//===------------------------- cxa_exception.cpp --------------------------===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // // // This file implements the "Exception Handling APIs" // http://mentorembedded.github.io/cxx-abi/abi-eh.html // http://www.intel.com/design/itanium/downloads/245358.htm // //===----------------------------------------------------------------------===// #include <assert.h> #include <stdlib.h> #include <string.h> #include <typeinfo> #include "config.h" #include "cxa_exception.hpp" #include "cxa_handlers.hpp" #include "private_typeinfo.h" #include "unwind.h" /* Exception Header Layout: +---------------------------+-----------------------------+---------------+ | __cxa_exception | _Unwind_Exception CLNGC++\0 | thrown object | +---------------------------+-----------------------------+---------------+ ^ | +-------------------------------------------------------+ | +---------------------------+-----------------------------+ | __cxa_dependent_exception | _Unwind_Exception CLNGC++\1 | +---------------------------+-----------------------------+ Exception Handling Table Layout: +-----------------+--------+ | lpStartEncoding | (char) | +---------+-------+--------+---------------+-----------------------+ | lpStart | (encoded with lpStartEncoding) | defaults to funcStart | +---------+-----+--------+-----------------+---------------+-------+ | ttypeEncoding | (char) | Encoding of the type_info table | +---------------+-+------+----+----------------------------+----------------+ | classInfoOffset | (ULEB128) | Offset to type_info table, defaults to null | +-----------------++--------+-+----------------------------+----------------+ | callSiteEncoding | (char) | Encoding for Call Site Table | +------------------+--+-----+-----+------------------------+--------------------------+ | callSiteTableLength | (ULEB128) | Call Site Table length, used to find Action table | +---------------------+-----------+---------------------------------------------------+ #ifndef __USING_SJLJ_EXCEPTIONS__ +---------------------+-----------+------------------------------------------------+ | Beginning of Call Site Table The current ip lies within the | | ... (start, length) range of one of these | | call sites. There may be action needed. | | +-------------+---------------------------------+------------------------------+ | | | start | (encoded with callSiteEncoding) | offset relative to funcStart | | | | length | (encoded with callSiteEncoding) | length of code fragment | | | | landingPad | (encoded with callSiteEncoding) | offset relative to lpStart | | | | actionEntry | (ULEB128) | Action Table Index 1-based | | | | | | actionEntry == 0 -> cleanup | | | +-------------+---------------------------------+------------------------------+ | | ... | +----------------------------------------------------------------------------------+ #else // __USING_SJLJ_EXCEPTIONS__ +---------------------+-----------+------------------------------------------------+ | Beginning of Call Site Table The current ip is a 1-based index into | | ... this table. Or it is -1 meaning no | | action is needed. Or it is 0 meaning | | terminate. | | +-------------+---------------------------------+------------------------------+ | | | landingPad | (ULEB128) | offset relative to lpStart | | | | actionEntry | (ULEB128) | Action Table Index 1-based | | | | | | actionEntry == 0 -> cleanup | | | +-------------+---------------------------------+------------------------------+ | | ... | +----------------------------------------------------------------------------------+ #endif // __USING_SJLJ_EXCEPTIONS__ +---------------------------------------------------------------------+ | Beginning of Action Table ttypeIndex == 0 : cleanup | | ... ttypeIndex > 