// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" template<int Alignment,typename VectorType> void map_class_vector(const VectorType& m) { typedef typename VectorType::Index Index; typedef typename VectorType::Scalar Scalar; Index size = m.size(); VectorType v = VectorType::Random(size); Index arraysize = 3*size; Scalar* a_array = internal::aligned_new<Scalar>(arraysize+1); Scalar* array = a_array; if(Alignment!=Aligned) array = (Scalar*)(ptrdiff_t(a_array) + (internal::packet_traits<Scalar>::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits<Scalar>::Real))); { Map<VectorType, Alignment, InnerStride<3> > map(array, size); map = v; for(int i = 0; i < size; ++i) { VERIFY(array[3*i] == v[i]); VERIFY(map[i] == v[i]); } } { Map<VectorType, Unaligned, InnerStride<Dynamic> > map(array, size, InnerStride<Dynamic>(2)); map = v; for(int i = 0; i < size; ++i) { VERIFY(array[2*i] == v[i]); VERIFY(map[i] == v[i]); } } internal::aligned_delete(a_array, arraysize+1); } template<int Alignment,typename MatrixType> void map_class_matrix(const MatrixType& _m) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; Index rows = _m.rows(), cols = _m.cols(); MatrixType m = MatrixType::Random(rows,cols); Index arraysize = 2*(rows+4)*(cols+4); Scalar* a_array = internal::aligned_new<Scalar>(arraysize+1); Scalar* array = a_array; if(Alignment!=Aligned) array = (Scalar*)(ptrdiff_t(a_array) + (internal::packet_traits<Scalar>::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits<Scalar>::Real))); // test no inner stride and some dynamic outer stride { Map<MatrixType, Alignment, OuterStride<Dynamic> > map(array, rows, cols, OuterStride<Dynamic>(m.innerSize()+1)); map = m; VERIFY(map.outerStride() == map.innerSize()+1); for(int i = 0; i < m.outerSize(); ++i) for(int j = 0; j < m.innerSize(); ++j) { VERIFY(array[map.outerStride()*i+j] == m.coeffByOuterInner(i,j)); VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j)); } } // test no inner stride and an outer stride of +4. This is quite important as for fixed-size matrices, // this allows to hit the special case where it's vectorizable. { enum { InnerSize = MatrixType::InnerSizeAtCompileTime, OuterStrideAtCompileTime = InnerSize==Dynamic ? Dynamic : InnerSize+4 }; Map<MatrixType, Alignment, OuterStride<OuterStrideAtCompileTime> > map(array, rows, cols, OuterStride<OuterStrideAtCompileTime>(m.innerSize()+4)); map = m; VERIFY(map.outerStride() == map.innerSize()+4); for(int i = 0; i < m.outerSize(); ++i) for(int j = 0; j < m.innerSize(); ++j) { VERIFY(array[map.outerStride()*i+j] == m.coeffByOuterInner(i,j)); VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j)); } } // test both inner stride and outer stride { Map<MatrixType, Alignment, Stride<Dynamic,Dynamic> > map(array, rows, cols, Stride<Dynamic,Dynamic>(2*m.innerSize()+1, 2)); map = m; VERIFY(map.outerStride() == 2*map.innerSize()+1); VERIFY(map.innerStride() == 2); for(int i = 0; i < m.outerSize(); ++i) for(int j = 0; j < m.innerSize(); ++j) { VERIFY(array[map.outerStride()*i+map.innerStride()*j] == m.coeffByOuterInner(i,j)); VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j)); } } internal::aligned_delete(a_array, arraysize+1); } void test_mapstride() { for(int i = 0; i < g_repeat; i++) { int maxn = 30; CALL_SUBTEST_1( map_class_vector<Aligned>(Matrix<float, 1, 1>()) ); CALL_SUBTEST_1( map_class_vector<Unaligned>(Matrix<float, 1, 1>()) ); CALL_SUBTEST_2( map_class_vector<Aligned>(Vector4d()) ); CALL_SUBTEST_2( map_class_vector<Unaligned>(Vector4d()) ); CALL_SUBTEST_3( map_class_vector<Aligned>(RowVector4f()) ); CALL_SUBTEST_3( map_class_vector<Unaligned>(RowVector4f()) ); CALL_SUBTEST_4( map_class_vector<Aligned>(VectorXcf(internal::random<int>(1,maxn))) ); CALL_SUBTEST_4( map_class_vector<Unaligned>(VectorXcf(internal::random<int>(1,maxn))) ); CALL_SUBTEST_5( map_class_vector<Aligned>(VectorXi(internal::random<int>(1,maxn))) ); CALL_SUBTEST_5( map_class_vector<Unaligned>(VectorXi(internal::random<int>(1,maxn))) ); CALL_SUBTEST_1( map_class_matrix<Aligned>(Matrix<float, 1, 1>()) ); CALL_SUBTEST_1( map_class_matrix<Unaligned>(Matrix<float, 1, 1>()) ); CALL_SUBTEST_2( map_class_matrix<Aligned>(Matrix4d()) ); CALL_SUBTEST_2( map_class_matrix<Unaligned>(Matrix4d()) ); CALL_SUBTEST_3( map_class_matrix<Aligned>(Matrix<float,3,5>()) ); CALL_SUBTEST_3( map_class_matrix<Unaligned>(Matrix<float,3,5>()) ); CALL_SUBTEST_3( map_class_matrix<Aligned>(Matrix<float,4,8>()) ); CALL_SUBTEST_3( map_class_matrix<Unaligned>(Matrix<float,4,8>()) ); CALL_SUBTEST_4( map_class_matrix<Aligned>(MatrixXcf(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); CALL_SUBTEST_4( map_class_matrix<Unaligned>(MatrixXcf(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); CALL_SUBTEST_5( map_class_matrix<Aligned>(MatrixXi(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); CALL_SUBTEST_5( map_class_matrix<Unaligned>(MatrixXi(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); CALL_SUBTEST_6( map_class_matrix<Aligned>(MatrixXcd(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); CALL_SUBTEST_6( map_class_matrix<Unaligned>(MatrixXcd(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); TEST_SET_BUT_UNUSED_VARIABLE(maxn); } }