteger())))); //EXPECT_TRUE(notMatches("auto b = 2.0;", // autoType(hasDeducedType(isInteger())))); } TEST(TypeMatching, MatchesFunctionTypes) { EXPECT_TRUE(matches("int (*f)(int);", functionType())); EXPECT_TRUE(matches("void f(int i) {}", functionType())); } TEST(TypeMatching, MatchesParenType) { EXPECT_TRUE( matches("int (*array)[4];", varDecl(hasType(pointsTo(parenType()))))); EXPECT_TRUE(notMatches("int *array[4];", varDecl(hasType(parenType())))); EXPECT_TRUE(matches( "int (*ptr_to_func)(int);", varDecl(hasType(pointsTo(parenType(innerType(functionType()))))))); EXPECT_TRUE(notMatches( "int (*ptr_to_array)[4];", varDecl(hasType(pointsTo(parenType(innerType(functionType()))))))); } TEST(TypeMatching, PointerTypes) { // FIXME: Reactive when these tests can be more specific (not matching // implicit code on certain platforms), likely when we have hasDescendant for // Types/TypeLocs. //EXPECT_TRUE(matchAndVerifyResultTrue( // "int* a;", // pointerTypeLoc(pointeeLoc(typeLoc().bind("loc"))), // new VerifyIdIsBoundTo<TypeLoc>("loc", 1))); //EXPECT_TRUE(matchAndVerifyResultTrue( // "int* a;", // pointerTypeLoc().bind("loc"), // new VerifyIdIsBoundTo<TypeLoc>("loc", 1))); EXPECT_TRUE(matches( "int** a;", loc(pointerType(pointee(qualType()))))); EXPECT_TRUE(matches( "int** a;", loc(pointerType(pointee(pointerType()))))); EXPECT_TRUE(matches( "int* b; int* * const a = &b;", loc(qualType(isConstQualified(), pointerType())))); std::string Fragment = "struct A { int i; }; int A::* ptr = &A::i;"; EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ptr"), hasType(blockPointerType())))); EXPECT_TRUE(matches(Fragment, varDecl(hasName("ptr"), hasType(memberPointerType())))); EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ptr"), hasType(pointerType())))); EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ptr"), hasType(referenceType())))); EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ptr"), hasType(lValueReferenceType())))); EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ptr"), hasType(rValueReferenceType())))); Fragment = "int *ptr;"; EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ptr"), hasType(blockPointerType())))); EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ptr"), hasType(memberPointerType())))); EXPECT_TRUE(matches(Fragment, varDecl(hasName("ptr"), hasType(pointerType())))); EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ptr"), hasType(referenceType())))); Fragment = "int a; int &ref = a;"; EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ref"), hasType(blockPointerType())))); EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ref"), hasType(memberPointerType())))); EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ref"), hasType(pointerType())))); EXPECT_TRUE(matches(Fragment, varDecl(hasName("ref"), hasType(referenceType())))); EXPECT_TRUE(matches(Fragment, varDecl(hasName("ref"), hasType(lValueReferenceType())))); EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ref"), hasType(rValueReferenceType())))); Fragment = "int &&ref = 