/* basicmbr.cc -- Functions for loading, saving, and manipulating legacy MBR partition data. */ /* Initial coding by Rod Smith, January to February, 2009 */ /* This program is copyright (c) 2009-2013 by Roderick W. Smith. It is distributed under the terms of the GNU GPL version 2, as detailed in the COPYING file. */ #define __STDC_LIMIT_MACROS #define __STDC_CONSTANT_MACROS #include <stdio.h> #include <stdlib.h> #include <stdint.h> #include <fcntl.h> #include <string.h> #include <time.h> #include <sys/stat.h> #include <errno.h> #include <iostream> #include <algorithm> #include "mbr.h" #include "support.h" using namespace std; /**************************************** * * * MBRData class and related structures * * * ****************************************/ BasicMBRData::BasicMBRData(void) { blockSize = SECTOR_SIZE; diskSize = 0; device = ""; state = invalid; numHeads = MAX_HEADS; numSecspTrack = MAX_SECSPERTRACK; myDisk = NULL; canDeleteMyDisk = 0; // memset(&EbrLocations, 0, MAX_MBR_PARTS * sizeof(uint32_t)); EmptyMBR(); } // BasicMBRData default constructor BasicMBRData::BasicMBRData(string filename) { blockSize = SECTOR_SIZE; diskSize = 0; device = filename; state = invalid; numHeads = MAX_HEADS; numSecspTrack = MAX_SECSPERTRACK; myDisk = NULL; canDeleteMyDisk = 0; // memset(&EbrLocations, 0, MAX_MBR_PARTS * sizeof(uint32_t)); // Try to read the specified partition table, but if it fails.... if (!ReadMBRData(filename)) { EmptyMBR(); device = ""; } // if } // BasicMBRData(string filename) constructor // Free space used by myDisk only if that's OK -- sometimes it will be // copied from an outside source, in which case that source should handle // it! BasicMBRData::~BasicMBRData(void) { if (canDeleteMyDisk) delete myDisk; } // BasicMBRData destructor // Assignment operator -- copy entire set of MBR data. BasicMBRData & BasicMBRData::operator=(const BasicMBRData & orig) { int i; memcpy(code, orig.code, 440); diskSignature = orig.diskSignature; nulls = orig.nulls; MBRSignature = orig.MBRSignature; blockSize = orig.blockSize; diskSize = orig.diskSize; numHeads = orig.numHeads; numSecspTrack = orig.numSecspTrack; canDeleteMyDisk = orig.canDeleteMyDisk; device = orig.device; state = orig.state; myDisk = new DiskIO; if (myDisk == NULL) { cerr << "Unable to allocate memory in BasicMBRData::operator=()! Terminating!\n"; exit(1); } // if if (orig.myDisk != NULL) myDisk->OpenForRead(orig.myDisk->GetName()); for (i = 0; i < MAX_MBR_PARTS; i++) { partitions[i] = orig.partitions[i]; } // for return *this; } // BasicMBRData::operator=() /********************** * * * Disk I/O functions * * * **********************/ // Read data from MBR. Returns 1 if read was successful (even if the // data isn't a valid MBR), 0 if the read failed. int BasicMBRData::ReadMBRData(const string & deviceFilename) { int allOK = 1; if (myDisk == NULL) { myDisk = new DiskIO; if (myDisk == NULL) { cerr << "Unable to allocate memory in BasicMBRData::ReadMBRData()! Terminating!\n"; exit(1); } // if canDeleteMyDisk = 1; } // if if (myDisk->OpenForRead(deviceFilename)) { allOK = ReadMBRData(myDisk); } else { allOK = 0; } // if if (allOK) device = deviceFilename; return allOK; } // BasicMBRData::ReadMBRData(const string & deviceFilename) // Read data from MBR. If checkBlockSize == 1 (the default), the block // size is checked; otherwise it's set to the default (512 bytes). // Note that any extended partition(s) present will be omitted from // in the partitions[] array; these partitions must be re-created when // the partition table is saved in MBR format. int BasicMBRData::ReadMBRData(DiskIO * theDisk, int checkBlockSize) { int allOK = 1, i, logicalNum = 3; int err = 1; TempMBR tempMBR; if ((myDisk != NULL) && (myDisk != theDisk) && (canDeleteMyDisk)) { delete myDisk; canDeleteMyDisk = 0; } // if myDisk = theDisk; // Empty existing MBR data, including the logical partitions... EmptyMBR(0); if (myDisk->Seek(0)) if (myDisk->Read(&tempMBR, 512)) err = 0; if (err) { cerr << "Problem reading disk in BasicMBRData::ReadMBRData()!\n"; } else { for (i = 0; i < 440; i++) code[i] = tempMBR.code[i]; diskSignature = tempMBR.diskSignature; nulls = tempMBR.nulls; for (i = 0; i < 4; i++) { partitions[i] = tempMBR.partitions[i]; if (partitions[i].GetLengthLBA() > 0) partitions[i].SetInclusion(PRIMARY); } // for i... (reading all four partitions) MBRSignature = tempMBR.MBRSignature; ReadCHSGeom(); // Reverse the byte order, if necessary if (IsLittleEndian() == 0) { ReverseBytes(&diskSignature, 4); ReverseBytes(&nulls, 2); ReverseBytes(&MBRSignature, 2); for (i = 0; i < 4; i++) { partitions[i].ReverseByteOrder(); } // for } // if if (MBRSignature != MBR_SIGNATURE) { allOK = 0; state = invalid; } // if // Find disk size diskSize = myDisk->DiskSize(&err); // Find block size if (checkBlockSize) { blockSize = myDisk->GetBlockSize(); } // if (checkBlockSize) // Load logical partition data, if any is found.... if (allOK) { for (i = 0; i < 4; i++) { if ((partitions[i].GetType() == 0x05) || (partitions[i].GetType() == 0x0f) || (partitions[i].GetType() == 0x85)) { // Found it, so call a function to load everything from them.... logicalNum = ReadLogicalParts(partitions[i].GetStartLBA(), abs(logicalNum) + 1); if (logicalNum < 0) { cerr << "Error reading logical partitions! List may be truncated!\n"; } // if maxLogicals valid DeletePartition(i); } // if primary partition is extended } // for primary partition loop if (allOK) { // Loaded logicals OK state = mbr; } else { state = invalid; } // if } // if // Check to see if it's in GPT format.... if (allOK) { for (i = 0; i < 4; i++) { if (partitions[i].GetType() == UINT8_C(0xEE)) { state = gpt; } // if } // for } // if // If there's an EFI GPT partition, look for other partition types, // to flag as hybrid if (state == gpt) { for (i = 0 ; i < 4; i++) { if ((partitions[i].GetType() != UINT8_C(0xEE)) && (partitions[i].GetType() != UINT8_C(0x00))) state = hybrid; if (logicalNum != 3) cerr << "Warning! MBR Logical partitions found on a hybrid MBR disk! This is an\n" << "EXTREMELY dangerous configuration!