0 : catch | | ttypeIndex < 0 : exception spec | | +--------------+-----------+--------------------------------------+ | | | ttypeIndex | (SLEB128) | Index into type_info Table (1-based) | | | | actionOffset | (SLEB128) | Offset into next Action Table entry | | | +--------------+-----------+--------------------------------------+ | | ... | +---------------------------------------------------------------------+-----------------+ | type_info Table, but classInfoOffset does *not* point here! | | +----------------+------------------------------------------------+-----------------+ | | | Nth type_info* | Encoded with ttypeEncoding, 0 means catch(...) | ttypeIndex == N | | | +----------------+------------------------------------------------+-----------------+ | | ... | | +----------------+------------------------------------------------+-----------------+ | | | 1st type_info* | Encoded with ttypeEncoding, 0 means catch(...) | ttypeIndex == 1 | | | +----------------+------------------------------------------------+-----------------+ | | +---------------------------------------+-----------+------------------------------+ | | | 1st ttypeIndex for 1st exception spec | (ULEB128) | classInfoOffset points here! | | | | ... | (ULEB128) | | | | | Mth ttypeIndex for 1st exception spec | (ULEB128) | | | | | 0 | (ULEB128) | | | | +---------------------------------------+------------------------------------------+ | | ... | | +---------------------------------------+------------------------------------------+ | | | 0 | (ULEB128) | throw() | | | +---------------------------------------+------------------------------------------+ | | ... | | +---------------------------------------+------------------------------------------+ | | | 1st ttypeIndex for Nth exception spec | (ULEB128) | | | | | ... | (ULEB128) | | | | | Mth ttypeIndex for Nth exception spec | (ULEB128) | | | | | 0 | (ULEB128) | | | | +---------------------------------------+------------------------------------------+ | +---------------------------------------------------------------------------------------+ Notes: * ttypeIndex in the Action Table, and in the exception spec table, is an index, not a byte count, if positive. It is a negative index offset of classInfoOffset and the sizeof entry depends on ttypeEncoding. But if ttypeIndex is negative, it is a positive 1-based byte offset into the type_info Table. And if ttypeIndex is zero, it refers to a catch (...). * landingPad can be 0, this implies there is nothing to be done. * landingPad != 0 and actionEntry == 0 implies a cleanup needs to be done @landingPad. * A cleanup can also be found under landingPad != 0 and actionEntry != 0 in the Action Table with ttypeIndex == 0. */ namespace __cxxabiv1 { namespace { template <class AsType> uintptr_t readPointerHelper(const uint8_t*& p) { AsType value; memcpy(&value, p, sizeof(AsType)); p += sizeof(AsType); return static_cast<uintptr_t>(value); } } // end namespace extern "C" { // private API // Heavily borrowed from llvm/examples/ExceptionDemo/ExceptionDemo.cpp // DWARF Constants enum { DW_EH_PE_absptr = 0x00, DW_EH_PE_uleb128 = 0x01, DW_EH_PE_udata2 = 0x02, DW_EH_PE_udata4 = 0x03, DW_EH_PE_udata8 = 0x04, DW_EH_PE_sleb128 = 0x09, DW_EH_PE_sdata2 = 0x0A, DW_EH_PE_sdata4 = 0x0B, DW_EH_PE_sdata8 = 0x0C, DW_EH_PE_pcrel = 0x10, DW_EH_PE_textrel = 0x20, DW_EH_PE_datarel = 0x30, DW_EH_PE_funcrel = 0x40, DW_EH_PE_aligned = 0x50, DW_EH_PE_indirect = 0x80, DW_EH_PE_omit = 0xFF }; /// Read a uleb128 encoded value and advance pointer /// See Variable Length Data Appendix C in: /// @link http://dwarfstd.org/Dwarf4.pdf @unlink /// @param data reference variable holding memory pointer to decode from /// @returns decoded value static uintptr_t readULEB128(const uint8_t** data) { uintptr_t