2;"; EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ref"), hasType(blockPointerType())))); EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ref"), hasType(memberPointerType())))); EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ref"), hasType(pointerType())))); EXPECT_TRUE(matches(Fragment, varDecl(hasName("ref"), hasType(referenceType())))); EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ref"), hasType(lValueReferenceType())))); EXPECT_TRUE(matches(Fragment, varDecl(hasName("ref"), hasType(rValueReferenceType())))); } TEST(TypeMatching, AutoRefTypes) { std::string Fragment = "auto a = 1;" "auto b = a;" "auto &c = a;" "auto &&d = c;" "auto &&e = 2;"; EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("a"), hasType(referenceType())))); EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("b"), hasType(referenceType())))); EXPECT_TRUE(matches(Fragment, varDecl(hasName("c"), hasType(referenceType())))); EXPECT_TRUE(matches(Fragment, varDecl(hasName("c"), hasType(lValueReferenceType())))); EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("c"), hasType(rValueReferenceType())))); EXPECT_TRUE(matches(Fragment, varDecl(hasName("d"), hasType(referenceType())))); EXPECT_TRUE(matches(Fragment, varDecl(hasName("d"), hasType(lValueReferenceType())))); EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("d"), hasType(rValueReferenceType())))); EXPECT_TRUE(matches(Fragment, varDecl(hasName("e"), hasType(referenceType())))); EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("e"), hasType(lValueReferenceType())))); EXPECT_TRUE(matches(Fragment, varDecl(hasName("e"), hasType(rValueReferenceType())))); } TEST(TypeMatching, PointeeTypes) { EXPECT_TRUE(matches("int b; int &a = b;", referenceType(pointee(builtinType())))); EXPECT_TRUE(matches("int *a;", pointerType(pointee(builtinType())))); EXPECT_TRUE(matches("int *a;", loc(pointerType(pointee(builtinType()))))); EXPECT_TRUE(matches( "int const *A;", pointerType(pointee(isConstQualified(), builtinType())))); EXPECT_TRUE(notMatches( "int *A;", pointerType(pointee(isConstQualified(), builtinType())))); } TEST(TypeMatching, MatchesPointersToConstTypes) { EXPECT_TRUE(matches("int b; int * const a = &b;", loc(pointerType()))); EXPECT_TRUE(matches("int b; int * const a = &b;", loc(pointerType()))); EXPECT_TRUE(matches( "int b; const int * a = &b;", loc(pointerType(pointee(builtinType()))))); EXPECT_TRUE(matches( "int b; const int * a = &b;", pointerType(pointee(builtinType())))); } TEST(TypeMatching, MatchesTypedefTypes) { EXPECT_TRUE(matches("typedef int X; X a;", varDecl(hasName("a"), hasType(typedefType())))); } TEST(TypeMatching, MatchesTemplateSpecializationType) { EXPECT_TRUE(matches("template <typename T> class A{}; A<int> a;", templateSpecializationType())); } TEST(TypeMatching, MatchesRecordType) { EXPECT_TRUE(matches("class C{}; C c;", recordType())); EXPECT_TRUE(matches("struct S{}; S s;", recordType(hasDeclaration(recordDecl(hasName("S")))))); EXPECT_TRUE(notMatches("int i;", recordType(hasDeclaration(recordDecl(hasName("S")))))); } TEST(TypeMatching, MatchesElaboratedType) { EXPECT_TRUE(matches( "namespace N {" " namespace M {" " class D {};" " }" "}" "N::M::D d;", elaboratedType())); EXPECT_TRUE(matches("class C {} c;", elaboratedType())); EXPECT_TRUE(notMatches("class C {}; C c;", elaboratedType())); } TEST(ElaboratedTypeNarrowing, hasQualifier) { EXPECT_TRUE(matches( "namespace N {" " namespace M {" " class D {};" " }" "}" "N::M::D