\n\a"; } // for } // if (hybrid detection code) } // no initial error return allOK; } // BasicMBRData::ReadMBRData(DiskIO * theDisk, int checkBlockSize) // This is a function to read all the logical partitions, following the // logical partition linked list from the disk and storing the basic data in the // partitions[] array. Returns last index to partitions[] used, or -1 times the // that index if there was a problem. (Some problems can leave valid logical // partition data.) // Parameters: // extendedStart = LBA of the start of the extended partition // partNum = number of first partition in extended partition (normally 4). int BasicMBRData::ReadLogicalParts(uint64_t extendedStart, int partNum) { struct TempMBR ebr; int i, another = 1, allOK = 1; uint8_t ebrType; uint64_t offset; uint64_t EbrLocations[MAX_MBR_PARTS]; offset = extendedStart; memset(&EbrLocations, 0, MAX_MBR_PARTS * sizeof(uint64_t)); while (another && (partNum < MAX_MBR_PARTS) && (partNum >= 0) && (allOK > 0)) { for (i = 0; i < MAX_MBR_PARTS; i++) { if (EbrLocations[i] == offset) { // already read this one; infinite logical partition loop! cerr << "Logical partition infinite loop detected! This is being corrected.\n"; allOK = -1; partNum -= 1; } // if } // for EbrLocations[partNum] = offset; if (myDisk->Seek(offset) == 0) { // seek to EBR record cerr << "Unable to seek to " << offset << "! Aborting!\n"; allOK = -1; } if (myDisk->Read(&ebr, 512) != 512) { // Load the data.... cerr << "Error seeking to or reading logical partition data from " << offset << "!\nSome logical partitions may be missing!\n"; allOK = -1; } else if (IsLittleEndian() != 1) { // Reverse byte ordering of some data.... ReverseBytes(&ebr.MBRSignature, 2); ReverseBytes(&ebr.partitions[0].firstLBA, 4); ReverseBytes(&ebr.partitions[0].lengthLBA, 4); ReverseBytes(&ebr.partitions[1].firstLBA, 4); ReverseBytes(&ebr.partitions[1].lengthLBA, 4); } // if/else/if if (ebr.MBRSignature != MBR_SIGNATURE) { allOK = -1; cerr << "EBR signature for logical partition invalid; read 0x"; cerr.fill('0'); cerr.width(4); cerr.setf(ios::uppercase); cerr << hex << ebr.MBRSignature << ", but should be 0x"; cerr.width(4); cerr << MBR_SIGNATURE << dec << "\n"; cerr.fill(' '); } // if if ((partNum >= 0) && (partNum < MAX_MBR_PARTS) && (allOK > 0)) { // Sometimes an EBR points directly to another EBR, rather than defining // a logical partition and then pointing to another EBR. Thus, we skip // the logical partition when this is the case.... ebrType = ebr.partitions[0].partitionType; if ((ebrType == 0x05) || (ebrType == 0x0f) || (ebrType == 0x85)) { cout << "EBR describes a logical partition!\n"; offset = extendedStart + ebr.partitions[0].firstLBA; } else { // Copy over the basic data.... partitions[partNum] = ebr.partitions[0]; // Adjust the start LBA, since it's encoded strangely.... partitions[partNum].SetStartLBA(ebr.partitions[0].firstLBA + offset); partitions[partNum].SetInclusion(LOGICAL); // Find the next partition (if there is one) if ((ebr.partitions[1].firstLBA != UINT32_C(0)) && (partNum < (MAX_MBR_PARTS - 1))) { offset = extendedStart + ebr.partitions[1].firstLBA; partNum++; } else { another = 0; } // if another partition } // if/else } // if } // while() return (partNum * allOK); } // BasicMBRData::ReadLogicalPart() // Write the MBR data to the default defined device. This writes both the // MBR itself and any defined logical partitions, provided there's an // MBR extended partition. int BasicMBRData::WriteMBRData(void) { int allOK = 1; if (myDisk != NULL) { if (myDisk->OpenForWrite() != 0) { allOK = WriteMBRData(myDisk); cout << "Done writing data!\n"; } else { allOK = 0; } // if/else myDisk->Close(); } else allOK = 0; return allOK; } // BasicMBRData::WriteMBRData(void) // Save the MBR data to a file. This writes both the // MBR itself and any defined logical partitions. int BasicMBRData::WriteMBRData(DiskIO *theDisk) { int i, j, partNum, next, allOK = 1, moreLogicals = 0; uint64_t extFirstLBA = 0; uint64_t writeEbrTo; // 64-bit because we support extended in 2-4TiB range TempMBR tempMBR; allOK = CreateExtended(); if (allOK) { // First write the main MBR data structure.... memcpy(tempMBR.code, code, 440); tempMBR.diskSignature = diskSignature; tempMBR.nulls = nulls; tempMBR.MBRSignature = MBRSignature; for (i = 0; i < 4; i++) { partitions[i].StoreInStruct(&tempMBR.partitions[i]); if (partitions[i].GetType() == 0x0f) { extFirstLBA = partitions[i].GetStartLBA(); moreLogicals = 1; } // if } // for i... } // if allOK = allOK && WriteMBRData(tempMBR, theDisk, 0); // Set up tempMBR with some constant data for logical partitions... tempMBR.diskSignature = 0; for (i = 2; i < 4; i++) { tempMBR.partitions[i].firstLBA = tempMBR.partitions[i].lengthLBA = 0; tempMBR.partitions[i].partitionType = 0x00; for (j = 0; j < 3; j++) { tempMBR.partitions[i].firstSector[j] = 0; tempMBR.partitions[i].lastSector[j] = 0; } // for j } // for i partNum = FindNextInUse(4); writeEbrTo = (uint64_t) extFirstLBA; // Write logicals... while (allOK && moreLogicals && (partNum < MAX_MBR_PARTS) && (partNum >= 0)) { partitions[partNum].StoreInStruct(&tempMBR.partitions[0]); tempMBR.partitions[0].firstLBA = 1; // tempMBR.partitions[1] points to next EBR or terminates EBR linked list... next = FindNextInUse(partNum + 1); if ((next < MAX_MBR_PARTS) && (next > 0) && (partitions[next].GetStartLBA() > 0)) { tempMBR.partitions[1].partitionType = 0x0f; tempMBR.partitions[1].firstLBA = (uint32_t) (partitions[next].GetStartLBA() - extFirstLBA - 1); tempMBR.partitions[1].lengthLBA = (uint32_t) (partitions[next].GetLengthLBA() + 1); LBAtoCHS((uint64_t) tempMBR.partitions[1].firstLBA, (uint8_t *) &tempMBR.partitions[1].firstSector); LBAtoCHS(tempMBR.partitions[1].lengthLBA - extFirstLBA, (uint8_t *) &tempMBR.partitions[1].lastSector); } else { tempMBR.partitions[1].partitionType = 0x00; tempMBR.partitions[1].firstLBA = 0; tempMBR.partitions[1].lengthLBA = 0; moreLogicals = 0; } // if/else allOK = WriteMBRData(tempMBR, theDisk, writeEbrTo); writeEbrTo = (uint64_t) tempMBR.partitions[1].firstLBA + (uint64_t) extFirstLBA; partNum = next; } // while DeleteExtendedParts(); return allOK; } // BasicMBRData::WriteMBRData(DiskIO *theDisk) int BasicMBRData::WriteMBRData(const string & deviceFilename) { device = deviceFilename; return WriteMBRData(); } // BasicMBRData::WriteMBRData(const string & deviceFilename) // Write a single MBR record to the specified sector. Used by the like-named // function to write both the MBR and multiple EBR (for logical partition) // records. // Returns 1 on success, 0 on failure int BasicMBRData::WriteMBRData(struct TempMBR & mbr, DiskIO *theDisk, uint64_t sector) { int i, allOK; // Reverse the byte order, if necessary if (IsLittleEndian() == 0) { ReverseBytes(&mbr.diskSignature, 4); ReverseBytes(&mbr.nulls, 2); ReverseBytes(&mbr.MBRSignature, 2); for (i = 0; i < 4; i++) { ReverseBytes(&mbr.partitions[i].firstLBA, 4); ReverseBytes(&mbr.partitions[i].lengthLBA, 4); } // for } // if // Now write the data structure... allOK = theDisk->OpenForWrite(); if (allOK && theDisk->Seek(sector)) { if (theDisk->Write(&mbr, 512) != 512) { allOK = 0; cerr << "Error " << errno << " when saving MBR!