// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN2_SUPPORT #define EIGEN_NO_EIGEN2_DEPRECATED_WARNING #include "main.h" template<typename MatrixType> void eigen2support(const MatrixType& m) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; Index rows = m.rows(); Index cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols), m3(rows, cols); Scalar s1 = internal::random<Scalar>(), s2 = internal::random<Scalar>(); // scalar addition VERIFY_IS_APPROX(m1.cwise() + s1, s1 + m1.cwise()); VERIFY_IS_APPROX(m1.cwise() + s1, MatrixType::Constant(rows,cols,s1) + m1); VERIFY_IS_APPROX((m1*Scalar(2)).cwise() - s2, (m1+m1) - MatrixType::Constant(rows,cols,s2) ); m3 = m1; m3.cwise() += s2; VERIFY_IS_APPROX(m3, m1.cwise() + s2); m3 = m1; m3.cwise() -= s1; VERIFY_IS_APPROX(m3, m1.cwise() - s1); VERIFY_IS_EQUAL((m1.corner(TopLeft,1,1)), (m1.block(0,0,1,1))); VERIFY_IS_EQUAL((m1.template corner<1,1>(TopLeft)), (m1.template block<1,1>(0,0))); VERIFY_IS_EQUAL((m1.col(0).start(1)), (m1.col(0).segment(0,1))); VERIFY_IS_EQUAL((m1.col(0).template start<1>()), (m1.col(0).segment(0,1))); VERIFY_IS_EQUAL((m1.col(0).end(1)), (m1.col(0).segment(rows-1,1))); VERIFY_IS_EQUAL((m1.col(0).template end<1>()), (m1.col(0).segment(rows-1,1))); using std::cos; using numext::real; using numext::abs2; VERIFY_IS_EQUAL(ei_cos(s1), cos(s1)); VERIFY_IS_EQUAL(ei_real(s1), real(s1)); VERIFY_IS_EQUAL(ei_abs2(s1), abs2(s1)); m1.minor(0,0); } void test_eigen2support() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( eigen2support(Matrix<double,1,1>()) ); CALL_SUBTEST_2( eigen2support(MatrixXd(1,1)) ); CALL_SUBTEST_4( eigen2support(Matrix3f()) ); CALL_SUBTEST_5( eigen2support(Matrix4d()) ); CALL_SUBTEST_2( eigen2support(MatrixXf(200,200)) ); CALL_SUBTEST_6( eigen2support(MatrixXcd(100,100)) ); } }