d;", elaboratedType(hasQualifier(hasPrefix(specifiesNamespace(hasName("N"))))))); EXPECT_TRUE(notMatches( "namespace M {" " class D {};" "}" "M::D d;", elaboratedType(hasQualifier(hasPrefix(specifiesNamespace(hasName("N"))))))); EXPECT_TRUE(notMatches( "struct D {" "} d;", elaboratedType(hasQualifier(nestedNameSpecifier())))); } TEST(ElaboratedTypeNarrowing, namesType) { EXPECT_TRUE(matches( "namespace N {" " namespace M {" " class D {};" " }" "}" "N::M::D d;", elaboratedType(elaboratedType(namesType(recordType( hasDeclaration(namedDecl(hasName("D"))))))))); EXPECT_TRUE(notMatches( "namespace M {" " class D {};" "}" "M::D d;", elaboratedType(elaboratedType(namesType(typedefType()))))); } TEST(TypeMatching, MatchesSubstTemplateTypeParmType) { const std::string code = "template <typename T>" "int F() {" " return 1 + T();" "}" "int i = F<int>();"; EXPECT_FALSE(matches(code, binaryOperator(hasLHS( expr(hasType(substTemplateTypeParmType())))))); EXPECT_TRUE(matches(code, binaryOperator(hasRHS( expr(hasType(substTemplateTypeParmType())))))); } TEST(NNS, MatchesNestedNameSpecifiers) { EXPECT_TRUE(matches("namespace ns { struct A {}; } ns::A a;", nestedNameSpecifier())); EXPECT_TRUE(matches("template <typename T> class A { typename T::B b; };", nestedNameSpecifier())); EXPECT_TRUE(matches("struct A { void f(); }; void A::f() {}", nestedNameSpecifier())); EXPECT_TRUE(matches("namespace a { namespace b {} } namespace ab = a::b;", nestedNameSpecifier())); EXPECT_TRUE(matches( "struct A { static void f() {} }; void g() { A::f(); }", nestedNameSpecifier())); EXPECT_TRUE(notMatches( "struct A { static void f() {} }; void g(A* a) { a->f(); }", nestedNameSpecifier())); } TEST(NullStatement, SimpleCases) { EXPECT_TRUE(matches("void f() {int i;;}", nullStmt())); EXPECT_TRUE(notMatches("void f() {int i;}", nullStmt())); } TEST(NS, Anonymous) { EXPECT_TRUE(notMatches("namespace N {}", namespaceDecl(isAnonymous()))); EXPECT_TRUE(matches("namespace {}", namespaceDecl(isAnonymous()))); } TEST(NS, Alias) { EXPECT_TRUE(matches("namespace test {} namespace alias = ::test;", namespaceAliasDecl(hasName("alias")))); } TEST(NNS, MatchesTypes) { NestedNameSpecifierMatcher Matcher = nestedNameSpecifier( specifiesType(hasDeclaration(recordDecl(hasName("A"))))); EXPECT_TRUE(matches("struct A { struct B {}; }; A::B b;", Matcher)); EXPECT_TRUE(matches("struct A { struct B { struct C {}; }; }; A::B::C c;", Matcher)); EXPECT_TRUE(notMatches("namespace A { struct B {}; } A::B b;", Matcher)); } TEST(NNS, MatchesNamespaceDecls) { NestedNameSpecifierMatcher Matcher = nestedNameSpecifier( specifiesNamespace(hasName("ns"))); EXPECT_TRUE(matches("namespace ns { struct A {}; } ns::A a;", Matcher)); EXPECT_TRUE(notMatches("namespace xx { struct A {}; } xx::A a;", Matcher)); EXPECT_TRUE(notMatches("struct ns { struct A {}; }; ns::A a;", Matcher)); } TEST(NNS, BindsNestedNameSpecifiers) { EXPECT_TRUE(matchAndVerifyResultTrue( "namespace ns { struct E { struct B {}; }; } ns::E::B b;", nestedNameSpecifier(specifiesType(asString("struct ns::E"))).bind("nns"), new VerifyIdIsBoundTo<NestedNameSpecifier>("nns", "ns::struct E::"))); } TEST(NNS, BindsNestedNameSpecifierLocs) { EXPECT_TRUE(matchAndVerifyResultTrue( "namespace ns { struct B {}; } ns::B