result = 0; uintptr_t shift = 0; unsigned char byte; const uint8_t *p = *data; do { byte = *p++; result |= static_cast<uintptr_t>(byte & 0x7F) << shift; shift += 7; } while (byte & 0x80); *data = p; return result; } /// Read a sleb128 encoded value and advance pointer /// See Variable Length Data Appendix C in: /// @link http://dwarfstd.org/Dwarf4.pdf @unlink /// @param data reference variable holding memory pointer to decode from /// @returns decoded value static intptr_t readSLEB128(const uint8_t** data) { uintptr_t result = 0; uintptr_t shift = 0; unsigned char byte; const uint8_t *p = *data; do { byte = *p++; result |= static_cast<uintptr_t>(byte & 0x7F) << shift; shift += 7; } while (byte & 0x80); *data = p; if ((byte & 0x40) && (shift < (sizeof(result) << 3))) result |= static_cast<uintptr_t>(~0) << shift; return static_cast<intptr_t>(result); } /// Read a pointer encoded value and advance pointer /// See Variable Length Data in: /// @link http://dwarfstd.org/Dwarf3.pdf @unlink /// @param data reference variable holding memory pointer to decode from /// @param encoding dwarf encoding type /// @returns decoded value static uintptr_t readEncodedPointer(const uint8_t** data, uint8_t encoding) { uintptr_t result = 0; if (encoding == DW_EH_PE_omit) return result; const uint8_t* p = *data; // first get value switch (encoding & 0x0F) { case DW_EH_PE_absptr: result = readPointerHelper<uintptr_t>(p); break; case DW_EH_PE_uleb128: result = readULEB128(&p); break; case DW_EH_PE_sleb128: result = static_cast<uintptr_t>(readSLEB128(&p)); break; case DW_EH_PE_udata2: result = readPointerHelper<uint16_t>(p); break; case DW_EH_PE_udata4: result = readPointerHelper<uint32_t>(p); break; case DW_EH_PE_udata8: result = readPointerHelper<uint64_t>(p); break; case DW_EH_PE_sdata2: result = readPointerHelper<int16_t>(p); break; case DW_EH_PE_sdata4: result = readPointerHelper<int32_t>(p); break; case DW_EH_PE_sdata8: result = readPointerHelper<int64_t>(p); break; default: // not supported abort(); break; } // then add relative offset switch (encoding & 0x70) { case DW_EH_PE_absptr: // do nothing break; case DW_EH_PE_pcrel: if (result) result += (uintptr_t)(*data); break; case DW_EH_PE_textrel: case DW_EH_PE_datarel: case DW_EH_PE_funcrel: case DW_EH_PE_aligned: default: // not supported abort(); break; } // then apply indirection if (result && (encoding & DW_EH_PE_indirect)) result = *((uintptr_t*)result); *data = p; return result; } static void call_terminate(bool native_exception, _Unwind_Exception* unwind_exception) { __cxa_begin_catch(unwind_exception); if (native_exception) { // Use the stored terminate_handler if possible __cxa_exception* exception_header = (__cxa_exception*)(unwind_exception+1) - 1; std::__terminate(exception_header->terminateHandler); } std::terminate(); } #if LIBCXXABI_ARM_EHABI static const void* read_target2_value(const void* ptr) { uintptr_t offset = *reinterpret_cast<const uintptr_t*>(ptr); if (!offset) return 0; // "ARM EABI provides a TARGET2 relocation to describe these typeinfo // pointers. The reason being it allows their precise semantics to be // deferred to the linker. For bare-metal they turn into absolute // relocations. For linux they turn into GOT-REL relocations." // https://gcc.gnu.org/ml/gcc-patches/2009-08/msg00264.html #if LIBCXXABI_BAREMETAL return reinterpret_cast<const void*>(reinterpret_cast<uintptr_t>(ptr) + offset); #else return *reinterpret_cast<const void **>(reinterpret_cast<uintptr_t>(ptr) + offset); #endif } static const __shim_type_info* get_shim_type_info(uint64_t ttypeIndex, const uint8_t* classInfo, uint8_t ttypeEncoding, bool native_exception, _Unwind_Exception* unwind_exception) { if (classInfo == 0) { // this should not happen. Indicates corrupted