// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This file contains macros and macro-like constructs (e.g., templates) that // are commonly used throughout Chromium source. (It may also contain things // that are closely related to things that are commonly used that belong in this // file.) #ifndef BASE_MACROS_H_ #define BASE_MACROS_H_ #include <stddef.h> // For size_t. // Put this in the declarations for a class to be uncopyable. #define DISALLOW_COPY(TypeName) \ TypeName(const TypeName&) = delete // Put this in the declarations for a class to be unassignable. #define DISALLOW_ASSIGN(TypeName) \ void operator=(const TypeName&) = delete // A macro to disallow the copy constructor and operator= functions // This should be used in the private: declarations for a class // We define this macro conditionally as it may be defined by another libraries. #if !defined(DISALLOW_COPY_AND_ASSIGN) #define DISALLOW_COPY_AND_ASSIGN(TypeName) \ TypeName(const TypeName&); \ void operator=(const TypeName&) #endif // A macro to disallow all the implicit constructors, namely the // default constructor, copy constructor and operator= functions. // // This should be used in the private: declarations for a class // that wants to prevent anyone from instantiating it. This is // especially useful for classes containing only static methods. #define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \ TypeName() = delete; \ DISALLOW_COPY_AND_ASSIGN(TypeName) // The arraysize(arr) macro returns the # of elements in an array arr. The // expression is a compile-time constant, and therefore can be used in defining // new arrays, for example. If you use arraysize on a pointer by mistake, you // will get a compile-time error. For the technical details, refer to // http://blogs.msdn.com/b/the1/archive/2004/05/07/128242.aspx. // This template function declaration is used in defining arraysize. // Note that the function doesn't need an implementation, as we only // use its type. template <typename T, size_t N> char (&ArraySizeHelper(T (&array)[N]))[N]; #define arraysize(array) (sizeof(ArraySizeHelper(array))) // Used to explicitly mark the return value of a function as unused. If you are // really sure you don't want to do anything with the return value of a function // that has been marked WARN_UNUSED_RESULT, wrap it with this. Example: // // scoped_ptr<MyType> my_var = ...; // if (TakeOwnership(my_var.get()) == SUCCESS) // ignore_result(my_var.release()); // template<typename T> inline void ignore_result(const T&) { } // The following enum should be used only as a constructor argument to indicate // that the variable has static storage class, and that the constructor should // do nothing to its state. It indicates to the reader that it is legal to // declare a static instance of the class, provided the constructor is given // the base::LINKER_INITIALIZED argument. Normally, it is unsafe to declare a // static variable that has a constructor or a destructor because invocation // order is undefined. However, IF the type can be initialized by filling with // zeroes (which the loader does for static variables), AND the destructor also // does nothing to the storage, AND there are no virtual methods, then a // constructor declared as // explicit MyClass(base::LinkerInitialized x) {} // and invoked as // static MyClass my_variable_name(base::LINKER_INITIALIZED); namespace base { enum LinkerInitialized { LINKER_INITIALIZED }; // Use these to declare and define a static local variable (static T;) so that // it is leaked so that its destructors are not called at exit. If you need // thread-safe initialization, use base/lazy_instance.h instead. #define CR_DEFINE_STATIC_LOCAL(type, name, arguments) \ static type& name = *new type arguments } // base #endif // BASE_MACROS_H_