b;", loc(nestedNameSpecifier()).bind("loc"), new VerifyIdIsBoundTo<NestedNameSpecifierLoc>("loc", 1))); } TEST(NNS, MatchesNestedNameSpecifierPrefixes) { EXPECT_TRUE(matches( "struct A { struct B { struct C {}; }; }; A::B::C c;", nestedNameSpecifier(hasPrefix(specifiesType(asString("struct A")))))); EXPECT_TRUE(matches( "struct A { struct B { struct C {}; }; }; A::B::C c;", nestedNameSpecifierLoc(hasPrefix( specifiesTypeLoc(loc(qualType(asString("struct A")))))))); } TEST(NNS, DescendantsOfNestedNameSpecifiers) { std::string Fragment = "namespace a { struct A { struct B { struct C {}; }; }; };" "void f() { a::A::B::C c; }"; EXPECT_TRUE(matches( Fragment, nestedNameSpecifier(specifiesType(asString("struct a::A::B")), hasDescendant(nestedNameSpecifier( specifiesNamespace(hasName("a"))))))); EXPECT_TRUE(notMatches( Fragment, nestedNameSpecifier(specifiesType(asString("struct a::A::B")), has(nestedNameSpecifier( specifiesNamespace(hasName("a"))))))); EXPECT_TRUE(matches( Fragment, nestedNameSpecifier(specifiesType(asString("struct a::A")), has(nestedNameSpecifier( specifiesNamespace(hasName("a"))))))); // Not really useful because a NestedNameSpecifier can af at most one child, // but to complete the interface. EXPECT_TRUE(matchAndVerifyResultTrue( Fragment, nestedNameSpecifier(specifiesType(asString("struct a::A::B")), forEach(nestedNameSpecifier().bind("x"))), new VerifyIdIsBoundTo<NestedNameSpecifier>("x", 1))); } TEST(NNS, NestedNameSpecifiersAsDescendants) { std::string Fragment = "namespace a { struct A { struct B { struct C {}; }; }; };" "void f() { a::A::B::C c; }"; EXPECT_TRUE(matches( Fragment, decl(hasDescendant(nestedNameSpecifier(specifiesType( asString("struct a::A"))))))); EXPECT_TRUE(matchAndVerifyResultTrue( Fragment, functionDecl(hasName("f"), forEachDescendant(nestedNameSpecifier().bind("x"))), // Nested names: a, a::A and a::A::B. new VerifyIdIsBoundTo<NestedNameSpecifier>("x", 3))); } TEST(NNSLoc, DescendantsOfNestedNameSpecifierLocs) { std::string Fragment = "namespace a { struct A { struct B { struct C {}; }; }; };" "void f() { a::A::B::C c; }"; EXPECT_TRUE(matches( Fragment, nestedNameSpecifierLoc(loc(specifiesType(asString("struct a::A::B"))), hasDescendant(loc(nestedNameSpecifier( specifiesNamespace(hasName("a")))))))); EXPECT_TRUE(notMatches( Fragment, nestedNameSpecifierLoc(loc(specifiesType(asString("struct a::A::B"))), has(loc(nestedNameSpecifier( specifiesNamespace(hasName("a")))))))); EXPECT_TRUE(matches( Fragment, nestedNameSpecifierLoc(loc(specifiesType(asString("struct a::A"))), has(loc(nestedNameSpecifier( specifiesNamespace(hasName("a")))))))); EXPECT_TRUE(matchAndVerifyResultTrue( Fragment, nestedNameSpecifierLoc(loc(specifiesType(asString("struct a::A::B"))), forEach(nestedNameSpecifierLoc().bind("x"))), new VerifyIdIsBoundTo<NestedNameSpecifierLoc>("x", 1))); } TEST(NNSLoc, NestedNameSpecifierLocsAsDescendants) { std::string Fragment = "namespace a { struct A { struct B { struct C {}; }; }; };" "void f() { a::A::B::C c; }"; EXPECT_TRUE(matches( Fragment, decl(hasDescendant(loc(nestedNameSpecifier(specifiesType( asString("struct a::A")))))))); EXPECT_TRUE(matchAndVerifyResultTrue( Fragment, functionDecl(hasName("f"), forEachDescendant(nestedNameSpecifierLoc().bind("x"))), // Nested names: a, a::A