eh_table. call_terminate(native_exception, unwind_exception); } assert(ttypeEncoding == DW_EH_PE_absptr && "Unexpected TTypeEncoding"); (void)ttypeEncoding; const uint8_t* ttypePtr = classInfo - ttypeIndex * sizeof(uintptr_t); return reinterpret_cast<const __shim_type_info *>( read_target2_value(ttypePtr)); } #else // !LIBCXXABI_ARM_EHABI static const __shim_type_info* get_shim_type_info(uint64_t ttypeIndex, const uint8_t* classInfo, uint8_t ttypeEncoding, bool native_exception, _Unwind_Exception* unwind_exception) { if (classInfo == 0) { // this should not happen. Indicates corrupted eh_table. call_terminate(native_exception, unwind_exception); } switch (ttypeEncoding & 0x0F) { case DW_EH_PE_absptr: ttypeIndex *= sizeof(void*); break; case DW_EH_PE_udata2: case DW_EH_PE_sdata2: ttypeIndex *= 2; break; case DW_EH_PE_udata4: case DW_EH_PE_sdata4: ttypeIndex *= 4; break; case DW_EH_PE_udata8: case DW_EH_PE_sdata8: ttypeIndex *= 8; break; default: // this should not happen. Indicates corrupted eh_table. call_terminate(native_exception, unwind_exception); } classInfo -= ttypeIndex; return (const __shim_type_info*)readEncodedPointer(&classInfo, ttypeEncoding); } #endif // !LIBCXXABI_ARM_EHABI /* This is checking a thrown exception type, excpType, against a possibly empty list of catchType's which make up an exception spec. An exception spec acts like a catch handler, but in reverse. This "catch handler" will catch an excpType if and only if none of the catchType's in the list will catch a excpType. If any catchType in the list can catch an excpType, then this exception spec does not catch the excpType. */ #if LIBCXXABI_ARM_EHABI static bool exception_spec_can_catch(int64_t specIndex, const uint8_t* classInfo, uint8_t ttypeEncoding, const __shim_type_info* excpType, void* adjustedPtr, _Unwind_Exception* unwind_exception) { if (classInfo == 0) { // this should not happen. Indicates corrupted eh_table. call_terminate(false, unwind_exception); } assert(ttypeEncoding == DW_EH_PE_absptr && "Unexpected TTypeEncoding"); (void)ttypeEncoding; // specIndex is negative of 1-based byte offset into classInfo; specIndex = -specIndex; --specIndex; const void** temp = reinterpret_cast<const void**>( reinterpret_cast<uintptr_t>(classInfo) + static_cast<uintptr_t>(specIndex) * sizeof(uintptr_t)); // If any type in the spec list can catch excpType, return false, else return true // adjustments to adjustedPtr are ignored. while (true) { // ARM EHABI exception specification table (filter table) consists of // several pointers which will directly point to the type info object // (instead of ttypeIndex). The table will be terminated with 0. const void** ttypePtr = temp++; if (*ttypePtr == 0) break; // We can get the __shim_type_info simply by performing a // R_ARM_TARGET2 relocation, and cast the result to __shim_type_info. const __shim_type_info* catchType = static_cast<const __shim_type_info*>(read_target2_value(ttypePtr)); void* tempPtr = adjustedPtr; if (catchType->can_catch(excpType, tempPtr)) return false; } return true; } #else static bool exception_spec_can_catch(int64_t specIndex, const uint8_t* classInfo, uint8_t ttypeEncoding, const __shim_type_info* excpType, void* adjustedPtr, _Unwind_Exception* unwind_exception) { if (classInfo == 0) { // this should not happen. Indicates corrupted eh_table. call_terminate(false, unwind_exception); } // specIndex is negative of 1-based byte offset into classInfo; specIndex = -specIndex; --specIndex; const uint8_t* temp = classInfo + specIndex; // If any type in the spec list can catch excpType, return false, else return true // adjustments to adjustedPtr are ignored. while (true) { uint64_t ttypeIndex = readULEB128(&temp); if (ttypeIndex == 0) break; const __shim_type_info* catchType = get_shim_type_info(ttypeIndex, classInfo, ttypeEncoding, true, unwind_exception); void* tempPtr = adjustedPtr; if (catchType->can_catch(excpType, tempPtr)) return false; } return true; } #endif static void* get_thrown_object_ptr(_Unwind_Exception* unwind_exception) { // Even for foreign exceptions, the exception object is *probably* at unwind_exception + 1 // Regardless, this library is prohibited from touching a foreign exception void* adjustedPtr = unwind_exception + 1; if (unwind_exception->exception_class == kOurDependentExceptionClass) adjustedPtr = ((__cxa_dependent_exception*)adjustedPtr - 1)->primaryException; return adjustedPtr; } namespace { struct scan_results { int64_t ttypeIndex; // > 0 catch handler, < 0 exception spec handler, == 0 a cleanup const uint8_t* actionRecord; // Currently unused. Retained to ease future maintenance. const uint8_t* languageSpecificData; // Needed only for __cxa_call_unexpected uintptr_t landingPad; // null -> nothing found, else something found void* adjustedPtr; // Used in cxa_exception.cpp _Unwind_Reason_Code reason; // One of _URC_FATAL_PHASE1_ERROR, // _URC_FATAL_PHASE2_ERROR, // _URC_CONTINUE_UNWIND, // _URC_HANDLER_FOUND }; } // unnamed namespace static void set_registers(_Unwind_Exception* unwind_exception, _Unwind_Context* context, const scan_results& results) { _Unwind_SetGR(context, __builtin_eh_return_data_regno(0), reinterpret_cast<uintptr_t>(unwind_exception)); _Unwind_SetGR(context, __builtin_eh_return_data_regno(1), static_cast<uintptr_t>(results.ttypeIndex)); _Unwind_SetIP(context, results.landingPad); } /* There are 3 types of scans needed: 1. Scan for handler with native or foreign exception. If handler found, save state and return _URC_HANDLER_FOUND, else return _URC_CONTINUE_UNWIND. May also report an error on invalid input. May terminate for invalid exception table. _UA_SEARCH_PHASE 2. Scan for handler with foreign exception. Must return _URC_HANDLER_FOUND, or call terminate. _UA_CLEANUP_PHASE && _UA_HANDLER_FRAME && !native_exception 3. Scan for cleanups. If a handler is found and this isn't forced unwind, then terminate, otherwise ignore the handler and keep looking for cleanup. If a cleanup is found, return _URC_HANDLER_FOUND, else return _URC_CONTINUE_UNWIND. May also report an error on invalid input. May terminate for invalid exception table. _UA_CLEANUP_PHASE && !_UA_HANDLER_FRAME */ static void scan_eh_tab(scan_results &results, _Unwind_Action actions, bool native_exception, _Unwind_Exception *unwind_exception, _Unwind_Context *context) { // Initialize results to found nothing but an error results.ttypeIndex = 0; results.actionRecord = 0; results.languageSpecificData = 0; results.landingPad = 0; results.adjustedPtr = 0; results.reason = _URC_FATAL_PHASE1_ERROR; // Check for consistent actions if (actions & _UA_SEARCH_PHASE) { // Do Phase 1 if (actions & (_UA_CLEANUP_PHASE | _UA_HANDLER_FRAME | _UA_FORCE_UNWIND)) { // None of these flags should be set during Phase 1 // Client error results.reason = _URC_FATAL_PHASE1_ERROR; return; } } else if (actions & _UA_CLEANUP_PHASE) { if ((actions & _UA_HANDLER_FRAME) && (actions & _UA_FORCE_UNWIND)) { // _UA_HANDLER_FRAME should only be set if phase 1 found a handler. // If _UA_FORCE_UNWIND is set, phase 1 shouldn't have happened. // Client error results.reason = _URC_FATAL_PHASE2_ERROR; return; } } else // Neither _UA_SEARCH_PHASE nor _UA_CLEANUP_PHASE is set { // One of these should be set. // Client error results.reason = _URC_FATAL_PHASE1_ERROR; return; } // Start scan by getting exception table address const uint8_t *lsda = (const uint8_t *)_Unwind_GetLanguageSpecificData(context); if (lsda == 0) { // There is no exception table results.reason = _URC_CONTINUE_UNWIND; return; } results.languageSpecificData = lsda; // Get the current instruction pointer and offset it before next // instruction in the current frame which threw the exception. uintptr_t ip = _Unwind_GetIP(context) - 1; // Get beginning current frame's code (as defined by the // emitted dwarf code) uintptr_t funcStart = _Unwind_GetRegionStart(context); #ifdef __USING_SJLJ_EXCEPTIONS__ if (ip == uintptr_t(-1)) { // no action results.reason = _URC_CONTINUE_UNWIND; return; } else if (ip == 0) call_terminate(native_exception, unwind_exception); // ip is 1-based index into call site table #else // !