\n"; } // if } else { allOK = 0; cerr << "Error " << errno << " when seeking to MBR to write it!\n"; } // if/else theDisk->Close(); // Reverse the byte order back, if necessary if (IsLittleEndian() == 0) { ReverseBytes(&mbr.diskSignature, 4); ReverseBytes(&mbr.nulls, 2); ReverseBytes(&mbr.MBRSignature, 2); for (i = 0; i < 4; i++) { ReverseBytes(&mbr.partitions[i].firstLBA, 4); ReverseBytes(&mbr.partitions[i].lengthLBA, 4); } // for }// if return allOK; } // BasicMBRData::WriteMBRData(uint64_t sector) // Set a new disk device; used in copying one disk's partition // table to another disk. void BasicMBRData::SetDisk(DiskIO *theDisk) { int err; myDisk = theDisk; diskSize = theDisk->DiskSize(&err); canDeleteMyDisk = 0; ReadCHSGeom(); } // BasicMBRData::SetDisk() /******************************************** * * * Functions that display data for the user * * * ********************************************/ // Show the MBR data to the user, up to the specified maximum number // of partitions.... void BasicMBRData::DisplayMBRData(void) { int i; cout << "\nDisk size is " << diskSize << " sectors (" << BytesToIeee(diskSize, blockSize) << ")\n"; cout << "MBR disk identifier: 0x"; cout.width(8); cout.fill('0'); cout.setf(ios::uppercase); cout << hex << diskSignature << dec << "\n"; cout << "MBR partitions:\n\n"; if ((state == gpt) || (state == hybrid)) { cout << "Number Boot Start Sector End Sector Status Code\n"; } else { cout << " Can Be Can Be\n"; cout << "Number Boot Start Sector End Sector Status Logical Primary Code\n"; UpdateCanBeLogical(); } // for (i = 0; i < MAX_MBR_PARTS; i++) { if (partitions[i].GetLengthLBA() != 0) { cout.fill(' '); cout.width(4); cout << i + 1 << " "; partitions[i].ShowData((state == gpt) || (state == hybrid)); } // if cout.fill(' '); } // for } // BasicMBRData::DisplayMBRData() // Displays the state, as a word, on stdout. Used for debugging & to // tell the user about the MBR state when the program launches.... void BasicMBRData::ShowState(void) { switch (state) { case invalid: cout << " MBR: not present\n"; break; case gpt: cout << " MBR: protective\n"; break; case hybrid: cout << " MBR: hybrid\n"; break; case mbr: cout << " MBR: MBR only\n"; break; default: cout << "\a MBR: unknown -- bug!\n"; break; } // switch } // BasicMBRData::ShowState() /************************ * * * GPT Checks and fixes * * * ************************/ // Perform a very rudimentary check for GPT data on the disk; searches for // the GPT signature in the main and backup metadata areas. // Returns 0 if GPT data not found, 1 if main data only is found, 2 if // backup only is found, 3 if both main and backup data are found, and // -1 if a disk error occurred. int BasicMBRData::CheckForGPT(void) { int retval = 0, err; char signature1[9], signature2[9]; if (myDisk != NULL) { if (myDisk->OpenForRead() != 0) { if (myDisk->Seek(1)) { myDisk->Read(signature1, 8); signature1[8] = '\0'; } else retval = -1; if (myDisk->Seek(myDisk->DiskSize(&err) - 1)) { myDisk->Read(signature2, 8); signature2[8] = '\0'; } else retval = -1; if ((retval >= 0) && (strcmp(signature1, "EFI PART") == 0)) retval += 1; if ((retval >= 0) && (strcmp(signature2, "EFI PART") == 0)) retval += 2; } else { retval = -1; } // if/else myDisk->Close(); } else retval = -1; return retval; } // BasicMBRData::CheckForGPT() // Blanks the 2nd (sector #1, numbered from 0) and last sectors of the disk, // but only if GPT data are verified on the disk, and only for the sector(s) // with GPT signatures. // Returns 1 if operation completes successfully, 0 if not (returns 1 if // no GPT data are found on the disk). int BasicMBRData::BlankGPTData(void) { int allOK = 1, err; uint8_t blank[512]; memset(blank, 0, 512); switch (CheckForGPT()) { case -1: allOK = 0; break; case 0: break; case 1: if ((myDisk != NULL) && (myDisk->OpenForWrite())) { if (!((myDisk->Seek(1)) && (myDisk->Write(blank, 512) == 512))) allOK = 0; myDisk->Close(); } else allOK = 0; break; case 2: if ((myDisk != NULL) && (myDisk->OpenForWrite())) { if (!((myDisk->Seek(myDisk->DiskSize(&err) - 1)) && (myDisk->Write(blank, 512) == 512))) allOK = 0; myDisk->Close(); } else allOK = 0; break; case 3: if ((myDisk != NULL) && (myDisk->OpenForWrite())) { if (!((myDisk->Seek(1)) && (myDisk->Write(blank, 512) == 512))) allOK = 0; if (!((myDisk->Seek(myDisk->DiskSize(&err) - 1)) && (myDisk->Write(blank, 512) == 512))) allOK = 0; myDisk->Close(); } else allOK = 0; break; default: break; } // switch() return allOK; } // BasicMBRData::BlankGPTData /********************************************************************* * * * Functions that set or get disk metadata (CHS geometry, disk size, * * etc.) * * * *********************************************************************/ // Read the CHS geometry using OS calls, or if that fails, set to // the most common value for big disks (255 heads, 63 sectors per // track, & however many cylinders that computes to). void BasicMBRData::ReadCHSGeom(void) { int err; numHeads = myDisk->GetNumHeads(); numSecspTrack = myDisk->GetNumSecsPerTrack(); diskSize = myDisk->DiskSize(&err); blockSize = myDisk->GetBlockSize(); partitions[0].SetGeometry(numHeads, numSecspTrack, diskSize, blockSize); } // BasicMBRData::ReadCHSGeom() // Find the low and high used partition numbers (numbered from 0). // Return value is the number of partitions found. Note that the // *low and *high values are both set to 0 when no partitions // are found, as well as when a single partition in the first // position exists. Thus, the return value is the only way to // tell when no partitions exist. int BasicMBRData::GetPartRange(uint32_t *low, uint32_t *high) { uint32_t i; int numFound = 0; *low = MAX_MBR_PARTS + 1; // code for "not found" *high = 0; for (i = 0; i < MAX_MBR_PARTS; i++) { if (partitions[i].GetStartLBA() != UINT32_C(0)) { // it exists *high = i; // since we're counting up, set the high value // Set the low value only if it's not yet found... if (*low == (MAX_MBR_PARTS + 1)) *low = i; numFound++; } // if } // for // Above will leave *low pointing to its "not found" value if no partitions // are defined, so reset to 0 if this is the case.... if (*low == (MAX_MBR_PARTS + 1)) *low = 0; return numFound; } // GPTData::GetPartRange() // Converts 64-bit LBA value to MBR-style CHS value. Returns 1 if conversion // was within the range that can be expressed by CHS (including 0, for an // empty partition), 0 if the value is outside that range, and -1 if chs is // invalid. int BasicMBRData::LBAtoCHS(uint64_t lba, uint8_t * chs) { uint64_t cylinder, head, sector; // all numbered from 0 uint64_t remainder; int retval = 1; int done = 0; if (chs != NULL) { // Special case: In case of 0 LBA value, zero out CHS values.... if (lba == 0) { chs[0] = chs[1] = chs[2] = UINT8_C(0); done = 1; } // if // If LBA value is too large for CHS, max out CHS values.... if ((!done) && (lba >= ((uint64_t) numHeads * numSecspTrack * MAX_CYLINDERS))) { chs[0] = 254; chs[1] = chs[2] = 255; done = 1; retval = 0; } // if // If neither of the above applies, compute CHS values.... if (!done) { cylinder = lba / (uint64_t) (numHeads * numSecspTrack); remainder = lba - (cylinder * numHeads * numSecspTrack); head = remainder / numSecspTrack; remainder -= head * numSecspTrack; sector = remainder; if (head < numHeads) chs[0] = (uint8_t) head; else retval = 0; if (sector < numSecspTrack) { chs[1] = (uint8_t) ((sector + 1) + (cylinder >> 8) * 64); chs[2] = (uint8_t) (cylinder & UINT64_C(0xFF)); } else { retval = 0; } // if/else } // if value is expressible and non-0 } else { // Invalid (NULL) chs pointer retval = -1; } // if CHS pointer valid return (retval); } // BasicMBRData::LBAtoCHS() // Look for overlapping partitions. Also looks for a couple of non-error // conditions that the user should be told about. // Returns the number of problems found int BasicMBRData::FindOverlaps(void) { int i, j, numProbs = 0, numEE = 0, ProtectiveOnOne = 0; for (i = 0; i < MAX_MBR_PARTS; i++) { for (j = i + 1; j < MAX_MBR_PARTS; j++) { if ((partitions[i].GetInclusion() != NONE) && (partitions[j].GetInclusion() != NONE) && (partitions[i].DoTheyOverlap(partitions[j]))) { numProbs++; cout << "\nProblem: MBR partitions " << i + 1 << " and " << j + 1 << " overlap!\n"; } // if } // for (j...) if (partitions[i].GetType() == 0xEE) { numEE++; if (partitions[i].GetStartLBA() == 1) ProtectiveOnOne = 1; } // if } // for (i...) if (numEE > 1) cout << "\nCaution: More than one 0xEE MBR partition found. This can cause problems\n" << "in some OSes.\n"; if (!ProtectiveOnOne && (numEE > 0)) cout << "\nWarning: 0xEE partition doesn't start on sector 1. This can cause " << "problems\nin some OSes.\n"; return numProbs; } // BasicMBRData::FindOverlaps() // Returns the number of primary partitions, including the extended partition // required to hold any logical partitions found. int BasicMBRData::NumPrimaries(void) { int i, numPrimaries = 0, logicalsFound = 0; for (i = 0; i < MAX_MBR_PARTS; i++) { if (partitions[i].GetLengthLBA() > 0) { if (partitions[i].GetInclusion() == PRIMARY) numPrimaries++; if (partitions[i].GetInclusion() == LOGICAL) logicalsFound = 1; } // if } // for return (numPrimaries + logicalsFound); } // BasicMBRData::NumPrimaries() // Returns the number of logical partitions. int BasicMBRData::NumLogicals(void) { int i, numLogicals = 0; for (i = 0; i < MAX_MBR_PARTS; i++) { if (partitions[i].GetInclusion() == LOGICAL) numLogicals++; } // for return numLogicals; } // BasicMBRData::NumLogicals() // Returns the number of partitions (primaries plus logicals), NOT including // the extended partition required to house the logicals. int BasicMBRData::CountParts(void) { int i, num = 0; for (i = 0; i < MAX_MBR_PARTS; i++) { if ((partitions[i].GetInclusion() == LOGICAL) || (partitions[i].GetInclusion() == PRIMARY)) num++; } // for return num; } // BasicMBRData::CountParts() // Updates the canBeLogical and canBePrimary flags for all the partitions. void BasicMBRData::UpdateCanBeLogical(void) { int i, j, sectorBefore, numPrimaries, numLogicals, usedAsEBR; uint64_t firstLogical, lastLogical, lStart, pStart; numPrimaries = NumPrimaries(); numLogicals = NumLogicals(); firstLogical = FirstLogicalLBA() - 1; lastLogical = LastLogicalLBA(); for (i = 0; i < MAX_MBR_PARTS; i++) { usedAsEBR = (SectorUsedAs(partitions[i].GetLastLBA()) == EBR); if (usedAsEBR) { partitions[i].SetCanBeLogical(0); partitions[i].SetCanBePrimary(0); } else if (partitions[i].GetLengthLBA() > 0) { // First determine if it can be logical.... sectorBefore = SectorUsedAs(partitions[i].GetStartLBA() - 1); lStart = partitions[i].GetStartLBA(); // start of potential logical part. if ((lastLogical > 0) && ((sectorBefore == EBR) || (sectorBefore == NONE))) { // Assume it can be logical, then search for primaries that make it // not work and, if found, flag appropriately. partitions[i].SetCanBeLogical(1); for (j = 0; j < MAX_MBR_PARTS; j++) { if ((i != j) && (partitions[j].GetInclusion() == PRIMARY)) { pStart = partitions[j].GetStartLBA(); if (((pStart < lStart) && (firstLogical < pStart)) || ((pStart > lStart) && (firstLogical > pStart))) { partitions[i].SetCanBeLogical(0); } // if/else } // if } // for } else { if ((sectorBefore != EBR) && (sectorBefore != NONE)) partitions[i].SetCanBeLogical(0); else partitions[i].SetCanBeLogical(lastLogical == 0); // can be logical only if no logicals already } // if/else // Now determine if it can be primary. Start by assuming it can be... partitions[i].SetCanBePrimary(1); if ((numPrimaries >= 4) && (partitions[i].GetInclusion() != PRIMARY)) { partitions[i].SetCanBePrimary(0); if ((partitions[i].GetInclusion() == LOGICAL) && (numLogicals == 1) && (numPrimaries == 4)) partitions[i].SetCanBePrimary(1); } // if if ((partitions[i].GetStartLBA() > (firstLogical + 1)) && (partitions[i].GetLastLBA() < lastLogical)) partitions[i].SetCanBePrimary(0); } // else if } // for } // BasicMBRData::UpdateCanBeLogical() // Returns