and a::A::B. new VerifyIdIsBoundTo<NestedNameSpecifierLoc>("x", 3))); } template <typename T> class VerifyMatchOnNode : public BoundNodesCallback { public: VerifyMatchOnNode(StringRef Id, const internal::Matcher<T> &InnerMatcher, StringRef InnerId) : Id(Id), InnerMatcher(InnerMatcher), InnerId(InnerId) { } bool run(const BoundNodes *Nodes) override { return false; } bool run(const BoundNodes *Nodes, ASTContext *Context) override { const T *Node = Nodes->getNodeAs<T>(Id); return selectFirst<T>(InnerId, match(InnerMatcher, *Node, *Context)) != nullptr; } private: std::string Id; internal::Matcher<T> InnerMatcher; std::string InnerId; }; TEST(MatchFinder, CanMatchDeclarationsRecursively) { EXPECT_TRUE(matchAndVerifyResultTrue( "class X { class Y {}; };", recordDecl(hasName("::X")).bind("X"), new VerifyMatchOnNode<clang::Decl>( "X", decl(hasDescendant(recordDecl(hasName("X::Y")).bind("Y"))), "Y"))); EXPECT_TRUE(matchAndVerifyResultFalse( "class X { class Y {}; };", recordDecl(hasName("::X")).bind("X"), new VerifyMatchOnNode<clang::Decl>( "X", decl(hasDescendant(recordDecl(hasName("X::Z")).bind("Z"))), "Z"))); } TEST(MatchFinder, CanMatchStatementsRecursively) { EXPECT_TRUE(matchAndVerifyResultTrue( "void f() { if (1) { for (;;) { } } }", ifStmt().bind("if"), new VerifyMatchOnNode<clang::Stmt>( "if", stmt(hasDescendant(forStmt().bind("for"))), "for"))); EXPECT_TRUE(matchAndVerifyResultFalse( "void f() { if (1) { for (;;) { } } }", ifStmt().bind("if"), new VerifyMatchOnNode<clang::Stmt>( "if", stmt(hasDescendant(declStmt().bind("decl"))), "decl"))); } TEST(MatchFinder, CanMatchSingleNodesRecursively) { EXPECT_TRUE(matchAndVerifyResultTrue( "class X { class Y {}; };", recordDecl(hasName("::X")).bind("X"), new VerifyMatchOnNode<clang::Decl>( "X", recordDecl(has(recordDecl(hasName("X::Y")).bind("Y"))), "Y"))); EXPECT_TRUE(matchAndVerifyResultFalse( "class X { class Y {}; };", recordDecl(hasName("::X")).bind("X"), new VerifyMatchOnNode<clang::Decl>( "X", recordDecl(has(recordDecl(hasName("X::Z")).bind("Z"))), "Z"))); } template <typename T> class VerifyAncestorHasChildIsEqual : public BoundNodesCallback { public: bool run(const BoundNodes *Nodes) override { return false; } bool run(const BoundNodes *Nodes, ASTContext *Context) override { const T *Node = Nodes->getNodeAs<T>(""); return verify(*Nodes, *Context, Node); } bool verify(const BoundNodes &Nodes, ASTContext &Context, const Stmt *Node) { // Use the original typed pointer to verify we can pass pointers to subtypes // to equalsNode. const T *TypedNode = cast<T>(Node); return selectFirst<T>( "", match(stmt(hasParent( stmt(has(stmt(equalsNode(TypedNode)))).bind(""))), *Node, Context)) != nullptr; } bool verify(const BoundNodes &Nodes, ASTContext &Context, const Decl *Node) { // Use the original typed pointer to verify we can pass pointers to subtypes // to equalsNode. const T *TypedNode = cast<T>(Node); return selectFirst<T>( "", match(decl(hasParent( decl(has(decl(equalsNode(TypedNode)))).bind(""))), *Node, Context)) != nullptr; } bool verify(const BoundNodes &Nodes, ASTContext &Context, const Type *Node) { // Use the original typed pointer to verify we can pass pointers to subtypes // to equalsNode. const T *TypedNode = cast<T>(Node); const auto *Dec = Nodes.getNodeAs<FieldDecl>("decl"); return selectFirst<T>( "", match(fieldDecl(hasParent(decl(has(fieldDecl( hasType(type(equalsNode(TypedNode)).bind(""))))))), *Dec, Context)) != nullptr; } }; TEST(IsEqualTo, MatchesNodesByIdentity) { EXPECT_TRUE(matchAndVerifyResultTrue( "class X { class Y {}; };", recordDecl(hasName("::X::Y")).bind(""), new VerifyAncestorHasChildIsEqual<CXXRecordDecl>())); EXPECT_TRUE(matchAndVerifyResultTrue( "void f() { if (true) if(true) {} }", ifStmt().bind(""), new VerifyAncestorHasChildIsEqual<IfStmt>())); EXPECT_TRUE(matchAndVerifyResultTrue( "class X { class Y {} y; };", fieldDecl(hasName("y"), hasType(type().bind(""))).bind("decl"), new VerifyAncestorHasChildIsEqual<Type>())); } TEST(MatchFinder, CheckProfiling) { MatchFinder::MatchFinderOptions Options; llvm::StringMap<llvm::TimeRecord> Records; Options.CheckProfiling.emplace(Records); MatchFinder Finder(std::move(Options)); struct NamedCallback : public MatchFinder::MatchCallback { void run(const MatchFinder::MatchResult &Result) override {} StringRef getID() const override { return "MyID"; } } Callback; Finder.addMatcher(decl(), &Callback); std::unique_ptr<FrontendActionFactory> Factory( newFrontendActionFactory(&Finder)); ASSERT_TRUE(tooling::runToolOnCode(Factory->create(), "int x;")); EXPECT_EQ(1u, Records.size()); EXPECT_EQ("MyID", Records.begin()->getKey()); } class VerifyStartOfTranslationUnit : public MatchFinder::MatchCallback { public: VerifyStartOfTranslationUnit() : Called(false) {} void run(const MatchFinder::MatchResult &Result) override { EXPECT_TRUE(Called); } void onStartOfTranslationUnit() override { Called = true; } bool Called; }; TEST(MatchFinder, InterceptsStartOfTranslationUnit) { MatchFinder Finder; VerifyStartOfTranslationUnit VerifyCallback; Finder.addMatcher(decl(), &VerifyCallback); std::unique_ptr<FrontendActionFactory> Factory( newFrontendActionFactory(&Finder)); ASSERT_TRUE(tooling::runToolOnCode(Factory->create(), "int x;")); EXPECT_TRUE(VerifyCallback.Called); VerifyCallback.Called = false; std::unique_ptr<ASTUnit> AST(tooling::buildASTFromCode("int x;")); ASSERT_TRUE(AST.get()); Finder.matchAST(AST->getASTContext()); EXPECT_TRUE(VerifyCallback.Called); } class VerifyEndOfTranslationUnit : public MatchFinder::MatchCallback { public: VerifyEndOfTranslationUnit() : Called(false) {} void run(const MatchFinder::MatchResult &Result) override { EXPECT_FALSE(Called); } void onEndOfTranslationUnit() override { Called = true; } bool Called; }; TEST(MatchFinder, InterceptsEndOfTranslationUnit) { MatchFinder Finder; VerifyEndOfTranslationUnit VerifyCallback; Finder.addMatcher(decl(), &VerifyCallback); std::unique_ptr<FrontendActionFactory> Factory( newFrontendActionFactory(&Finder)); ASSERT_TRUE(tooling::runToolOnCode(Factory->create(), "int x;")); EXPECT_TRUE(VerifyCallback.Called); VerifyCallback.Called = false; std::unique_ptr<ASTUnit> AST(tooling::buildASTFromCode("int x;")); ASSERT_TRUE(AST.get()); Finder.matchAST(AST->getASTContext()); EXPECT_TRUE(VerifyCallback.Called); } TEST(EqualsBoundNodeMatcher, QualType) { EXPECT_TRUE(matches( "int i = 1;", varDecl(hasType(qualType().bind("type")), hasInitializer(ignoringParenImpCasts( hasType(qualType(equalsBoundNode("type")))))))); EXPECT_TRUE(notMatches("int i = 