__USING_SJLJ_EXCEPTIONS__ uintptr_t ipOffset = ip - funcStart; #endif // !defined(_USING_SLJL_EXCEPTIONS__) const uint8_t* classInfo = NULL; // Note: See JITDwarfEmitter::EmitExceptionTable(...) for corresponding // dwarf emission // Parse LSDA header. uint8_t lpStartEncoding = *lsda++; const uint8_t* lpStart = (const uint8_t*)readEncodedPointer(&lsda, lpStartEncoding); if (lpStart == 0) lpStart = (const uint8_t*)funcStart; uint8_t ttypeEncoding = *lsda++; if (ttypeEncoding != DW_EH_PE_omit) { // Calculate type info locations in emitted dwarf code which // were flagged by type info arguments to llvm.eh.selector // intrinsic uintptr_t classInfoOffset = readULEB128(&lsda); classInfo = lsda + classInfoOffset; } // Walk call-site table looking for range that // includes current PC. uint8_t callSiteEncoding = *lsda++; #ifdef __USING_SJLJ_EXCEPTIONS__ (void)callSiteEncoding; // When using SjLj exceptions, callSiteEncoding is never used #endif uint32_t callSiteTableLength = static_cast<uint32_t>(readULEB128(&lsda)); const uint8_t* callSiteTableStart = lsda; const uint8_t* callSiteTableEnd = callSiteTableStart + callSiteTableLength; const uint8_t* actionTableStart = callSiteTableEnd; const uint8_t* callSitePtr = callSiteTableStart; while (callSitePtr < callSiteTableEnd) { // There is one entry per call site. #ifndef __USING_SJLJ_EXCEPTIONS__ // The call sites are non-overlapping in [start, start+length) // The call sites are ordered in increasing value of start uintptr_t start = readEncodedPointer(&callSitePtr, callSiteEncoding); uintptr_t length = readEncodedPointer(&callSitePtr, callSiteEncoding); uintptr_t landingPad = readEncodedPointer(&callSitePtr, callSiteEncoding); uintptr_t actionEntry = readULEB128(&callSitePtr); if ((start <= ipOffset) && (ipOffset < (start + length))) #else // __USING_SJLJ_EXCEPTIONS__ // ip is 1-based index into this table uintptr_t landingPad = readULEB128(&callSitePtr); uintptr_t actionEntry = readULEB128(&callSitePtr); if (--ip == 0) #endif // __USING_SJLJ_EXCEPTIONS__ { // Found the call site containing ip. #ifndef __USING_SJLJ_EXCEPTIONS__ if (landingPad == 0) { // No handler here results.reason = _URC_CONTINUE_UNWIND; return; } landingPad = (uintptr_t)lpStart + landingPad; #else // __USING_SJLJ_EXCEPTIONS__ ++landingPad; #endif // __USING_SJLJ_EXCEPTIONS__ if (actionEntry == 0) { // Found a cleanup // If this is a type 1 or type 2 search, there are no handlers // If this is a type 3 search, you want to install the cleanup. if ((actions & _UA_CLEANUP_PHASE) && !(actions & _UA_HANDLER_FRAME)) { results.ttypeIndex = 0; // Redundant but clarifying results.landingPad = landingPad; results.reason = _URC_HANDLER_FOUND; return; } // No handler here results.reason = _URC_CONTINUE_UNWIND; return; } // Convert 1-based byte offset into const uint8_t* action = actionTableStart + (actionEntry - 1); // Scan action entries until you find a matching handler, cleanup, or the end of action list while (true) { const uint8_t* actionRecord = action; int64_t ttypeIndex = readSLEB128(&action); if (ttypeIndex > 0) { // Found a catch, does it actually catch? // First check for catch (...) const __shim_type_info* catchType = get_shim_type_info(static_cast<uint64_t>(ttypeIndex), classInfo, ttypeEncoding, native_exception, unwind_exception); if (catchType == 0) { // Found catch (...) catches everything, including foreign exceptions // If this is a type 1 search save state and return _URC_HANDLER_FOUND // If this is a type 2 search save state and return _URC_HANDLER_FOUND // If this is a type 3 search !