/* ******************************************************************************* * * Copyright (C) 2000-2015, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * * File reslist.cpp * * Modification History: * * Date Name Description * 02/21/00 weiv Creation. ******************************************************************************* */ // Safer use of UnicodeString. #ifndef UNISTR_FROM_CHAR_EXPLICIT # define UNISTR_FROM_CHAR_EXPLICIT explicit #endif // Less important, but still a good idea. #ifndef UNISTR_FROM_STRING_EXPLICIT # define UNISTR_FROM_STRING_EXPLICIT explicit #endif #include <assert.h> #include <stdio.h> #include "unicode/localpointer.h" #include "reslist.h" #include "unewdata.h" #include "unicode/ures.h" #include "unicode/putil.h" #include "errmsg.h" #include "uarrsort.h" #include "uelement.h" #include "uhash.h" #include "uinvchar.h" #include "ustr_imp.h" #include "unicode/utf16.h" /* * Align binary data at a 16-byte offset from the start of the resource bundle, * to be safe for any data type it may contain. */ #define BIN_ALIGNMENT 16 // This numeric constant must be at least 1. // If StringResource.fNumUnitsSaved == 0 then the string occurs only once, // and it makes no sense to move it to the pool bundle. // The larger the threshold for fNumUnitsSaved // the smaller the savings, and the smaller the pool bundle. // We trade some total size reduction to reduce the pool bundle a bit, // so that one can reasonably save data size by // removing bundle files without rebuilding the pool bundle. // This can also help to keep the pool and total (pool+local) string indexes // within 16 bits, that is, within range of Table16 and Array16 containers. #ifndef GENRB_MIN_16BIT_UNITS_SAVED_FOR_POOL_STRING # define GENRB_MIN_16BIT_UNITS_SAVED_FOR_POOL_STRING 10 #endif U_NAMESPACE_USE static UBool gIncludeCopyright = FALSE; static UBool gUsePoolBundle = FALSE; static UBool gIsDefaultFormatVersion = TRUE; static int32_t gFormatVersion = 3; /* How do we store string values? */ enum { STRINGS_UTF16_V1, /* formatVersion 1: int length + UChars + NUL + padding to 4 bytes */ STRINGS_UTF16_V2 /* formatVersion 2 & up: optional length in 1..3 UChars + UChars + NUL */ }; static const int32_t MAX_IMPLICIT_STRING_LENGTH = 40; /* do not store the length explicitly for such strings */ static const ResFile kNoPoolBundle; /* * res_none() returns the address of kNoResource, * for use in non-error cases when no resource is to be added to the bundle. * (NULL is used in error cases.) */ static SResource kNoResource; // TODO: const static UDataInfo dataInfo= { sizeof(UDataInfo), 0, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, sizeof(UChar), 0, {0x52, 0x65, 0x73, 0x42}, /* dataFormat="ResB" */ {1, 3, 0, 0}, /* formatVersion */ {1, 4, 0, 0} /* dataVersion take a look at version inside parsed resb*/ }; static const UVersionInfo gFormatVersions[4] = { /* indexed by a major-formatVersion integer */ { 0, 0, 0, 0 }, { 1, 3, 0, 0 }, { 2, 0, 0, 0 }, { 3, 0, 0, 0 } }; // Remember to update genrb.h GENRB_VERSION when changing the data format. // (Or maybe we should remove GENRB_VERSION and report the ICU version number?) static uint8_t calcPadding(uint32_t size) { /* returns space we need to pad */ return (uint8_t) ((size % sizeof(uint32_t)) ? (sizeof(uint32_t) - (size % sizeof(uint32_t))) : 0); } void setIncludeCopyright(UBool val){ gIncludeCopyright=val; } UBool getIncludeCopyright(void){ return gIncludeCopyright; } void setFormatVersion(int32_t formatVersion) { gIsDefaultFormatVersion = FALSE; gFormatVersion = formatVersion; } int32_t getFormatVersion() { return gFormatVersion; } void setUsePoolBundle(UBool use) { gUsePoolBundle = use; } // TODO: return const pointer, or find another way to express "none" struct SResource* res_none() { return &kNoResource; } SResource::SResource() : fType(URES_NONE), fWritten(FALSE), fRes(RES_BOGUS), fRes16(-1), fKey(-1), fKey16(-1), line(0), fNext(NULL) { ustr_init(&fComment); } SResource::SResource(SRBRoot *bundle, const char *tag, int8_t type, const UString* comment, UErrorCode &errorCode) : fType(type), fWritten(FALSE), fRes(RES_BOGUS), fRes16(-1), fKey(bundle != NULL ? bundle->addTag(tag, errorCode) : -1), fKey16(-1), line(0), fNext(NULL) { ustr_init(&fComment); if(comment != NULL) { ustr_cpy(&fComment, comment, &errorCode); } } SResource::~SResource() { ustr_deinit(&fComment); } ContainerResource::~ContainerResource() { SResource *current = fFirst; while (current != NULL) { SResource *next = current->fNext; delete current; current = next; } } TableResource::~TableResource() {} // TODO: clarify that containers adopt new items, even in error cases; use LocalPointer void TableResource::add(SResource *res, int linenumber, UErrorCode &errorCode) { if (U_FAILURE(errorCode) || res == NULL || res == &kNoResource) { return; } /* remember this linenumber to report to the user if there is a duplicate key */ res->line = linenumber; /* here we need to traverse the list */ ++fCount; /* is the list still empty? */ if (fFirst == NULL) { fFirst = res; res->fNext = NULL; return; } const char *resKeyString = fRoot->fKeys + res->fKey; SResource *current = fFirst; SResource *prev = NULL; while (current != NULL) { const char *currentKeyString = fRoot->fKeys + current->fKey; int diff; /* * formatVersion 1: compare key strings in native-charset order * formatVersion 2 and up: compare key strings in ASCII order */ if (gFormatVersion == 1 || U_CHARSET_FAMILY == U_ASCII_FAMILY) { diff = uprv_strcmp(currentKeyString, resKeyString); } else { diff = uprv_compareInvCharsAsAscii(currentKeyString, resKeyString); } if (diff < 0) { prev = current; current = current->fNext; } else if (diff > 0) { /* we're either in front of the list, or in the middle */ if (prev == NULL) { /* front of the list */ fFirst = res; } else { /* middle of the list */ prev->fNext = res; } res->fNext = current; return; } else { /* Key already exists! ERROR! */ error(linenumber, "duplicate key '%s' in table, first appeared at line %d", currentKeyString, current->line); errorCode = U_UNSUPPORTED_ERROR; return; } } /* end of list */ prev->fNext = res; res->fNext = NULL; } ArrayResource::~ArrayResource() {} void ArrayResource::add(SResource *res) { if (res != NULL && res != &kNoResource) { if (fFirst == NULL) { fFirst = res; } else { fLast->fNext = res; } fLast = res; ++fCount; } } PseudoListResource::~PseudoListResource() {} void PseudoListResource::add(SResource *res) { if (res != NULL && res != &kNoResource) { res->fNext = fFirst; fFirst = res; ++fCount; } } StringBaseResource::StringBaseResource(SRBRoot *bundle, const char *tag, int8_t type, const UChar *value, int32_t len, const UString* comment, UErrorCode &errorCode) : SResource(bundle, tag, type, comment, errorCode) { if (len == 0 && gFormatVersion > 1) { fRes = URES_MAKE_EMPTY_RESOURCE(type); fWritten = TRUE; return; } fString.setTo(value, len); fString.getTerminatedBuffer(); // Some code relies on NUL-termination. if (U_SUCCESS(errorCode) && fString.isBogus()) { errorCode = U_MEMORY_ALLOCATION_ERROR; } } StringBaseResource::StringBaseResource(SRBRoot *bundle, int8_t type, const icu::UnicodeString &value, UErrorCode &errorCode) : SResource(bundle, NULL, type, NULL, errorCode), fString(value) { if (value.isEmpty() && gFormatVersion > 1) { fRes = URES_MAKE_EMPTY_RESOURCE(type); fWritten = TRUE; return; } fString.getTerminatedBuffer(); // Some code relies on NUL-termination. if (U_SUCCESS(errorCode) && fString.isBogus()) { errorCode = U_MEMORY_ALLOCATION_ERROR; } } // Pool bundle string, alias the buffer. Guaranteed NUL-terminated and not empty. StringBaseResource::StringBaseResource(int8_t type, const UChar *value, int32_t len, UErrorCode &errorCode) : SResource(NULL, NULL, type, NULL, errorCode), fString(TRUE, value, len) { assert(len > 0); assert(!fString.isBogus()); } StringBaseResource::~StringBaseResource() {} static int32_t U_CALLCONV string_hash(const UElement key) { const StringResource *res = static_cast<const StringResource *>(key.pointer); return res->fString.hashCode(); } static UBool U_CALLCONV string_comp(const UElement key1, const UElement key2) { const StringResource *res1 = static_cast<const StringResource *>(key1.pointer); const StringResource *res2 = static_cast<const StringResource *>(key2.pointer); return res1->fString == res2->fString; } StringResource::~StringResource() {} AliasResource::~AliasResource() {} IntResource::IntResource(SRBRoot *bundle, const char *tag, int32_t value, const UString* comment, UErrorCode &errorCode) : SResource(bundle, tag, URES_INT, comment, errorCode) { fValue = value; fRes = URES_MAKE_RESOURCE(URES_INT, value & RES_MAX_OFFSET); fWritten = TRUE; } IntResource::~IntResource() {} IntVectorResource::IntVectorResource(SRBRoot *bundle, const char *tag, const UString* comment, UErrorCode &errorCode) : SResource(bundle, tag, URES_INT_VECTOR, comment, errorCode), fCount(0), fArray(new uint32_t[RESLIST_MAX_INT_VECTOR]) { if (fArray == NULL) { errorCode = U_MEMORY_ALLOCATION_ERROR; return; } } IntVectorResource::~IntVectorResource() { delete[] fArray; } void IntVectorResource::add(int32_t value, UErrorCode &errorCode) { if (U_SUCCESS(errorCode)) { fArray[fCount++] = value; } } BinaryResource::BinaryResource(SRBRoot *bundle, const char *tag, uint32_t length, uint8_t *data, const char* fileName, const UString* comment, UErrorCode &errorCode) : SResource(bundle, tag, URES_BINARY, comment, errorCode), fLength(length), fData(NULL), fFileName(NULL) { if (U_FAILURE(errorCode)) { return; } if (fileName != NULL && *fileName != 0){ fFileName = new char[uprv_strlen(fileName)+1]; if (fFileName == NULL) { errorCode = U_MEMORY_ALLOCATION_ERROR; return; } uprv_strcpy(fFileName, fileName); } if (length > 0) { fData = new uint8_t[length]; if (fData == NULL) { errorCode = U_MEMORY_ALLOCATION_ERROR; return; } uprv_memcpy(fData, data, length); } else { if (gFormatVersion > 1) { fRes = URES_MAKE_EMPTY_RESOURCE(URES_BINARY); fWritten = TRUE; } } } BinaryResource::~BinaryResource() { delete[] fData; delete[] fFileName; } /* Writing Functions */ void StringResource::handlePreflightStrings(SRBRoot *bundle, UHashtable *stringSet, UErrorCode &errorCode) { assert(fSame == NULL); fSame = static_cast<StringResource *>(uhash_get(stringSet, this)); if (fSame != NULL) { // This is a duplicate of a pool bundle string or of an earlier-visited string. if (++fSame->fNumCopies == 1) { assert(fSame->fWritten); int32_t poolStringIndex = (int32_t)RES_GET_OFFSET(fSame->fRes); if (poolStringIndex >= bundle->fPoolStringIndexLimit) { bundle->fPoolStringIndexLimit = poolStringIndex + 1; } } return; } /* Put this string into the set for finding duplicates. */ fNumCopies = 1; uhash_put(stringSet, this, this, &errorCode); if (bundle->fStringsForm != STRINGS_UTF16_V1) { int32_t len = length(); if (len <= MAX_IMPLICIT_STRING_LENGTH && !U16_IS_TRAIL(fString[0]) && fString.indexOf((UChar)0) < 0) { /* * This string will be stored without an explicit length. * Runtime will detect !U16_IS_TRAIL(s[0]) and call u_strlen(). */ fNumCharsForLength = 0; } else if (len <= 0x3ee) { fNumCharsForLength = 1; } else if (len <= 0xfffff) { fNumCharsForLength = 2; } else { fNumCharsForLength = 3; } bundle->f16BitStringsLength += fNumCharsForLength + len + 1; /* +1 for the NUL */ } } void ContainerResource::handlePreflightStrings(SRBRoot *bundle, UHashtable *stringSet, UErrorCode &errorCode) { for (SResource *current = fFirst; current != NULL; current = current->fNext) { current->preflightStrings(bundle, stringSet, errorCode); } } void SResource::preflightStrings(SRBRoot *bundle, UHashtable *stringSet, UErrorCode &errorCode) { if (U_FAILURE(errorCode)) { return; } if (fRes != RES_BOGUS) { /* * The resource item word was already precomputed, which means * no further data needs to be written. * This might be an integer, or an empty string/binary/etc. */ return; } handlePreflightStrings(bundle, stringSet, errorCode); } void SResource::handlePreflightStrings(SRBRoot * /*bundle*/, UHashtable * /*stringSet*/, UErrorCode & /*errorCode*/) { /* Neither a string nor a container. */ } int32_t SRBRoot::makeRes16(uint32_t resWord) const { if (resWord == 0) { return 0; /* empty string */ } uint32_t type = RES_GET_TYPE(resWord); int32_t offset = (int32_t)RES_GET_OFFSET(resWord); if (type == URES_STRING_V2) { assert(offset > 0); if (offset < fPoolStringIndexLimit) { if (offset < fPoolStringIndex16Limit) { return offset; } } else { offset = offset - fPoolStringIndexLimit + fPoolStringIndex16Limit; if (offset <= 0xffff) { return offset; } } } return -1; } int32_t SRBRoot::mapKey(int32_t oldpos) const { const KeyMapEntry *map = fKeyMap; if (map == NULL) { return oldpos; } int32_t i, start, limit; /* do a binary search for the old, pre-compactKeys() key offset */ start = fUsePoolBundle->fKeysCount; limit = start + fKeysCount; while (start < limit - 1) { i = (start + limit) / 2; if (oldpos < map[i].oldpos) { limit = i; } else { start = i; } } assert(oldpos == map[start].oldpos); return map[start].newpos; } /* * Only called for UTF-16 v1 strings and duplicate UTF-16 v2 strings. * For unique UTF-16 v2 strings, write16() sees fRes != RES_BOGUS * and exits early. */ void StringResource::handleWrite16(SRBRoot * /*bundle*/) { SResource *same; if ((same = fSame) != NULL) { /* This is a duplicate. */ assert(same->fRes != RES_BOGUS && same->fWritten); fRes = same->fRes; fWritten = same->fWritten; } } void ContainerResource::writeAllRes16(SRBRoot *bundle) { for (SResource *current = fFirst; current != NULL; current = current->fNext) { bundle->f16BitUnits.append((UChar)current->fRes16); } fWritten = TRUE; } void ArrayResource::handleWrite16(SRBRoot *bundle) { if (fCount == 0 && gFormatVersion > 1) { fRes = URES_MAKE_EMPTY_RESOURCE(URES_ARRAY); fWritten = TRUE; return; } int32_t res16 = 0; for (SResource *current = fFirst; current != NULL; current = current->fNext) { current->write16(bundle); res16 |= current->fRes16; } if (fCount <= 0xffff && res16 >= 0 && gFormatVersion > 1) { fRes = URES_MAKE_RESOURCE(URES_ARRAY16, bundle->f16BitUnits.length()); bundle->f16BitUnits.append((UChar)fCount); writeAllRes16(bundle); } } void TableResource::handleWrite16(SRBRoot *bundle) { if (fCount == 0 && gFormatVersion > 1) { fRes = URES_MAKE_EMPTY_RESOURCE(URES_TABLE); fWritten = TRUE; return; } /* Find the smallest table type that fits the data. */ int32_t key16 = 0; int32_t res16 = 0; for (SResource *current = fFirst; current != NULL; current = current->fNext) { current->write16(bundle); key16 |= current->fKey16; res16 |= current->fRes16; } if(fCount > (uint32_t)bundle->fMaxTableLength) { bundle->fMaxTableLength = fCount; } if (fCount <= 0xffff && key16 >= 0) { if (res16 >= 0 && gFormatVersion > 1) { /* 16-bit count, key offsets and values */ fRes = URES_MAKE_RESOURCE(URES_TABLE16, bundle->f16BitUnits.length()); bundle->f16BitUnits.append((UChar)fCount); for (SResource *current = fFirst; current != NULL; current = current->fNext) { bundle->f16BitUnits.append((UChar)current->fKey16); } writeAllRes16(bundle); } else { /* 16-bit count, 16-bit key offsets, 32-bit values */ fTableType = URES_TABLE; } } else { /* 32-bit count, key offsets and values */ fTableType = URES_TABLE32; } } void PseudoListResource::handleWrite16(SRBRoot * /*bundle*/) { fRes = URES_MAKE_EMPTY_RESOURCE(URES_TABLE); fWritten = TRUE; } void SResource::write16(SRBRoot *bundle) { if (fKey >= 0) { // A tagged resource has a non-negative key index into the parsed key strings. // compactKeys() built a map from parsed key index to the final key index. // After the mapping, negative key indexes are used for shared pool bundle keys. fKey = bundle->mapKey(fKey); // If the key index fits into a Key16 for a Table or Table16, // then set the fKey16 field accordingly. // Otherwise keep it at -1. if (fKey >= 0) { if (fKey < bundle->fLocalKeyLimit) { fKey16 = fKey; } } else { int32_t poolKeyIndex = fKey & 0x7fffffff; if (poolKeyIndex <= 0xffff) { poolKeyIndex += bundle->fLocalKeyLimit; if (poolKeyIndex <= 0xffff) { fKey16 = poolKeyIndex; } } } } /* * fRes != RES_BOGUS: * The resource item word was already precomputed, which means * no further data needs to be written. * This might be an integer, or an empty or UTF-16 v2 string, * an empty binary, etc. */ if (fRes == RES_BOGUS) { handleWrite16(bundle); } // Compute fRes16 for precomputed as well as just-computed fRes. fRes16 = bundle->makeRes16(fRes); } void SResource::handleWrite16(SRBRoot * /*bundle*/) { /* Only a few resource types write 16-bit units. */ } /* * Only called for UTF-16 v1 strings, and for aliases. * For UTF-16 v2 strings, preWrite() sees fRes != RES_BOGUS * and exits early. */ void StringBaseResource::handlePreWrite(uint32_t *byteOffset) { /* Write the UTF-16 v1 string. */ fRes = URES_MAKE_RESOURCE(fType, *byteOffset >> 2); *byteOffset += 4 + (length() + 1) * U_SIZEOF_UCHAR; } void IntVectorResource::handlePreWrite(uint32_t *byteOffset) { if (fCount == 0 && gFormatVersion > 1) { fRes = URES_MAKE_EMPTY_RESOURCE(URES_INT_VECTOR); fWritten = TRUE; } else { fRes = URES_MAKE_RESOURCE(URES_INT_VECTOR, *byteOffset >> 2); *byteOffset += (1 + fCount) * 4; } } void BinaryResource::handlePreWrite(uint32_t *byteOffset) { uint32_t pad = 0; uint32_t dataStart = *byteOffset + sizeof(fLength); if (dataStart % BIN_ALIGNMENT) { pad = (BIN_ALIGNMENT - dataStart % BIN_ALIGNMENT); *byteOffset += pad; /* pad == 4 or 8 or 12 */ } fRes = URES_MAKE_RESOURCE(URES_BINARY, *byteOffset >> 2); *byteOffset += 4 + fLength; } void ContainerResource::preWriteAllRes(uint32_t *byteOffset) { for (SResource *current = fFirst; current != NULL; current = current->fNext) { current->preWrite(byteOffset); } } void ArrayResource::handlePreWrite(uint32_t *byteOffset) { preWriteAllRes(byteOffset); fRes = URES_MAKE_RESOURCE(URES_ARRAY, *byteOffset >> 2); *byteOffset += (1 + fCount) * 4; } void TableResource::handlePreWrite(uint32_t *byteOffset) { preWriteAllRes(byteOffset); if (fTableType == URES_TABLE) { /* 16-bit count, 16-bit key offsets, 32-bit values */ fRes = URES_MAKE_RESOURCE(URES_TABLE, *byteOffset >> 2); *byteOffset += 2 + fCount * 6; } else { /* 32-bit count, key offsets and values */ fRes = URES_MAKE_RESOURCE(URES_TABLE32, *byteOffset >> 2); *byteOffset += 4 + fCount * 8; } } void SResource::preWrite(uint32_t *byteOffset) { if (fRes != RES_BOGUS) { /* * The resource item word was already precomputed, which means * no further data needs to be written. * This might be an integer, or an empty or UTF-16 v2 string, * an empty binary, etc. */ return; } handlePreWrite(byteOffset); *byteOffset += calcPadding(*byteOffset); } void SResource::handlePreWrite(uint32_t * /*byteOffset*/) { assert(FALSE); } /* * Only called for UTF-16 v1 strings, and for aliases. For UTF-16 v2 strings, * write() sees fWritten and exits early. */ void StringBaseResource::handleWrite(UNewDataMemory *mem, uint32_t *byteOffset) { /* Write the UTF-16 v1 string. */ int32_t len = length(); udata_write32(mem, len); udata_writeUString(mem, getBuffer(), len + 1); *byteOffset += 4 + (len + 1) * U_SIZEOF_UCHAR; fWritten = TRUE; } void ContainerResource::writeAllRes(UNewDataMemory *mem, uint32_t *byteOffset) { uint32_t i = 0; for (SResource *current = fFirst; current != NULL; ++i, current = current->fNext) { current->write(mem, byteOffset); } assert(i == fCount); } void ContainerResource::writeAllRes32(UNewDataMemory *mem, uint32_t *byteOffset) { for (SResource *current = fFirst; current != NULL; current = current->fNext) { udata_write32(mem, current->fRes); } *byteOffset += fCount * 4; } void ArrayResource::handleWrite(UNewDataMemory *mem, uint32_t *byteOffset) { writeAllRes(mem, byteOffset); udata_write32(mem, fCount); *byteOffset += 4; writeAllRes32(mem, byteOffset); } void IntVectorResource::handleWrite(UNewDataMemory *mem, uint32_t *byteOffset) { udata_write32(mem, fCount); for(uint32_t i = 0; i < fCount; ++i) { udata_write32(mem, fArray[i]); } *byteOffset += (1 + fCount) * 4; } void BinaryResource::handleWrite(UNewDataMemory *mem, uint32_t *byteOffset) { uint32_t pad = 0; uint32_t dataStart = *byteOffset + sizeof(fLength); if (dataStart % BIN_ALIGNMENT) { pad = (BIN_ALIGNMENT - dataStart % BIN_ALIGNMENT); udata_writePadding(mem, pad); /* pad == 4 or 8 or 12 */ *byteOffset += pad; } udata_write32(mem, fLength); if (fLength > 0) { udata_writeBlock(mem, fData, fLength); } *byteOffset += 4 + fLength; } void TableResource::handleWrite(UNewDataMemory *mem, uint32_t *byteOffset) { writeAllRes(mem, byteOffset); if(fTableType == URES_TABLE) { udata_write16(mem, (uint16_t)fCount); for (SResource *current = fFirst; current != NULL; current = current->fNext) { udata_write16(mem, current->fKey16); } *byteOffset += (1 + fCount)* 2; if ((fCount & 1) == 0) { /* 16-bit count and even number of 16-bit key offsets need padding before 32-bit resource items */ udata_writePadding(mem, 2); *byteOffset += 2; } } else /* URES_TABLE32 */ { udata_write32(mem, fCount); for (SResource *current = fFirst; current != NULL; current = current->fNext) { udata_write32(mem, (uint32_t)current->fKey); } *byteOffset += (1 + fCount)* 4; } writeAllRes32(mem, byteOffset); } void SResource::write(UNewDataMemory *mem, uint32_t *byteOffset) { if (fWritten) { assert(fRes != RES_BOGUS); return; } handleWrite(mem, byteOffset); uint8_t paddingSize = calcPadding(*byteOffset); if (paddingSize > 0) { udata_writePadding(mem, paddingSize); *byteOffset += paddingSize; } fWritten = TRUE; } void SResource::handleWrite(UNewDataMemory * /*mem*/, uint32_t * /*byteOffset*/) { assert(FALSE); } void SRBRoot::write(const char *outputDir, const char *outputPkg, char *writtenFilename, int writtenFilenameLen, UErrorCode &errorCode) { UNewDataMemory *mem = NULL; uint32_t byteOffset = 0; uint32_t top, size; char dataName[1024]; int32_t indexes[URES_INDEX_TOP]; compactKeys(errorCode); /* * Add padding bytes to fKeys so that fKeysTop is 4-aligned. * Safe because the capacity is a multiple of 4. */ while (fKeysTop & 3) { fKeys[fKeysTop++] = (char)0xaa; } /* * In URES_TABLE, use all local key offsets that fit into 16 bits, * and use the remaining 16-bit offsets for pool key offsets * if there are any. * If there are no local keys, then use the whole 16-bit space * for pool key offsets. * Note: This cannot be changed without changing the major formatVersion. */ if (fKeysBottom < fKeysTop) { if (fKeysTop <= 0x10000) { fLocalKeyLimit = fKeysTop; } else { fLocalKeyLimit = 0x10000; } } else { fLocalKeyLimit = 0; } UHashtable *stringSet; if (gFormatVersion > 1) { stringSet = uhash_open(string_hash, string_comp, string_comp, &errorCode); if (U_SUCCESS(errorCode) && fUsePoolBundle != NULL && fUsePoolBundle->fStrings != NULL) { for (SResource *current = fUsePoolBundle->fStrings->fFirst; current != NULL; current = current->fNext) { StringResource *sr = static_cast<StringResource *>(current); sr->fNumCopies = 0; sr->fNumUnitsSaved = 0; uhash_put(stringSet, sr, sr, &errorCode); } } fRoot->preflightStrings(this, stringSet, errorCode); } else { stringSet = NULL; } if (fStringsForm == STRINGS_UTF16_V2 && f16BitStringsLength > 0) { compactStringsV2(stringSet, errorCode); } uhash_close(stringSet); if (U_FAILURE(errorCode)) { return; } int32_t formatVersion = gFormatVersion; if (fPoolStringIndexLimit != 0) { int32_t sum = fPoolStringIndexLimit + fLocalStringIndexLimit; if ((sum - 1) > RES_MAX_OFFSET) { errorCode = U_BUFFER_OVERFLOW_ERROR; return; } if (fPoolStringIndexLimit < 0x10000 && sum <= 0x10000) { // 16-bit indexes work for all pool + local strings. fPoolStringIndex16Limit = fPoolStringIndexLimit; } else { // Set the pool index threshold so that 16-bit indexes work // for some pool strings and some local strings. fPoolStringIndex16Limit = (int32_t)( ((int64_t)fPoolStringIndexLimit * 0xffff) / sum); } } else if (gIsDefaultFormatVersion && formatVersion == 3 && !fIsPoolBundle) { // If we just default to formatVersion 3 // but there are no pool bundle strings to share // and we do not write a pool bundle, // then write formatVersion 2 which is just as good. formatVersion = 2; } fRoot->write16(this); if (f16BitUnits.isBogus()) { errorCode = U_MEMORY_ALLOCATION_ERROR; return; } if (f16BitUnits.length() & 1) { f16BitUnits.append((UChar)0xaaaa); /* pad to multiple of 4 bytes */ } /* all keys have been mapped */ uprv_free(fKeyMap); fKeyMap = NULL; byteOffset = fKeysTop + f16BitUnits.length() * 2; fRoot->preWrite(&byteOffset); /* total size including the root item */ top = byteOffset; if (writtenFilename && writtenFilenameLen) { *writtenFilename = 0; } if (writtenFilename) { int32_t off = 0, len = 0; if (outputDir) { len = (int32_t)uprv_strlen(outputDir); if (len > writtenFilenameLen) { len = writtenFilenameLen; } uprv_strncpy(writtenFilename, outputDir, len); } if (writtenFilenameLen -= len) { off += len; writtenFilename[off] = U_FILE_SEP_CHAR; if (--writtenFilenameLen) { ++off; if(outputPkg != NULL) { uprv_strcpy(writtenFilename+off, outputPkg); off += (int32_t)uprv_strlen(outputPkg); writtenFilename[off] = '_'; ++off; } len = (int32_t)uprv_strlen(fLocale); if (len > writtenFilenameLen) { len = writtenFilenameLen; } uprv_strncpy(writtenFilename + off, fLocale, len); if (writtenFilenameLen -= len) { off += len; len = 5; if (len > writtenFilenameLen) { len = writtenFilenameLen; } uprv_strncpy(writtenFilename + off, ".res", len); } } } } if(outputPkg) { uprv_strcpy(dataName, outputPkg); uprv_strcat(dataName, "_"); uprv_strcat(dataName, fLocale); } else { uprv_strcpy(dataName, fLocale); } uprv_memcpy(dataInfo.formatVersion, gFormatVersions + formatVersion, sizeof(UVersionInfo)); mem = udata_create(outputDir, "res", dataName, &dataInfo, (gIncludeCopyright==TRUE)? U_COPYRIGHT_STRING:NULL, &errorCode); if(U_FAILURE(errorCode)){ return; } /* write the root item */ udata_write32(mem, fRoot->fRes); /* * formatVersion 1.1 (ICU 2.8): * write int32_t indexes[] after root and before the key strings * to make it easier to parse resource bundles in icuswap or from Java etc. */ uprv_memset(indexes, 0, sizeof(indexes)); indexes[URES_INDEX_LENGTH]= fIndexLength; indexes[URES_INDEX_KEYS_TOP]= fKeysTop>>2; indexes[URES_INDEX_RESOURCES_TOP]= (int32_t)(top>>2); indexes[URES_INDEX_BUNDLE_TOP]= indexes[URES_INDEX_RESOURCES_TOP]; indexes[URES_INDEX_MAX_TABLE_LENGTH]= fMaxTableLength; /* * formatVersion 1.2 (ICU 3.6): * write indexes[URES_INDEX_ATTRIBUTES] with URES_ATT_NO_FALLBACK set or not set * the memset() above initialized all indexes[] to 0 */ if (fNoFallback) { indexes[URES_INDEX_ATTRIBUTES]=URES_ATT_NO_FALLBACK; } /* * formatVersion 2.0 (ICU 4.4): * more compact string value storage, optional pool bundle */ if (URES_INDEX_16BIT_TOP < fIndexLength) { indexes[URES_INDEX_16BIT_TOP] = (fKeysTop>>2) + (f16BitUnits.length()>>1); } if (URES_INDEX_POOL_CHECKSUM < fIndexLength) { if (fIsPoolBundle) { indexes[URES_INDEX_ATTRIBUTES] |= URES_ATT_IS_POOL_BUNDLE | URES_ATT_NO_FALLBACK; uint32_t checksum = computeCRC((const char *)(fKeys + fKeysBottom), (uint32_t)(fKeysTop - fKeysBottom), 0); if (f16BitUnits.length() <= 1) { // no pool strings to checksum } else if (U_IS_BIG_ENDIAN) { checksum = computeCRC((const char *)f16BitUnits.getBuffer(), (uint32_t)f16BitUnits.length() * 2, checksum); } else { // Swap to big-endian so we get the same checksum on all platforms // (except for charset family, due to the key strings). UnicodeString s(f16BitUnits); s.append((UChar)1); // Ensure that we own this buffer. assert(!s.isBogus()); uint16_t *p = (uint16_t *)s.getBuffer(); for (int32_t count = f16BitUnits.length(); count > 0; --count) { uint16_t x = *p; *p++ = (uint16_t)((x << 8) | (x >> 8)); } checksum = computeCRC((const char *)p, (uint32_t)f16BitUnits.length() * 2, checksum); } indexes[URES_INDEX_POOL_CHECKSUM] = (int32_t)checksum; } else if (gUsePoolBundle) { indexes[URES_INDEX_ATTRIBUTES] |= URES_ATT_USES_POOL_BUNDLE; indexes[URES_INDEX_POOL_CHECKSUM] = fUsePoolBundle->fChecksum; } } // formatVersion 3 (ICU 56): // share string values via pool bundle strings indexes[URES_INDEX_LENGTH] |= fPoolStringIndexLimit << 8; // bits 23..0 -> 31..8 indexes[URES_INDEX_ATTRIBUTES] |= (fPoolStringIndexLimit >> 12) & 0xf000; // bits 27..24 -> 15..12 indexes[URES_INDEX_ATTRIBUTES] |= fPoolStringIndex16Limit << 16; /* write the indexes[] */ udata_writeBlock(mem, indexes, fIndexLength*4); /* write the table key strings */ udata_writeBlock(mem, fKeys+fKeysBottom, fKeysTop-fKeysBottom); /* write the v2 UTF-16 strings, URES_TABLE16 and URES_ARRAY16 */ udata_writeBlock(mem, f16BitUnits.getBuffer(), f16BitUnits.length()*2); /* write all of the bundle contents: the root item and its children */ byteOffset = fKeysTop + f16BitUnits.length() * 2; fRoot->write(mem, &byteOffset); assert(byteOffset == top); size = udata_finish(mem, &errorCode); if(top != size) { fprintf(stderr, "genrb error: wrote %u bytes but counted %u\n", (int)size, (int)top); errorCode = U_INTERNAL_PROGRAM_ERROR; } } /* Opening Functions */ TableResource* table_open(struct SRBRoot *bundle, const char *tag, const struct UString* comment, UErrorCode *status) { LocalPointer<TableResource> res(new TableResource(bundle, tag, comment, *status), *status); return U_SUCCESS(*status) ? res.orphan() : NULL; } ArrayResource* array_open(struct SRBRoot *bundle, const char *tag, const struct UString* comment, UErrorCode *status) { LocalPointer<ArrayResource> res(new ArrayResource(bundle, tag, comment, *status), *status); return U_SUCCESS(*status) ? res.orphan() : NULL; } struct SResource *string_open(struct SRBRoot *bundle, const char *tag, const UChar *value, int32_t len, const struct UString* comment, UErrorCode *status) { LocalPointer<SResource> res( new