1.f;", varDecl(hasType(qualType().bind("type")), hasInitializer(ignoringParenImpCasts(hasType( qualType(equalsBoundNode("type")))))))); } TEST(EqualsBoundNodeMatcher, NonMatchingTypes) { EXPECT_TRUE(notMatches( "int i = 1;", varDecl(namedDecl(hasName("i")).bind("name"), hasInitializer(ignoringParenImpCasts( hasType(qualType(equalsBoundNode("type")))))))); } TEST(EqualsBoundNodeMatcher, Stmt) { EXPECT_TRUE( matches("void f() { if(true) {} }", stmt(allOf(ifStmt().bind("if"), hasParent(stmt(has(stmt(equalsBoundNode("if"))))))))); EXPECT_TRUE(notMatches( "void f() { if(true) { if (true) {} } }", stmt(allOf(ifStmt().bind("if"), has(stmt(equalsBoundNode("if"))))))); } TEST(EqualsBoundNodeMatcher, Decl) { EXPECT_TRUE(matches( "class X { class Y {}; };", decl(allOf(recordDecl(hasName("::X::Y")).bind("record"), hasParent(decl(has(decl(equalsBoundNode("record"))))))))); EXPECT_TRUE(notMatches("class X { class Y {}; };", decl(allOf(recordDecl(hasName("::X")).bind("record"), has(decl(equalsBoundNode("record"))))))); } TEST(EqualsBoundNodeMatcher, Type) { EXPECT_TRUE(matches( "class X { int a; int b; };", recordDecl( has(fieldDecl(hasName("a"), hasType(type().bind("t")))), has(fieldDecl(hasName("b"), hasType(type(equalsBoundNode("t")))))))); EXPECT_TRUE(notMatches( "class X { int a; double b; };", recordDecl( has(fieldDecl(hasName("a"), hasType(type().bind("t")))), has(fieldDecl(hasName("b"), hasType(type(equalsBoundNode("t")))))))); } TEST(EqualsBoundNodeMatcher, UsingForEachDescendant) { EXPECT_TRUE(matchAndVerifyResultTrue( "int f() {" " if (1) {" " int i = 9;" " }" " int j = 10;" " {" " float k = 9.0;" " }" " return 0;" "}", // Look for variable declarations within functions whose type is the same // as the function return type. functionDecl(returns(qualType().bind("type")), forEachDescendant(varDecl(hasType( qualType(equalsBoundNode("type")))).bind("decl"))), // Only i and j should match, not k. new VerifyIdIsBoundTo<VarDecl>("decl", 2))); } TEST(EqualsBoundNodeMatcher, FiltersMatchedCombinations) { EXPECT_TRUE(matchAndVerifyResultTrue( "void f() {" " int x;" " double d;" " x = d + x - d + x;" "}", functionDecl( hasName("f"), forEachDescendant(varDecl().bind("d")), forEachDescendant(declRefExpr(to(decl(equalsBoundNode("d")))))), new VerifyIdIsBoundTo<VarDecl>("d", 5))); } TEST(EqualsBoundNodeMatcher, UnlessDescendantsOfAncestorsMatch) { EXPECT_TRUE(matchAndVerifyResultTrue( "struct StringRef { int size() const; const char* data() const; };" "void f(StringRef v) {" " v.data();" "}", cxxMemberCallExpr( callee(cxxMethodDecl(hasName("data"))), on(declRefExpr(to( varDecl(hasType(recordDecl(hasName("StringRef")))).bind("var")))), unless(hasAncestor(stmt(hasDescendant(cxxMemberCallExpr( callee(cxxMethodDecl(anyOf(hasName("size"), hasName("length")))), on(declRefExpr(to(varDecl(equalsBoundNode("var"))))))))))) .bind("data"), new VerifyIdIsBoundTo<Expr>("data", 1))); EXPECT_FALSE(matches( "struct StringRef { int size() const; const char* data() const; };" "void f(StringRef v) {" " v.data();" " v.size();" "}", cxxMemberCallExpr( callee(cxxMethodDecl(hasName("data"))), on(declRefExpr(to( varDecl(hasType(recordDecl(hasName("StringRef")))).bind("var")))), unless(hasAncestor(stmt(hasDescendant(cxxMemberCallExpr( callee(cxxMethodDecl(anyOf(hasName("size"), hasName("length")))), on(declRefExpr(to(varDecl(equalsBoundNode("var"))))))))))) .bind("data"))); } TEST(TypeDefDeclMatcher, Match) { EXPECT_TRUE(matches("typedef