_UA_FORCE_UNWIND, we should have found this in phase 1! // If this is a type 3 search _UA_FORCE_UNWIND, ignore handler and continue scan if ((actions & _UA_SEARCH_PHASE) || (actions & _UA_HANDLER_FRAME)) { // Save state and return _URC_HANDLER_FOUND results.ttypeIndex = ttypeIndex; results.actionRecord = actionRecord; results.landingPad = landingPad; results.adjustedPtr = get_thrown_object_ptr(unwind_exception); results.reason = _URC_HANDLER_FOUND; return; } else if (!(actions & _UA_FORCE_UNWIND)) { // It looks like the exception table has changed // on us. Likely stack corruption! call_terminate(native_exception, unwind_exception); } } // Else this is a catch (T) clause and will never // catch a foreign exception else if (native_exception) { __cxa_exception* exception_header = (__cxa_exception*)(unwind_exception+1) - 1; void* adjustedPtr = get_thrown_object_ptr(unwind_exception); const __shim_type_info* excpType = static_cast<const __shim_type_info*>(exception_header->exceptionType); if (adjustedPtr == 0 || excpType == 0) { // Something very bad happened call_terminate(native_exception, unwind_exception); } if (catchType->can_catch(excpType, adjustedPtr)) { // Found a matching handler // If this is a type 1 search save state and return _URC_HANDLER_FOUND // If this is a type 3 search and !_UA_FORCE_UNWIND, we should have found this in phase 1! // If this is a type 3 search and _UA_FORCE_UNWIND, ignore handler and continue scan if (actions & _UA_SEARCH_PHASE) { // Save state and return _URC_HANDLER_FOUND results.ttypeIndex = ttypeIndex; results.actionRecord = actionRecord; results.landingPad = landingPad; results.adjustedPtr = adjustedPtr; results.reason = _URC_HANDLER_FOUND; return; } else if (!(actions & _UA_FORCE_UNWIND)) { // It looks like the exception table has changed // on us. Likely stack corruption! call_terminate(native_exception, unwind_exception); } } } // Scan next action ... } else if (ttypeIndex < 0) { // Found an exception spec. If this is a foreign exception, // it is always caught. if (native_exception) { // Does the exception spec catch this native exception? __cxa_exception* exception_header = (__cxa_exception*)(unwind_exception+1) - 1; void* adjustedPtr = get_thrown_object_ptr(unwind_exception); const __shim_type_info* excpType = static_cast<const __shim_type_info*>(exception_header->exceptionType); if (adjustedPtr == 0 || excpType == 0) { // Something very bad happened call_terminate(native_exception, unwind_exception); } if (exception_spec_can_catch(ttypeIndex, classInfo, ttypeEncoding, excpType, adjustedPtr, unwind_exception)) { // native exception caught by exception spec // If this is a type 1 search, save state and return _URC_HANDLER_FOUND // If this is a type 3 search !_UA_FORCE_UNWIND, we should have found this in phase 1! // If this is a type 3 search _UA_FORCE_UNWIND, ignore handler and continue scan if (actions & _UA_SEARCH_PHASE) { // Save state and return _URC_HANDLER_FOUND results.ttypeIndex = ttypeIndex; results.actionRecord = actionRecord; results.landingPad = landingPad; results.adjustedPtr = adjustedPtr; results.reason = _URC_HANDLER_FOUND; return; } else if (!(actions & _UA_FORCE_UNWIND)) { // It looks like the exception table has changed // on us. Likely stack corruption! call_terminate(native_exception, unwind_exception); } } } else { // foreign exception caught by exception spec // If this is a type 1 search, save state and return _URC_HANDLER_FOUND // If this is a type 2 search, save state and return _URC_HANDLER_FOUND // If this is a type 3 search !