the first sector occupied by any logical partition. Note that // this does NOT include the logical partition's EBR! Returns UINT32_MAX // if there are no logical partitions defined. uint64_t BasicMBRData::FirstLogicalLBA(void) { int i; uint64_t firstFound = UINT32_MAX; for (i = 0; i < MAX_MBR_PARTS; i++) { if ((partitions[i].GetInclusion() == LOGICAL) && (partitions[i].GetStartLBA() < firstFound)) { firstFound = partitions[i].GetStartLBA(); } // if } // for return firstFound; } // BasicMBRData::FirstLogicalLBA() // Returns the last sector occupied by any logical partition, or 0 if // there are no logical partitions defined. uint64_t BasicMBRData::LastLogicalLBA(void) { int i; uint64_t lastFound = 0; for (i = 0; i < MAX_MBR_PARTS; i++) { if ((partitions[i].GetInclusion() == LOGICAL) && (partitions[i].GetLastLBA() > lastFound)) lastFound = partitions[i].GetLastLBA(); } // for return lastFound; } // BasicMBRData::LastLogicalLBA() // Returns 1 if logical partitions are contiguous (have no primaries // in their midst), or 0 if one or more primaries exist between // logicals. int BasicMBRData::AreLogicalsContiguous(void) { int allOK = 1, i = 0; uint64_t firstLogical, lastLogical; firstLogical = FirstLogicalLBA() - 1; // subtract 1 for EBR lastLogical = LastLogicalLBA(); if (lastLogical > 0) { do { if ((partitions[i].GetInclusion() == PRIMARY) && (partitions[i].GetStartLBA() >= firstLogical) && (partitions[i].GetStartLBA() <= lastLogical)) { allOK = 0; } // if i++; } while ((i < MAX_MBR_PARTS) && allOK); } // if return allOK; } // BasicMBRData::AreLogicalsContiguous() // Returns 1 if all partitions fit on the disk, given its size; 0 if any // partition is too big. int BasicMBRData::DoTheyFit(void) { int i, allOK = 1; for (i = 0; i < MAX_MBR_PARTS; i++) { if ((partitions[i].GetStartLBA() > diskSize) || (partitions[i].GetLastLBA() > diskSize)) { allOK = 0; } // if } // for return allOK; } // BasicMBRData::DoTheyFit(void) // Returns 1 if there's at least one free sector immediately preceding // all partitions flagged as logical; 0 if any logical partition lacks // this space. int BasicMBRData::SpaceBeforeAllLogicals(void) { int i = 0, allOK = 1; do { if ((partitions[i].GetStartLBA() > 0) && (partitions[i].GetInclusion() == LOGICAL)) { allOK = allOK && (SectorUsedAs(partitions[i].GetStartLBA() - 1) == EBR); } // if i++; } while (allOK && (i < MAX_MBR_PARTS)); return allOK; } // BasicMBRData::SpaceBeforeAllLogicals() // Returns 1 if the partitions describe a legal layout -- all logicals // are contiguous and have at least one preceding empty sector, // the number of primaries is under 4 (or under 3 if there are any // logicals), there are no overlapping partitions, etc. // Does NOT assume that primaries are numbered 1-4; uses the // IsItPrimary() function of the MBRPart class to determine // primary status. Also does NOT consider partition order; there // can be gaps and it will still be considered legal. int BasicMBRData::IsLegal(void) { int allOK = 1; allOK = (FindOverlaps() == 0); allOK = (allOK && (NumPrimaries() <= 4)); allOK = (allOK && AreLogicalsContiguous()); allOK = (allOK && DoTheyFit()); allOK = (allOK && SpaceBeforeAllLogicals()); return allOK; } // BasicMBRData::IsLegal() // Returns 1 if the 0xEE partition in the protective/hybrid MBR is marked as // active/bootable. int BasicMBRData::IsEEActive(void) { int i, IsActive = 0; for (i = 0; i < MAX_MBR_PARTS; i++) { if ((partitions[i].GetStatus() & 0x80) && (partitions[i].GetType() == 0xEE)) IsActive = 1; } return IsActive; } // BasicMBRData::IsEEActive() // Finds the next in-use partition, starting with start (will return start // if it's in use). Returns -1 if no subsequent partition is in use. int BasicMBRData::FindNextInUse(int start) { if (start >= MAX_MBR_PARTS) start = -1; while ((start < MAX_MBR_PARTS) && (start >= 0) && (partitions[start].GetInclusion() == NONE)) start++; if ((start < 0) || (start >= MAX_MBR_PARTS)) start = -1; return start; } // BasicMBRData::FindFirstLogical(); /***************************************************** * * * Functions to create, delete, or change partitions * * * *****************************************************/ // Empty all data. Meant mainly for calling by constructors, but it's also // used by the hybrid MBR functions in the GPTData class. void BasicMBRData::EmptyMBR(int clearBootloader) { int i; // Zero out the boot loader section, the disk signature, and the // 2-byte nulls area only if requested to do so. (This is the // default.) if (clearBootloader == 1) { EmptyBootloader(); } // if // Blank out the partitions for (i = 0; i < MAX_MBR_PARTS; i++) { partitions[i].Empty(); } // for MBRSignature = MBR_SIGNATURE; state = mbr; } // BasicMBRData::EmptyMBR() // Blank out the boot loader area. Done with the initial MBR-to-GPT // conversion, since MBR boot loaders don't understand GPT, and so // need to be replaced.... void BasicMBRData::EmptyBootloader(void) { int i; for (i = 0; i < 440; i++) code[i] = 0; nulls = 0; } // BasicMBRData::EmptyBootloader // Create a partition of the specified number based on the passed // partition. This function does *NO* error checking, so it's possible // to seriously screw up a partition table using this function! // Note: This function should NOT be used to create the 0xEE partition // in a conventional GPT configuration, since that partition has // specific size requirements that this function won't handle. It may // be used for creating the 0xEE partition(s) in a hybrid MBR, though, // since those toss the rulebook away anyhow.... void BasicMBRData::AddPart(int num, const MBRPart& newPart) { partitions[num] = newPart; } // BasicMBRData::AddPart() // Create a partition of the specified number, starting LBA, and // length. This function does almost no error checking, so it's possible // to seriously screw up a partition table using this function! // Note: This function should NOT be used to create the 0xEE partition // in a conventional GPT configuration, since that partition has // specific size requirements that this function won't handle. It may // be used for creating the 0xEE partition(s) in a hybrid MBR, though, // since those toss the rulebook away anyhow.... void BasicMBRData::MakePart(int num, uint64_t start, uint64_t length, int