int typedefDeclTest;", typedefDecl(hasName("typedefDeclTest")))); } TEST(IsInlineMatcher, IsInline) { EXPECT_TRUE(matches("void g(); inline void f();", functionDecl(isInline(), hasName("f")))); EXPECT_TRUE(matches("namespace n { inline namespace m {} }", namespaceDecl(isInline(), hasName("m")))); } // FIXME: Figure out how to specify paths so the following tests pass on Windows. #ifndef LLVM_ON_WIN32 TEST(Matcher, IsExpansionInMainFileMatcher) { EXPECT_TRUE(matches("class X {};", recordDecl(hasName("X"), isExpansionInMainFile()))); EXPECT_TRUE(notMatches("", recordDecl(isExpansionInMainFile()))); FileContentMappings M; M.push_back(std::make_pair("/other", "class X {};")); EXPECT_TRUE(matchesConditionally("#include <other>\n", recordDecl(isExpansionInMainFile()), false, "-isystem/", M)); } TEST(Matcher, IsExpansionInSystemHeader) { FileContentMappings M; M.push_back(std::make_pair("/other", "class X {};")); EXPECT_TRUE(matchesConditionally( "#include \"other\"\n", recordDecl(isExpansionInSystemHeader()), true, "-isystem/", M)); EXPECT_TRUE(matchesConditionally("#include \"other\"\n", recordDecl(isExpansionInSystemHeader()), false, "-I/", M)); EXPECT_TRUE(notMatches("class X {};", recordDecl(isExpansionInSystemHeader()))); EXPECT_TRUE(notMatches("", recordDecl(isExpansionInSystemHeader()))); } TEST(Matcher, IsExpansionInFileMatching) { FileContentMappings M; M.push_back(std::make_pair("/foo", "class A {};")); M.push_back(std::make_pair("/bar", "class B {};")); EXPECT_TRUE(matchesConditionally( "#include <foo>\n" "#include <bar>\n" "class X {};", recordDecl(isExpansionInFileMatching("b.*"), hasName("B")), true, "-isystem/", M)); EXPECT_TRUE(matchesConditionally( "#include <foo>\n" "#include <bar>\n" "class X {};", recordDecl(isExpansionInFileMatching("f.*"), hasName("X")), false, "-isystem/", M)); } #endif // LLVM_ON_WIN32 TEST(ObjCMessageExprMatcher, SimpleExprs) { // don't find ObjCMessageExpr where none are present EXPECT_TRUE(notMatchesObjC("", objcMessageExpr(anything()))); std::string Objc1String = "@interface Str " " - (Str *)uppercaseString:(Str *)str;" "@end " "@interface foo " "- (void)meth:(Str *)text;" "@end " " " "@implementation foo " "- (void) meth:(Str *)text { " " [self contents];" " Str *up = [text uppercaseString];" "} " "@end "; EXPECT_TRUE(matchesObjC( Objc1String, objcMessageExpr(anything()))); EXPECT_TRUE(matchesObjC( Objc1String, objcMessageExpr(hasSelector("contents")))); EXPECT_TRUE(matchesObjC( Objc1String, objcMessageExpr(matchesSelector("cont*")))); EXPECT_FALSE(matchesObjC( Objc1String, objcMessageExpr(matchesSelector("?cont*")))); EXPECT_TRUE(notMatchesObjC( Objc1String, objcMessageExpr(hasSelector("contents"), hasNullSelector()))); EXPECT_TRUE(matchesObjC( Objc1String, objcMessageExpr(hasSelector("contents"), hasUnarySelector()))); EXPECT_TRUE(matchesObjC( Objc1String, objcMessageExpr(hasSelector("contents"), numSelectorArgs(0)))); EXPECT_TRUE(matchesObjC( Objc1String, objcMessageExpr(matchesSelector("uppercase*"), argumentCountIs(0) ))); } } // end namespace ast_matchers } // end namespace clang