StringResource(bundle, tag, value, len, comment, *status), *status); return U_SUCCESS(*status) ? res.orphan() : NULL; } struct SResource *alias_open(struct SRBRoot *bundle, const char *tag, UChar *value, int32_t len, const struct UString* comment, UErrorCode *status) { LocalPointer<SResource> res( new AliasResource(bundle, tag, value, len, comment, *status), *status); return U_SUCCESS(*status) ? res.orphan() : NULL; } IntVectorResource *intvector_open(struct SRBRoot *bundle, const char *tag, const struct UString* comment, UErrorCode *status) { LocalPointer<IntVectorResource> res( new IntVectorResource(bundle, tag, comment, *status), *status); return U_SUCCESS(*status) ? res.orphan() : NULL; } struct SResource *int_open(struct SRBRoot *bundle, const char *tag, int32_t value, const struct UString* comment, UErrorCode *status) { LocalPointer<SResource> res(new IntResource(bundle, tag, value, comment, *status), *status); return U_SUCCESS(*status) ? res.orphan() : NULL; } struct SResource *bin_open(struct SRBRoot *bundle, const char *tag, uint32_t length, uint8_t *data, const char* fileName, const struct UString* comment, UErrorCode *status) { LocalPointer<SResource> res( new BinaryResource(bundle, tag, length, data, fileName, comment, *status), *status); return U_SUCCESS(*status) ? res.orphan() : NULL; } SRBRoot::SRBRoot(const UString *comment, UBool isPoolBundle, UErrorCode &errorCode) : fRoot(NULL), fLocale(NULL), fIndexLength(0), fMaxTableLength(0), fNoFallback(FALSE), fStringsForm(STRINGS_UTF16_V1), fIsPoolBundle(isPoolBundle), fKeys(NULL), fKeyMap(NULL), fKeysBottom(0), fKeysTop(0), fKeysCapacity(0), fKeysCount(0), fLocalKeyLimit(0), f16BitUnits(), f16BitStringsLength(0), fUsePoolBundle(&kNoPoolBundle), fPoolStringIndexLimit(0), fPoolStringIndex16Limit(0), fLocalStringIndexLimit(0), fWritePoolBundle(NULL) { if (U_FAILURE(errorCode)) { return; } if (gFormatVersion > 1) { // f16BitUnits must start with a zero for empty resources. // We might be able to omit it if there are no empty 16-bit resources. f16BitUnits.append((UChar)0); } fKeys = (char *) uprv_malloc(sizeof(char) * KEY_SPACE_SIZE); if (isPoolBundle) { fRoot = new PseudoListResource(this, errorCode); } else { fRoot = new TableResource(this, NULL, comment, errorCode); } if (fKeys == NULL || fRoot == NULL || U_FAILURE(errorCode)) { if (U_SUCCESS(errorCode)) { errorCode = U_MEMORY_ALLOCATION_ERROR; } return; } fKeysCapacity = KEY_SPACE_SIZE; /* formatVersion 1.1 and up: start fKeysTop after the root item and indexes[] */ if (gUsePoolBundle || isPoolBundle) { fIndexLength = URES_INDEX_POOL_CHECKSUM + 1; } else if (gFormatVersion >= 2) { fIndexLength = URES_INDEX_16BIT_TOP + 1; } else /* formatVersion 1 */ { fIndexLength = URES_INDEX_ATTRIBUTES + 1; } fKeysBottom = (1 /* root */ + fIndexLength) * 4; uprv_memset(fKeys, 0, fKeysBottom); fKeysTop = fKeysBottom; if (gFormatVersion == 1) { fStringsForm = STRINGS_UTF16_V1; } else { fStringsForm = STRINGS_UTF16_V2; } } /* Closing Functions */ void res_close(struct SResource *res) { delete res; } SRBRoot::~SRBRoot() { delete fRoot; uprv_free(fLocale); uprv_free(fKeys); uprv_free(fKeyMap); } /* Misc Functions */ void SRBRoot::setLocale(UChar *locale, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return; } uprv_free(fLocale); fLocale = (char*) uprv_malloc(sizeof(char) * (u_strlen(locale)+1)); if(fLocale == NULL) { errorCode = U_MEMORY_ALLOCATION_ERROR; return; } u_UCharsToChars(locale, fLocale, u_strlen(locale)+1); } const char * SRBRoot::getKeyString(int32_t key) const { if (key < 0) { return fUsePoolBundle->fKeys + (key & 0x7fffffff); } else { return fKeys + key; } } const char * SResource::getKeyString(const SRBRoot *bundle) const { if (fKey == -1) { return NULL; } return bundle->getKeyString(fKey); } const char * SRBRoot::getKeyBytes(int32_t *pLength) const { *pLength = fKeysTop - fKeysBottom; return fKeys + fKeysBottom; } int32_t SRBRoot::addKeyBytes(const char *keyBytes, int32_t length, UErrorCode &errorCode) { int32_t keypos; if (U_FAILURE(errorCode)) { return -1; } if (length < 0 || (keyBytes == NULL && length != 0)) { errorCode = U_ILLEGAL_ARGUMENT_ERROR; return -1; } if (length == 0) { return fKeysTop; } keypos = fKeysTop; fKeysTop += length; if (fKeysTop >= fKeysCapacity) { /* overflow - resize the keys buffer */ fKeysCapacity += KEY_SPACE_SIZE; fKeys = static_cast<char *>(uprv_realloc(fKeys, fKeysCapacity)); if(fKeys == NULL) { errorCode = U_MEMORY_ALLOCATION_ERROR; return -1; } } uprv_memcpy(fKeys + keypos, keyBytes, length); return keypos; } int32_t SRBRoot::addTag(const char *tag, UErrorCode &errorCode) { int32_t keypos; if (U_FAILURE(errorCode)) { return -1; } if (tag == NULL) { /* no error: the root table and array items have no keys */ return -1; } keypos = addKeyBytes(tag, (int32_t)(uprv_strlen(tag) + 1), errorCode); if (U_SUCCESS(errorCode)) { ++fKeysCount; } return keypos; } static int32_t compareInt32(int32_t lPos, int32_t rPos) { /* * Compare possibly-negative key offsets. Don't just return lPos - rPos * because that is prone to negative-integer underflows. */ if (lPos < rPos) { return -1; } else if (lPos > rPos) { return 1; } else { return 0; } } static int32_t U_CALLCONV compareKeySuffixes(const void *context, const void *l, const void *r) { const struct SRBRoot *bundle=(const struct SRBRoot *)context; int32_t lPos = ((const KeyMapEntry *)l)->oldpos; int32_t rPos = ((const KeyMapEntry *)r)->oldpos; const char *lStart = bundle->getKeyString(lPos); const char *lLimit = lStart; const char *rStart = bundle->getKeyString(rPos); const char *rLimit = rStart; int32_t diff; while (*lLimit != 0) { ++lLimit; } while (*rLimit != 0) { ++rLimit; } /* compare keys in reverse character order */ while (lStart < lLimit && rStart < rLimit) { diff = (int32_t)(uint8_t)*--lLimit - (int32_t)(uint8_t)*--rLimit; if (diff != 0) { return diff; } } /* sort equal suffixes by descending key length */ diff = (int32_t)(rLimit - rStart) - (int32_t)(lLimit - lStart); if (diff != 0) { return diff; } /* Sort pool bundle keys first (negative oldpos), and otherwise keys in parsing order. */ return compareInt32(lPos, rPos); } static int32_t U_CALLCONV compareKeyNewpos(const void * /*context*/, const void *l, const void *r) { return compareInt32(((const KeyMapEntry *)l)->newpos, ((const KeyMapEntry *)r)->newpos); } static int32_t U_CALLCONV compareKeyOldpos(const void * /*context*/, const void *l, const void *r) { return compareInt32(((const KeyMapEntry *)l)->oldpos, ((const KeyMapEntry *)r)->oldpos); } void SRBRoot::compactKeys(UErrorCode &errorCode) { KeyMapEntry *map; char *keys; int32_t i; int32_t keysCount = fUsePoolBundle->fKeysCount + fKeysCount; if (U_FAILURE(errorCode) || fKeysCount == 0 || fKeyMap != NULL) { return; } map = (KeyMapEntry *)uprv_malloc(keysCount * sizeof(KeyMapEntry)); if (map == NULL) { errorCode = U_MEMORY_ALLOCATION_ERROR; return; } keys = (char *)fUsePoolBundle->fKeys; for (i = 0; i < fUsePoolBundle->fKeysCount; ++i) { map[i].oldpos = (int32_t)(keys - fUsePoolBundle->fKeys) | 0x80000000; /* negative oldpos */ map[i].newpos = 0; while (*keys != 0) { ++keys; } /* skip the key */ ++keys; /* skip the NUL */ } keys = fKeys + fKeysBottom; for (; i < keysCount; ++i) { map[i].oldpos = (int32_t)(keys - fKeys); map[i].newpos = 0; while (*keys != 0) { ++keys; } /* skip the key */ ++keys; /* skip the NUL */ } /* Sort the keys so that each one is immediately followed by all of its suffixes. */ uprv_sortArray(map, keysCount, (int32_t)sizeof(KeyMapEntry), compareKeySuffixes, this, FALSE, &errorCode); /* * Make suffixes point into earlier, longer strings that contain them * and mark the old, now unused suffix bytes as deleted. */ if (U_SUCCESS(errorCode)) { keys = fKeys; for (i = 0; i < keysCount;) { /* * This key is not a suffix of the previous one; * keep this one and delete the following ones that are * suffixes of this one. */ const char *key; const char *keyLimit; int32_t j = i + 1; map[i].newpos = map[i].oldpos; if (j < keysCount && map[j].oldpos < 0) { /* Key string from the pool bundle, do not delete. */ i = j; continue; } key = getKeyString(map[i].oldpos); for (keyLimit = key; *keyLimit != 0; ++keyLimit) {} for (; j < keysCount && map[j].oldpos >= 0; ++j) { const char *k; char *suffix; const char *suffixLimit; int32_t offset; suffix = keys + map[j].oldpos; for (suffixLimit = suffix; *suffixLimit != 0; ++suffixLimit) {} offset = (int32_t)(keyLimit - key) - (suffixLimit - suffix); if (offset < 0) { break; /* suffix cannot be longer than the original */ } /* Is it a suffix of the earlier, longer key? */ for (k = keyLimit; suffix < suffixLimit && *--k == *--suffixLimit;) {} if (suffix == suffixLimit && *k == *suffixLimit) { map[j].newpos = map[i].oldpos + offset; /* yes, point to the earlier key */ /* mark the suffix as deleted */ while (*suffix != 0) { *suffix++ = 1; } *suffix = 1; } else { break; /* not a suffix, restart from here */ } } i = j; } /* * Re-sort by newpos, then modify the key characters array in-place * to squeeze out unused bytes, and readjust the newpos offsets. */ uprv_sortArray(map, keysCount, (int32_t)sizeof(KeyMapEntry), compareKeyNewpos, NULL, FALSE, &errorCode); if (U_SUCCESS(errorCode)) { int32_t oldpos, newpos, limit; oldpos = newpos = fKeysBottom; limit = fKeysTop; /* skip key offsets that point into the pool bundle rather than this new bundle */ for (i = 0; i < keysCount && map[i].newpos < 0; ++i) {} if (i < keysCount) { while (oldpos < limit) { if (keys[oldpos] == 1) { ++oldpos; /* skip unused bytes */ } else { /* adjust the new offsets for keys starting here */ while (i < keysCount && map[i].newpos == oldpos) { map[i++].newpos = newpos; } /* move the key characters to their new position */ keys[newpos++] = keys[oldpos++]; } } assert(i == keysCount); } fKeysTop = newpos; /* Re-sort once more, by old offsets for binary searching. */ uprv_sortArray(map, keysCount, (int32_t)sizeof(KeyMapEntry), compareKeyOldpos, NULL, FALSE, &errorCode); if (U_SUCCESS(errorCode)) { /* key size reduction by limit - newpos */ fKeyMap = map; map = NULL; } } } uprv_free(map); } static int32_t U_CALLCONV compareStringSuffixes(const void * /*context*/, const void *l, const void *r) { const StringResource *left = *((const StringResource **)l); const StringResource *right = *((const StringResource **)r); const UChar *lStart = left->getBuffer(); const UChar *lLimit = lStart + left->length(); const UChar *rStart = right->getBuffer(); const UChar *rLimit = rStart + right->length(); int32_t diff; /* compare keys in reverse character order */ while (lStart < lLimit && rStart < rLimit) { diff = (int32_t)*--lLimit - (int32_t)*--rLimit; if (diff != 0) { return diff; } } /* sort equal suffixes by descending string length */ return right->length() - left->length(); } static int32_t U_CALLCONV compareStringLengths(const void * /*context*/, const void *l, const void *r) { const StringResource *left = *((const StringResource **)l); const StringResource *right = *((const StringResource **)r); int32_t diff; /* Make "is suffix of another string" compare greater than a non-suffix. */ diff = (int)(left->fSame != NULL) - (int)(right->fSame != NULL); if (diff != 0) { return diff; } /* sort by ascending string length */ diff = left->length() - right->length(); if (diff != 0) { return diff; } // sort by descending size reduction diff = right->fNumUnitsSaved - left->fNumUnitsSaved; if (diff != 0) { return diff; } // sort lexically return left->fString.compare(right->fString); } void StringResource::writeUTF16v2(int32_t base, UnicodeString &dest) { int32_t len = length(); fRes = URES_MAKE_RESOURCE(URES_STRING_V2, base + dest.length()); fWritten = TRUE; switch(fNumCharsForLength) { case 0: break; case 1: dest.append((UChar)(0xdc00 + len)); break; case 2: dest.append((UChar)(0xdfef + (len >> 16))); dest.append((UChar)len); break; case 3: dest.append((UChar)0xdfff); dest.append((UChar)(len >> 16)); dest.append((UChar)len); break; default: break; /* will not occur */ } dest.append(fString); dest.append((UChar)0); } void SRBRoot::compactStringsV2(UHashtable *stringSet, UErrorCode &errorCode) { if (U_FAILURE(errorCode)) { return; } // Store the StringResource pointers in an array for // easy sorting and processing. // We enumerate a set of strings, so there are no duplicates. int32_t count = uhash_count(stringSet); LocalArray<StringResource *> array(new StringResource *[count], errorCode); if (U_FAILURE(errorCode)) { return; } for (int32_t pos = UHASH_FIRST, i = 0; i < count; ++i) { array[i] = (StringResource *)uhash_nextElement(stringSet, &pos)->key.pointer; } /* Sort the strings so that each one is immediately followed by all of its suffixes. */ uprv_sortArray(array.getAlias(), count, (int32_t)sizeof(struct SResource **), compareStringSuffixes, NULL, FALSE, &errorCode); if (U_FAILURE(errorCode)) { return; } /* * Make suffixes point into earlier, longer strings that contain them. * Temporarily use fSame and fSuffixOffset for suffix strings to * refer to the remaining ones. */ for (int32_t i = 0; i < count;) { /* * This string is not a suffix of the previous one; * write this one and subsume the following ones that are * suffixes of this one. */ StringResource *res = array[i]; res->fNumUnitsSaved = (res->fNumCopies - 1) * res->get16BitStringsLength(); // Whole duplicates of pool strings are already account for in fPoolStringIndexLimit, // see StringResource::handlePreflightStrings(). int32_t j; for (j = i + 1; j < count; ++j) { StringResource *suffixRes = array[j]; /* Is it a suffix of the earlier, longer string? */ if (res->fString.endsWith(suffixRes->fString)) { assert(res->length() != suffixRes->length()); // Set strings are unique. if (suffixRes->fWritten) { // Pool string, skip. } else if (suffixRes->fNumCharsForLength == 0) { /* yes, point to the earlier string */ suffixRes->fSame = res; suffixRes->fSuffixOffset = res->length() - suffixRes->length(); if (res->fWritten) { // Suffix-share res which is a pool string. // Compute the resource word and collect the maximum. suffixRes->fRes = res->fRes + res->fNumCharsForLength + suffixRes->fSuffixOffset; int32_t poolStringIndex = (int32_t)RES_GET_OFFSET(suffixRes->fRes); if (poolStringIndex >= fPoolStringIndexLimit) { fPoolStringIndexLimit = poolStringIndex + 1; } suffixRes->fWritten = TRUE; } res->fNumUnitsSaved += suffixRes->fNumCopies * suffixRes->get16BitStringsLength(); } else { /* write the suffix by itself if we need explicit length */ } } else { break; /* not a suffix, restart from here */ } } i = j; } /* * Re-sort the strings by ascending length (except suffixes last) * to optimize for URES_TABLE16 and URES_ARRAY16: * Keep as many as possible within reach of 16-bit offsets. */ uprv_sortArray(array.getAlias(), count, (int32_t)sizeof(struct SResource **), compareStringLengths, NULL, FALSE, &errorCode); if (U_FAILURE(errorCode)) { return; } if (fIsPoolBundle) { // Write strings that are sufficiently shared. // Avoid writing other strings. int32_t numStringsWritten = 0; int32_t numUnitsSaved = 0; int32_t numUnitsNotSaved = 0; for (int32_t i = 0; i < count; ++i) { StringResource *res = array[i]; // Maximum pool string index when suffix-sharing the last character. int32_t maxStringIndex = f16BitUnits.length() + res->fNumCharsForLength + res->length() - 1; if (res->fNumUnitsSaved >= GENRB_MIN_16BIT_UNITS_SAVED_FOR_POOL_STRING && maxStringIndex < RES_MAX_OFFSET) { res->writeUTF16v2(0, f16BitUnits); ++numStringsWritten; numUnitsSaved += res->fNumUnitsSaved; } else { numUnitsNotSaved += res->fNumUnitsSaved; res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_STRING); res->fWritten = TRUE; } } if (f16BitUnits.isBogus()) { errorCode = U_MEMORY_ALLOCATION_ERROR; } if (getShowWarning()) { // not quiet printf("number of shared strings: %d\n", (int)numStringsWritten); printf("16-bit units for strings: %6d = %6d bytes\n", (int)f16BitUnits.length(), (int)f16BitUnits.length() * 2); printf("16-bit units saved: %6d = %6d bytes\n", (int)numUnitsSaved, (int)numUnitsSaved * 2); printf("16-bit units not saved: %6d = %6d bytes\n", (int)numUnitsNotSaved, (int)numUnitsNotSaved * 2); } } else { assert(fPoolStringIndexLimit <= fUsePoolBundle->fStringIndexLimit); /* Write the non-suffix strings. */ int32_t i; for (i = 0; i < count && array[i]->fSame == NULL; ++i) { StringResource *res = array[i]; if (!res->fWritten) { int32_t localStringIndex = f16BitUnits.length(); if (localStringIndex >= fLocalStringIndexLimit) { fLocalStringIndexLimit = localStringIndex + 1; } res->writeUTF16v2(fPoolStringIndexLimit, f16BitUnits); } } if (f16BitUnits.isBogus()) { errorCode = U_MEMORY_ALLOCATION_ERROR; return; } if (fWritePoolBundle != NULL && gFormatVersion >= 3) { PseudoListResource *poolStrings = static_cast<PseudoListResource *>(fWritePoolBundle->fRoot); for (i = 0; i < count && array[i]->fSame == NULL; ++i) { assert(!array[i]->fString.isEmpty()); StringResource *poolString = new StringResource(fWritePoolBundle, array[i]->fString, errorCode); if (poolString == NULL) { errorCode = U_MEMORY_ALLOCATION_ERROR; break; } poolStrings->add(poolString); } } /* Write the suffix strings. Make each point to the real string. */ for (; i < count; ++i) { StringResource *res = array[i]; if (res->fWritten) { continue; } StringResource *same = res->fSame; assert(res->length() != same->length()); // Set strings are unique. res->fRes = same->fRes + same->fNumCharsForLength + res->fSuffixOffset; int32_t localStringIndex = (int32_t)RES_GET_OFFSET(res->fRes) - fPoolStringIndexLimit; // Suffixes of pool strings have been set already. assert(localStringIndex >= 0); if (localStringIndex >= fLocalStringIndexLimit) { fLocalStringIndexLimit = localStringIndex + 1; } res->fWritten = TRUE; } } // +1 to account for the initial zero in f16BitUnits assert(f16BitUnits.length() <= (f16BitStringsLength + 1)); }