type, int bootable) { if ((num >= 0) && (num < MAX_MBR_PARTS) && (start <= UINT32_MAX) && (length <= UINT32_MAX)) { partitions[num].Empty(); partitions[num].SetType(type); partitions[num].SetLocation(start, length); if (num < 4) partitions[num].SetInclusion(PRIMARY); else partitions[num].SetInclusion(LOGICAL); SetPartBootable(num, bootable); } // if valid partition number & size } // BasicMBRData::MakePart() // Set the partition's type code. // Returns 1 if successful, 0 if not (invalid partition number) int BasicMBRData::SetPartType(int num, int type) { int allOK = 1; if ((num >= 0) && (num < MAX_MBR_PARTS)) { if (partitions[num].GetLengthLBA() != UINT32_C(0)) { allOK = partitions[num].SetType(type); } else allOK = 0; } else allOK = 0; return allOK; } // BasicMBRData::SetPartType() // Set (or remove) the partition's bootable flag. Setting it is the // default; pass 0 as bootable to remove the flag. // Returns 1 if successful, 0 if not (invalid partition number) int BasicMBRData::SetPartBootable(int num, int bootable) { int allOK = 1; if ((num >= 0) && (num < MAX_MBR_PARTS)) { if (partitions[num].GetLengthLBA() != UINT32_C(0)) { if (bootable == 0) partitions[num].SetStatus(UINT8_C(0x00)); else partitions[num].SetStatus(UINT8_C(0x80)); } else allOK = 0; } else allOK = 0; return allOK; } // BasicMBRData::SetPartBootable() // Create a partition that fills the most available space. Returns // 1 if partition was created, 0 otherwise. Intended for use in // creating hybrid MBRs. int BasicMBRData::MakeBiggestPart(int i, int type) { uint64_t start = UINT64_C(1); // starting point for each search uint64_t firstBlock; // first block in a segment uint64_t lastBlock; // last block in a segment uint64_t segmentSize; // size of segment in blocks uint64_t selectedSegment = UINT64_C(0); // location of largest segment uint64_t selectedSize = UINT64_C(0); // size of largest segment in blocks int found = 0; string anything; do { firstBlock = FindFirstAvailable(start); if (firstBlock > UINT64_C(0)) { // something's free... lastBlock = FindLastInFree(firstBlock); segmentSize = lastBlock - firstBlock + UINT64_C(1); if (segmentSize > selectedSize) { selectedSize = segmentSize; selectedSegment = firstBlock; } // if start = lastBlock + 1; } // if } while (firstBlock != 0); if ((selectedSize > UINT64_C(0)) && (selectedSize < diskSize)) { found = 1; MakePart(i, selectedSegment, selectedSize, type, 0); } else { found = 0; } // if/else return found; } // BasicMBRData::MakeBiggestPart(int i) // Delete partition #i void BasicMBRData::DeletePartition(int i) { partitions[i].Empty(); } // BasicMBRData::DeletePartition() // Set the inclusion status (PRIMARY, LOGICAL, or NONE) with some sanity // checks to ensure the table remains legal. // Returns 1 on success, 0 on failure. int BasicMBRData::SetInclusionwChecks(int num, int inclStatus) { int allOK = 1, origValue; if (IsLegal()) { if ((inclStatus == PRIMARY) || (inclStatus == LOGICAL) || (inclStatus == NONE)) { origValue = partitions[num].GetInclusion(); partitions[num].SetInclusion(inclStatus); if (!IsLegal()) { partitions[num].SetInclusion(origValue); cerr << "Specified change is not legal! Aborting change!\n"; } // if } else { cerr << "Invalid partition inclusion code in BasicMBRData::SetInclusionwChecks()!\n"; } // if/else } else { cerr << "Partition table is not currently in a valid state. Aborting change!\n"; allOK = 0; } // if/else return allOK; } // BasicMBRData::SetInclusionwChecks() // Recomputes the CHS values for the specified partition and adjusts the value. // Note that this will create a technically incorrect CHS value for EFI GPT (0xEE) // protective partitions, but this is required by some buggy BIOSes, so I'm // providing a function to do this deliberately at the user's command. // This function does nothing if the partition's length is 0. void BasicMBRData::RecomputeCHS(int partNum) { partitions[partNum].RecomputeCHS(); } // BasicMBRData::RecomputeCHS() // Sorts the partitions starting with partition #start. This function // does NOT pay attention to primary/logical assignment, which is // critical when writing the partitions. void BasicMBRData::SortMBR(int start) { if ((start < MAX_MBR_PARTS) && (start >= 0)) sort(partitions + start, partitions + MAX_MBR_PARTS); } // BasicMBRData::SortMBR() // Delete any partitions that are too big to fit on the disk // or that are too big for MBR (32-bit limits). // This deletes the partitions by setting values to 0, not just // by setting them as being omitted. // Returns the number of partitions deleted in this way. int BasicMBRData::DeleteOversizedParts() { int num = 0, i; for (i = 0; i < MAX_MBR_PARTS; i++) { if ((partitions[i].GetStartLBA() > diskSize) || (partitions[i].GetLastLBA() > diskSize) || (partitions[i].GetStartLBA() > UINT32_MAX) || (partitions[i].GetLengthLBA() > UINT32_MAX)) { cerr << "\aWarning: Deleting oversized partition #" << i + 1 << "! Start = " << partitions[i].GetStartLBA() << ", length = " << partitions[i].GetLengthLBA() << "\n"; partitions[i].Empty(); num++; } // if } // for return num; } // BasicMBRData::DeleteOversizedParts() // Search for and delete extended partitions. // Returns the number of partitions deleted. int BasicMBRData::DeleteExtendedParts() { int i, numDeleted = 0; uint8_t type; for (i = 0; i < MAX_MBR_PARTS; i++) { type = partitions[i].GetType(); if (((type == 0x05) || (type == 0x0f) || (type == (0x85))) && (partitions[i].GetLengthLBA() > 0)) { partitions[i].Empty(); numDeleted++; } // if } // for return numDeleted; } // BasicMBRData::DeleteExtendedParts() // Finds any overlapping partitions and omits the smaller of the two. void BasicMBRData::OmitOverlaps() { int i, j; for (i = 0; i < MAX_MBR_PARTS; i++) { for (j = i + 1; j < MAX_MBR_PARTS; j++) { if ((partitions[i].GetInclusion() != NONE) && partitions[i].DoTheyOverlap(partitions[j])) { if (partitions[i].GetLengthLBA() < partitions[j].GetLengthLBA()) partitions[i].SetInclusion(NONE); else partitions[j].SetInclusion(NONE); } // if } // for (j...) } // for (i...) } // BasicMBRData::OmitOverlaps() // Convert as many partitions into logicals as possible, except for // the first partition, if possible. void BasicMBRData::MaximizeLogicals() { int earliestPart = 0, earliestPartWas = NONE, i; for (i = MAX_MBR_PARTS - 1; i >= 