// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" using namespace std; template<typename MatrixType> void permutationmatrices(const MatrixType& m) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime, Options = MatrixType::Options }; typedef PermutationMatrix<Rows> LeftPermutationType; typedef Matrix<int, Rows, 1> LeftPermutationVectorType; typedef Map<LeftPermutationType> MapLeftPerm; typedef PermutationMatrix<Cols> RightPermutationType; typedef Matrix<int, Cols, 1> RightPermutationVectorType; typedef Map<RightPermutationType> MapRightPerm; Index rows = m.rows(); Index cols = m.cols(); MatrixType m_original = MatrixType::Random(rows,cols); LeftPermutationVectorType lv; randomPermutationVector(lv, rows); LeftPermutationType lp(lv); RightPermutationVectorType rv; randomPermutationVector(rv, cols); RightPermutationType rp(rv); MatrixType m_permuted = lp * m_original * rp; for (int i=0; i<rows; i++) for (int j=0; j<cols; j++) VERIFY_IS_APPROX(m_permuted(lv(i),j), m_original(i,rv(j))); Matrix<Scalar,Rows,Rows> lm(lp); Matrix<Scalar,Cols,Cols> rm(rp); VERIFY_IS_APPROX(m_permuted, lm*m_original*rm); VERIFY_IS_APPROX(lp.inverse()*m_permuted*rp.inverse(), m_original); VERIFY_IS_APPROX(lv.asPermutation().inverse()*m_permuted*rv.asPermutation().inverse(), m_original); VERIFY_IS_APPROX(MapLeftPerm(lv.data(),lv.size()).inverse()*m_permuted*MapRightPerm(rv.data(),rv.size()).inverse(), m_original); VERIFY((lp*lp.inverse()).toDenseMatrix().isIdentity()); VERIFY((lv.asPermutation()*lv.asPermutation().inverse()).toDenseMatrix().isIdentity()); VERIFY((MapLeftPerm(lv.data(),lv.size())*MapLeftPerm(lv.data(),lv.size()).inverse()).toDenseMatrix().isIdentity()); LeftPermutationVectorType lv2; randomPermutationVector(lv2, rows); LeftPermutationType lp2(lv2); Matrix<Scalar,Rows,Rows> lm2(lp2); VERIFY_IS_APPROX((lp*lp2).toDenseMatrix().template cast<Scalar>(), lm*lm2); VERIFY_IS_APPROX((lv.asPermutation()*lv2.asPermutation()).toDenseMatrix().template cast<Scalar>(), lm*lm2); VERIFY_IS_APPROX((MapLeftPerm(lv.data(),lv.size())*MapLeftPerm(lv2.data(),lv2.size())).toDenseMatrix().template cast<Scalar>(), lm*lm2); LeftPermutationType identityp; identityp.setIdentity(rows); VERIFY_IS_APPROX(m_original, identityp*m_original); // check inplace permutations m_permuted = m_original; m_permuted = lp.inverse() * m_permuted; VERIFY_IS_APPROX(m_permuted, lp.inverse()*m_original); m_permuted = m_original; m_permuted = m_permuted * rp.inverse(); VERIFY_IS_APPROX(m_permuted, m_original*rp.inverse()); m_permuted = m_original; m_permuted = lp * m_permuted; VERIFY_IS_APPROX(m_permuted, lp*m_original); m_permuted = m_original; m_permuted = m_permuted * rp; VERIFY_IS_APPROX(m_permuted, m_original*rp); if(rows>1 && cols>1) { lp2 = lp; Index i = internal::random<Index>(0, rows-1); Index j; do j = internal::random<Index>(0, rows-1); while(j==i); lp2.applyTranspositionOnTheLeft(i, j); lm = lp; lm.row(i).swap(lm.row(j)); VERIFY_IS_APPROX(lm, lp2.toDenseMatrix().template cast<Scalar>()); RightPermutationType rp2 = rp; i = internal::random<Index>(0, cols-1); do j = internal::random<Index>(0, cols-1); while(j==i); rp2.applyTranspositionOnTheRight(i, j); rm = rp; rm.col(i).swap(rm.col(j)); VERIFY_IS_APPROX(rm, rp2.toDenseMatrix().template cast<Scalar>()); } } void test_permutationmatrices() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( permutationmatrices(Matrix<float, 1, 1>()) ); CALL_SUBTEST_2( permutationmatrices(Matrix3f()) ); CALL_SUBTEST_3( permutationmatrices(Matrix<double,3,3,RowMajor>()) ); CALL_SUBTEST_4( permutationmatrices(Matrix4d()) ); CALL_SUBTEST_5( permutationmatrices(Matrix<double,40,60>()) ); CALL_SUBTEST_6( permutationmatrices(Matrix<double,Dynamic,Dynamic,RowMajor>(20, 30)) ); CALL_SUBTEST_7( permutationmatrices(MatrixXcf(15, 10)) ); } }