// Copyright (c) 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <fcntl.h> #include <stddef.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/types.h> #include <algorithm> #include <limits> #include "base/files/file_util.h" #include "base/logging.h" #include "base/memory/scoped_ptr.h" #include "build/build_config.h" #include "testing/gtest/include/gtest/gtest.h" #if defined(OS_POSIX) #include <sys/mman.h> #include <unistd.h> #endif using std::nothrow; using std::numeric_limits; namespace { // This function acts as a compiler optimization barrier. We use it to // prevent the compiler from making an expression a compile-time constant. // We also use it so that the compiler doesn't discard certain return values // as something we don't need (see the comment with calloc below). template <typename Type> NOINLINE Type HideValueFromCompiler(volatile Type value) { #if defined(__GNUC__) // In a GCC compatible compiler (GCC or Clang), make this compiler barrier // more robust than merely using "volatile". __asm__ volatile ("" : "+r" (value)); #endif // __GNUC__ return value; } // Tcmalloc and Windows allocator shim support setting malloc limits. // - NO_TCMALLOC (should be defined if compiled with use_allocator!="tcmalloc") // - ADDRESS_SANITIZER and SYZYASAN because they have their own memory allocator // - IOS does not use tcmalloc // - OS_MACOSX does not use tcmalloc // - Windows allocator shim defines ALLOCATOR_SHIM #if (!defined(NO_TCMALLOC) || defined(ALLOCATOR_SHIM)) && \ !defined(ADDRESS_SANITIZER) && !defined(OS_IOS) && !defined(OS_MACOSX) && \ !defined(SYZYASAN) #define MALLOC_OVERFLOW_TEST(function) function #else #define MALLOC_OVERFLOW_TEST(function) DISABLED_##function #endif #if defined(OS_LINUX) && defined(__x86_64__) // Detect runtime TCMalloc bypasses. bool IsTcMallocBypassed() { // This should detect a TCMalloc bypass from Valgrind. char* g_slice = getenv("G_SLICE"); if (g_slice && !strcmp(g_slice, "always-malloc")) return true; return false; } #endif // There are platforms where these tests are known to fail. We would like to // be able to easily check the status on the bots, but marking tests as // FAILS_ is too clunky. void OverflowTestsSoftExpectTrue(bool overflow_detected) { if (!overflow_detected) { #if defined(OS_LINUX) || defined(OS_ANDROID) || defined(OS_MACOSX) // Sadly, on Linux, Android, and OSX we don't have a good story yet. Don't // fail the test, but report. printf("Platform has overflow: %s\n", !overflow_detected ? "yes." : "no."); #else // Otherwise, fail the test. (Note: EXPECT are ok in subfunctions, ASSERT // aren't). EXPECT_TRUE(overflow_detected); #endif } } #if defined(OS_IOS) || defined(OS_WIN) || defined(OS_MACOSX) #define MAYBE_NewOverflow DISABLED_NewOverflow #else #define MAYBE_NewOverflow NewOverflow #endif // Test array[TooBig][X] and array[X][TooBig] allocations for int overflows. // IOS doesn't honor nothrow, so disable the test there. // Crashes on Windows Dbg builds, disable there as well. // Fails on Mac 10.8 http://crbug.com/227092 TEST(SecurityTest, MAYBE_NewOverflow) { const size_t kArraySize = 4096; // We want something "dynamic" here, so that the compiler doesn't // immediately reject crazy arrays. const size_t kDynamicArraySize = HideValueFromCompiler(kArraySize); // numeric_limits are still not constexpr until we switch to C++11, so we // use an ugly cast. const size_t kMaxSizeT = ~static_cast<size_t>(0); ASSERT_EQ(numeric_limits<size_t>::max(), kMaxSizeT); const size_t kArraySize2 = kMaxSizeT / kArraySize + 10; const size_t kDynamicArraySize2 = HideValueFromCompiler(kArraySize2); { scoped_ptr<char[][kArraySize]> array_pointer(new (nothrow) char[kDynamicArraySize2][kArraySize]); OverflowTestsSoftExpectTrue(!array_pointer); } // On windows, the compiler prevents static array sizes of more than // 0x7fffffff (error C2148). #if defined(OS_WIN) && defined(ARCH_CPU_64_BITS) ALLOW_UNUSED_LOCAL(kDynamicArraySize); #else { scoped_ptr<char[][kArraySize2]> array_pointer(new (nothrow) char[kDynamicArraySize][kArraySize2]); OverflowTestsSoftExpectTrue(!array_pointer); } #endif // !defined(OS_WIN) || !defined(ARCH_CPU_64_BITS) } #if defined(OS_LINUX) && defined(__x86_64__) // Check if ptr1 and ptr2 are separated by less than size chars. bool ArePointersToSameArea(void* ptr1, void* ptr2, size_t size) { ptrdiff_t ptr_diff = reinterpret_cast<char*>(std::max(ptr1, ptr2)) - reinterpret_cast<char*>(std::min(ptr1, ptr2)); return static_cast<size_t>(ptr_diff) <= size; } // Check if TCMalloc uses an underlying random memory allocator. TEST(SecurityTest, MALLOC_OVERFLOW_TEST(RandomMemoryAllocations)) { if (IsTcMallocBypassed()) return; size_t kPageSize = 4096; // We support x86_64 only. // Check that malloc() returns an address that is neither the kernel's // un-hinted mmap area, nor the current brk() area. The first malloc() may // not be at a random address because TCMalloc will first exhaust any memory // that it has allocated early on, before starting the sophisticated // allocators. void* default_mmap_heap_address = mmap(0, kPageSize, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); ASSERT_NE(default_mmap_heap_address, static_cast<void*>(MAP_FAILED)); ASSERT_EQ(munmap(default_mmap_heap_address, kPageSize), 0); void* brk_heap_address = sbrk(0); ASSERT_NE(brk_heap_address, reinterpret_cast<void*>(-1)); ASSERT_TRUE(brk_heap_address != NULL); // 1 MB should get us past what TCMalloc pre-allocated before initializing // the sophisticated allocators. size_t kAllocSize = 1<<20; scoped_ptr<char, base::FreeDeleter> ptr( static_cast<char*>(malloc(kAllocSize))); ASSERT_TRUE(ptr != NULL); // If two pointers are separated by less than 512MB, they are considered // to be in the same area. // Our random pointer could be anywhere within 0x3fffffffffff (46bits), // and we are checking that it's not withing 1GB (30 bits) from two // addresses (brk and mmap heap). We have roughly one chance out of // 2^15 to flake. const size_t kAreaRadius = 1<<29; bool in_default_mmap_heap = ArePointersToSameArea( ptr.get(), default_mmap_heap_address, kAreaRadius); EXPECT_FALSE(in_default_mmap_heap); bool in_default_brk_heap = ArePointersToSameArea( ptr.get(), brk_heap_address, kAreaRadius); EXPECT_FALSE(in_default_brk_heap); // In the implementation, we always mask our random addresses with // kRandomMask, so we use it as an additional detection mechanism. const uintptr_t kRandomMask = 0x3fffffffffffULL; bool impossible_random_address = reinterpret_cast<uintptr_t>(ptr.get()) & ~kRandomMask; EXPECT_FALSE(impossible_random_address); } #endif // defined(OS_LINUX) && defined(__x86_64__) } // namespace