0; i--) { UpdateCanBeLogical(); earliestPart = i; if (partitions[i].CanBeLogical()) { partitions[i].SetInclusion(LOGICAL); } else if (partitions[i].CanBePrimary()) { partitions[i].SetInclusion(PRIMARY); } else { partitions[i].SetInclusion(NONE); } // if/elseif/else } // for // If we have spare primaries, convert back the earliest partition to // its original state.... if ((NumPrimaries() < 4) && (partitions[earliestPart].GetInclusion() == LOGICAL)) partitions[earliestPart].SetInclusion(earliestPartWas); } // BasicMBRData::MaximizeLogicals() // Add primaries up to the maximum allowed, from the omitted category. void BasicMBRData::MaximizePrimaries() { int num, i = 0; num = NumPrimaries(); while ((num < 4) && (i < MAX_MBR_PARTS)) { if ((partitions[i].GetInclusion() == NONE) && (partitions[i].CanBePrimary())) { partitions[i].SetInclusion(PRIMARY); num++; UpdateCanBeLogical(); } // if i++; } // while } // BasicMBRData::MaximizePrimaries() // Remove primary partitions in excess of 4, starting with the later ones, // in terms of the array location.... void BasicMBRData::TrimPrimaries(void) { int numToDelete, i = MAX_MBR_PARTS - 1; numToDelete = NumPrimaries() - 4; while ((numToDelete > 0) && (i >= 0)) { if (partitions[i].GetInclusion() == PRIMARY) { partitions[i].SetInclusion(NONE); numToDelete--; } // if i--; } // while (numToDelete > 0) } // BasicMBRData::TrimPrimaries() // Locates primary partitions located between logical partitions and // either converts the primaries into logicals (if possible) or omits // them. void BasicMBRData::MakeLogicalsContiguous(void) { uint64_t firstLogicalLBA, lastLogicalLBA; int i; firstLogicalLBA = FirstLogicalLBA(); lastLogicalLBA = LastLogicalLBA(); for (i = 0; i < MAX_MBR_PARTS; i++) { if ((partitions[i].GetInclusion() == PRIMARY) && (partitions[i].GetStartLBA() >= firstLogicalLBA) && (partitions[i].GetLastLBA() <= lastLogicalLBA)) { if (SectorUsedAs(partitions[i].GetStartLBA() - 1) == NONE) partitions[i].SetInclusion(LOGICAL); else partitions[i].SetInclusion(NONE); } // if } // for } // BasicMBRData::MakeLogicalsContiguous() // If MBR data aren't legal, adjust primary/logical assignments and, // if necessary, drop partitions, to make the data legal. void BasicMBRData::MakeItLegal(void) { if (!IsLegal()) { DeleteOversizedParts(); MaximizeLogicals(); MaximizePrimaries(); if (!AreLogicalsContiguous()) MakeLogicalsContiguous(); if (NumPrimaries() > 4) TrimPrimaries(); OmitOverlaps(); } // if } // BasicMBRData::MakeItLegal() // Removes logical partitions and deactivated partitions from first four // entries (primary space). // Returns the number of partitions moved. int BasicMBRData::RemoveLogicalsFromFirstFour(void) { int i, j = 4, numMoved = 0, swapped = 0; MBRPart temp; for (i = 0; i < 4; i++) { if ((partitions[i].GetInclusion() != PRIMARY) && (partitions[i].GetLengthLBA() > 0)) { j = 4; swapped = 0; do { if ((partitions[j].GetInclusion() == NONE) && (partitions[j].GetLengthLBA() == 0)) { temp = partitions[j]; partitions[j] = partitions[i]; partitions[i] = temp; swapped = 1; numMoved++; } // if j++; } while ((j < MAX_MBR_PARTS) && !swapped); if (j >= MAX_MBR_PARTS) cerr << "Warning! Too many partitions in BasicMBRData::RemoveLogicalsFromFirstFour()!\n"; } // if } // for i... return numMoved; } // BasicMBRData::RemoveLogicalsFromFirstFour() // Move all primaries into the first four partition spaces // Returns the number of partitions moved. int BasicMBRData::MovePrimariesToFirstFour(void) { int i, j = 0, numMoved = 0, swapped = 0; MBRPart temp; for (i = 4; i < MAX_MBR_PARTS; i++) { if (partitions[i].GetInclusion() == PRIMARY) { j = 0; swapped = 0; do { if (partitions[j].GetInclusion() != PRIMARY) { temp = partitions[j]; partitions[j] = partitions[i]; partitions[i] = temp; swapped = 1; numMoved++; } // if j++; } while ((j < 4) && !swapped); } // if } // for return numMoved; } // BasicMBRData::MovePrimariesToFirstFour() // Create an extended partition, if necessary, to hold the logical partitions. // This function also sorts the primaries into the first four positions of // the table. // Returns 1 on success, 0 on failure. int BasicMBRData::CreateExtended(void) { int allOK = 1, i = 0, swapped = 0; MBRPart temp; if (IsLegal()) { // Move logicals out of primary space... RemoveLogicalsFromFirstFour(); // Move primaries out of logical space... MovePrimariesToFirstFour(); // Create the extended partition if (NumLogicals() > 0) { SortMBR(4); // sort starting from 4 -- that is, logicals only temp.Empty(); temp.SetStartLBA(FirstLogicalLBA() - 1); temp.SetLengthLBA(LastLogicalLBA() - FirstLogicalLBA() + 2); temp.SetType(0x0f, 1); temp.SetInclusion(PRIMARY); do { if ((partitions[i].GetInclusion() == NONE) || (partitions[i].GetLengthLBA() == 0)) { partitions[i] = temp; swapped = 1; } // if i++; } while ((i < 4) && !swapped); if (!swapped) { cerr << "Could not create extended partition; no room in primary table!\n"; allOK = 0; } // if } // if (NumLogicals() > 0) } else allOK = 0; // Do a final check for EFI GPT (0xEE) partitions & flag as a problem if found // along with an extended partition for (i = 0; i < MAX_MBR_PARTS; i++) if (swapped && partitions[i].GetType() == 0xEE) allOK = 0; return allOK; } // BasicMBRData::CreateExtended() /**************************************** * * * Functions to find data on free space * * * ****************************************/ // Finds the first free space on the disk from start onward; returns 0 // if none available.... uint64_t BasicMBRData::FindFirstAvailable(uint64_t start) { uint64_t first; uint64_t i; int firstMoved; if ((start >= (UINT32_MAX - 1)) || (start >= (diskSize - 1))) return 0; first = start; // ...now search through all partitions; if first is within an // existing partition, move it to the next sector after that // partition and repeat. If first was moved, set firstMoved // flag; repeat until firstMoved is not set, so as to catch // cases where partitions are out of sequential order.... do { firstMoved = 0; for (i = 0; i < 4; i++) { // Check if it's in the existing partition if ((first >= partitions[i].GetStartLBA()) && (first < (partitions[i].GetStartLBA() + partitions[i].GetLengthLBA()))) { first = partitions[i].GetStartLBA() + partitions[i].GetLengthLBA(); firstMoved = 1; } // if } // for } while (firstMoved == 1); if ((first >= diskSize) || (first > UINT32_MAX)) first = 0; return (first); } // BasicMBRData::FindFirstAvailable() // Finds the last free sector on the disk from start forward. uint64_t BasicMBRData::FindLastInFree(uint64_t start) { uint64_t nearestStart; uint64_t i; if ((diskSize <= UINT32_MAX) && (diskSize > 0)) nearestStart = diskSize - 1; else nearestStart = UINT32_MAX - 1; for (i = 0; i < 4; i++) { if ((nearestStart > partitions[i].GetStartLBA()) && (partitions[i].GetStartLBA() > start)) { nearestStart = partitions[i].GetStartLBA() - 1; } // if } // for return (nearestStart); } // BasicMBRData::FindLastInFree() // Finds the first free sector on the disk from start backward. uint64_t BasicMBRData::FindFirstInFree(uint64_t start) { uint64_t bestLastLBA, thisLastLBA; int i; bestLastLBA = 1; for (i = 0; i < 4; i++) { thisLastLBA = partitions[i].GetLastLBA() + 1; if (thisLastLBA > 0) thisLastLBA--; if ((thisLastLBA > bestLastLBA) && (thisLastLBA < start)) bestLastLBA = thisLastLBA + 1; } // for return (bestLastLBA); } // BasicMBRData::FindFirstInFree() // Returns NONE (unused), PRIMARY, LOGICAL, EBR (for EBR or MBR), or INVALID. // Note: If the sector immediately before a logical partition is in use by // another partition, this function returns PRIMARY or LOGICAL for that // sector, rather than EBR. int BasicMBRData::SectorUsedAs(uint64_t sector, int topPartNum) { int i = 0, usedAs = NONE; do { if ((partitions[i].GetStartLBA() <= sector) && (partitions[i].GetLastLBA() >= sector)) usedAs = partitions[i].GetInclusion(); if ((partitions[i].GetStartLBA() == (sector + 1)) && (partitions[i].GetInclusion() == LOGICAL)) usedAs = EBR; if (sector == 0) usedAs = EBR; if (sector >= diskSize) usedAs = INVALID; i++; } while ((i < topPartNum) && ((usedAs == NONE) || (usedAs == EBR))); return usedAs; } // BasicMBRData::SectorUsedAs() /****************************************************** * * * Functions that extract data on specific partitions * * * ******************************************************/ uint8_t BasicMBRData::GetStatus(int i) { MBRPart* thePart; uint8_t retval; thePart = GetPartition(i); if (thePart != NULL) retval = thePart->GetStatus(); else retval = UINT8_C(0); return retval; } // BasicMBRData::GetStatus() uint8_t BasicMBRData::GetType(int i) { MBRPart* thePart; uint8_t retval; thePart = GetPartition(i); if (thePart != NULL) retval = thePart->GetType(); else retval = UINT8_C(0); return retval; } // BasicMBRData::GetType() uint64_t BasicMBRData::GetFirstSector(int i) { MBRPart* thePart; uint64_t retval; thePart = GetPartition(i); if (thePart != NULL) { retval = thePart->GetStartLBA(); } else retval = UINT32_C(0); return retval; } // BasicMBRData::GetFirstSector() uint64_t BasicMBRData::GetLength(int i) { MBRPart* thePart; uint64_t retval; thePart = GetPartition(i); if (thePart != NULL) { retval = thePart->GetLengthLBA(); } else retval = UINT64_C(0); return retval; } // BasicMBRData::GetLength() /*********************** * * * Protected functions * * * ***********************/ // Return a pointer to a primary or logical partition, or NULL if // the partition is out of range.... MBRPart* BasicMBRData::GetPartition(int i) { MBRPart* thePart = NULL; if ((i >= 0) && (i < MAX_MBR_PARTS)) thePart = &partitions[i]; return thePart; } // GetPartition() /******************************************* * * * Functions that involve user interaction * * * *******************************************/ // Present the MBR operations menu. Note that the 'w' option does not // immediately write data; that's handled by the calling function. // Returns the number of partitions defined on exit, or -1 if the // user selected the 'q' option. (Thus, the caller should save data // if the return value is >0, or possibly >=0 depending on intentions.) int BasicMBRData::DoMenu(const string& prompt) { int goOn = 1, quitting = 0, retval, num, haveShownInfo = 0; unsigned int hexCode; string tempStr; do { cout << prompt; switch (ReadString()[0]) { case '\0': goOn = cin.good(); break; case 'a': case 'A': num = GetNumber(1, MAX_MBR_PARTS, 1, "Toggle active flag for partition: ") - 1; if (partitions[num].GetInclusion() != NONE) partitions[num].SetStatus(partitions[num].GetStatus() ^ 0x80); break; case 'c': case 'C': for (num = 0; num < MAX_MBR_PARTS; num++) RecomputeCHS(num); break; case 'l': case 'L': num = GetNumber(1, MAX_MBR_PARTS, 1, "Partition to set as logical: ") - 1; SetInclusionwChecks(num, LOGICAL); break; case 'o': case 'O': num = GetNumber(1, MAX_MBR_PARTS, 1, "Partition to omit: ") - 1; SetInclusionwChecks(num, NONE); break; case 'p': case 'P': if (!haveShownInfo) { cout << "\n** NOTE: Partition numbers do NOT indicate final primary/logical " << "status,\n** unlike in most MBR partitioning tools!\n\a"; cout << "\n** Extended partitions are not displayed, but will be generated " << "as required.\n"; haveShownInfo = 1; } // if DisplayMBRData(); break; case 'q': case 'Q': cout << "This will abandon your changes. Are you sure? "; if (GetYN() == 'Y') { goOn = 0; quitting = 1; } // if break; case 'r': case 'R': num = GetNumber(1, MAX_MBR_PARTS, 1, "Partition to set as primary: ") - 1; SetInclusionwChecks(num, PRIMARY); break; case 's': case 'S': SortMBR(); break; case 't': case 'T': num = GetNumber(1, MAX_MBR_PARTS, 1, "Partition to change type code: ") - 1; hexCode = 0x00; if (partitions[num].GetLengthLBA() > 0) { while ((hexCode <= 0) || (hexCode > 255)) { cout << "Enter an MBR hex code: "; tempStr = ReadString(); if (IsHex(tempStr)) sscanf(tempStr.c_str(), "%x", &hexCode); } // while partitions[num].SetType(hexCode); } // if break; case 'w': case 'W': goOn = 0; break; default: ShowCommands(); break; } // switch } while (goOn); if (quitting) retval = -1; else retval = CountParts(); return (retval); } // BasicMBRData::DoMenu() void BasicMBRData::ShowCommands(void) { cout << "a\ttoggle the active/boot flag\n"; cout << "c\trecompute all CHS values\n"; cout << "l\tset partition as logical\n"; cout << "o\tomit partition\n"; cout << "p\tprint the MBR partition table\n"; cout << "q\tquit without saving changes\n"; cout << "r\tset partition as primary\n"; cout << "s\tsort MBR partitions\n"; cout << "t\tchange partition type code\n"; cout << "w\twrite the MBR partition table to disk and exit\n"; } // BasicMBRData::ShowCommands()