// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> // Copyright (C) 2009 Ricard Marxer <email@ricardmarxer.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <iostream> using namespace std; template<typename MatrixType> void reverse(const MatrixType& m) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; Index rows = m.rows(); Index cols = m.cols(); // this test relies a lot on Random.h, and there's not much more that we can do // to test it, hence I consider that we will have tested Random.h MatrixType m1 = MatrixType::Random(rows, cols); VectorType v1 = VectorType::Random(rows); MatrixType m1_r = m1.reverse(); // Verify that MatrixBase::reverse() works for ( int i = 0; i < rows; i++ ) { for ( int j = 0; j < cols; j++ ) { VERIFY_IS_APPROX(m1_r(i, j), m1(rows - 1 - i, cols - 1 - j)); } } Reverse<MatrixType> m1_rd(m1); // Verify that a Reverse default (in both directions) of an expression works for ( int i = 0; i < rows; i++ ) { for ( int j = 0; j < cols; j++ ) { VERIFY_IS_APPROX(m1_rd(i, j), m1(rows - 1 - i, cols - 1 - j)); } } Reverse<MatrixType, BothDirections> m1_rb(m1); // Verify that a Reverse in both directions of an expression works for ( int i = 0; i < rows; i++ ) { for ( int j = 0; j < cols; j++ ) { VERIFY_IS_APPROX(m1_rb(i, j), m1(rows - 1 - i, cols - 1 - j)); } } Reverse<MatrixType, Vertical> m1_rv(m1); // Verify that a Reverse in the vertical directions of an expression works for ( int i = 0; i < rows; i++ ) { for ( int j = 0; j < cols; j++ ) { VERIFY_IS_APPROX(m1_rv(i, j), m1(rows - 1 - i, j)); } } Reverse<MatrixType, Horizontal> m1_rh(m1); // Verify that a Reverse in the horizontal directions of an expression works for ( int i = 0; i < rows; i++ ) { for ( int j = 0; j < cols; j++ ) { VERIFY_IS_APPROX(m1_rh(i, j), m1(i, cols - 1 - j)); } } VectorType v1_r = v1.reverse(); // Verify that a VectorType::reverse() of an expression works for ( int i = 0; i < rows; i++ ) { VERIFY_IS_APPROX(v1_r(i), v1(rows - 1 - i)); } MatrixType m1_cr = m1.colwise().reverse(); // Verify that PartialRedux::reverse() works (for colwise()) for ( int i = 0; i < rows; i++ ) { for ( int j = 0; j < cols; j++ ) { VERIFY_IS_APPROX(m1_cr(i, j), m1(rows - 1 - i, j)); } } MatrixType m1_rr = m1.rowwise().reverse(); // Verify that PartialRedux::reverse() works (for rowwise()) for ( int i = 0; i < rows; i++ ) { for ( int j = 0; j < cols; j++ ) { VERIFY_IS_APPROX(m1_rr(i, j), m1(i, cols - 1 - j)); } } Scalar x = internal::random<Scalar>(); Index r = internal::random<Index>(0, rows-1), c = internal::random<Index>(0, cols-1); m1.reverse()(r, c) = x; VERIFY_IS_APPROX(x, m1(rows - 1 - r, cols - 1 - c)); /* m1.colwise().reverse()(r, c) = x; VERIFY_IS_APPROX(x, m1(rows - 1 - r, c)); m1.rowwise().reverse()(r, c) = x; VERIFY_IS_APPROX(x, m1(r, cols - 1 - c)); */ } void test_array_reverse() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( reverse(Matrix<float, 1, 1>()) ); CALL_SUBTEST_2( reverse(Matrix2f()) ); CALL_SUBTEST_3( reverse(Matrix4f()) ); CALL_SUBTEST_4( reverse(Matrix4d()) ); CALL_SUBTEST_5( reverse(MatrixXcf(3, 3)) ); CALL_SUBTEST_6( reverse(MatrixXi(6, 3)) ); CALL_SUBTEST_7( reverse(MatrixXcd(20, 20)) ); CALL_SUBTEST_8( reverse(Matrix<float, 100, 100>()) ); CALL_SUBTEST_9( reverse(Matrix<float,Dynamic,Dynamic,RowMajor>(6,3)) ); } #ifdef EIGEN_TEST_PART_3 Vector4f x; x << 1, 2, 3, 4; Vector4f y; y << 4, 3, 2, 1; VERIFY(x.reverse()[1] == 3); VERIFY(x.reverse() == y); #endif }