_UA_FORCE_UNWIND, we should have found this in phase 1! // If this is a type 3 search _UA_FORCE_UNWIND, ignore handler and continue scan if ((actions & _UA_SEARCH_PHASE) || (actions & _UA_HANDLER_FRAME)) { // Save state and return _URC_HANDLER_FOUND results.ttypeIndex = ttypeIndex; results.actionRecord = actionRecord; results.landingPad = landingPad; results.adjustedPtr = get_thrown_object_ptr(unwind_exception); results.reason = _URC_HANDLER_FOUND; return; } else if (!(actions & _UA_FORCE_UNWIND)) { // It looks like the exception table has changed // on us. Likely stack corruption! call_terminate(native_exception, unwind_exception); } } // Scan next action ... } else // ttypeIndex == 0 { // Found a cleanup // If this is a type 1 search, ignore it and continue scan // If this is a type 2 search, ignore it and continue scan // If this is a type 3 search, save state and return _URC_HANDLER_FOUND if ((actions & _UA_CLEANUP_PHASE) && !(actions & _UA_HANDLER_FRAME)) { // Save state and return _URC_HANDLER_FOUND results.ttypeIndex = ttypeIndex; results.actionRecord = actionRecord; results.landingPad = landingPad; results.adjustedPtr = get_thrown_object_ptr(unwind_exception); results.reason = _URC_HANDLER_FOUND; return; } } const uint8_t* temp = action; int64_t actionOffset = readSLEB128(&temp); if (actionOffset == 0) { // End of action list, no matching handler or cleanup found results.reason = _URC_CONTINUE_UNWIND; return; } // Go to next action action += actionOffset; } // there is no break out of this loop, only return } #ifndef __USING_SJLJ_EXCEPTIONS__ else if (ipOffset < start) { // There is no call site for this ip // Something bad has happened. We should never get here. // Possible stack corruption. call_terminate(native_exception, unwind_exception); } #endif // !__USING_SJLJ_EXCEPTIONS__ } // there might be some tricky cases which break out of this loop // It is possible that no eh table entry specify how to handle // this exception. By spec, terminate it immediately. call_terminate(native_exception, unwind_exception); } // public API /* The personality function branches on actions like so: _UA_SEARCH_PHASE If _UA_CLEANUP_PHASE or _UA_HANDLER_FRAME or _UA_FORCE_UNWIND there's an error from above, return _URC_FATAL_PHASE1_ERROR. Scan for anything that could stop unwinding: 1. A catch clause that will catch this exception (will never catch foreign). 2. A catch (...) (will always catch foreign). 3. An exception spec that will catch this exception (will always catch foreign). If a handler is found If not foreign Save state in header return _URC_HANDLER_FOUND Else a handler not found return _URC_CONTINUE_UNWIND _UA_CLEANUP_PHASE If _UA_HANDLER_FRAME If _UA_FORCE_UNWIND How did this happen? return _URC_FATAL_PHASE2_ERROR If foreign Do _UA_SEARCH_PHASE to recover state else Recover state from header Transfer control to landing pad. return _URC_INSTALL_CONTEXT Else This branch handles both normal C++ non-catching handlers (cleanups) and forced unwinding. Scan for anything that can not stop unwinding: 1. A cleanup. If a cleanup is found transfer control to it. return _URC_INSTALL_CONTEXT Else a cleanup is not found: return _URC_CONTINUE_UNWIND */ #if !LIBCXXABI_ARM_EHABI _Unwind_Reason_Code #ifdef __USING_SJLJ_EXCEPTIONS__ __gxx_personality_sj0 #else __gxx_personality_v0 #endif (int version, _Unwind_Action actions, uint64_t exceptionClass, _Unwind_Exception* unwind_exception, _Unwind_Context* context) { if (version != 1 || unwind_exception == 0 || context == 0) return _URC_FATAL_PHASE1_ERROR; bool native_exception = (exceptionClass & get_vendor_and_language) == (kOurExceptionClass & get_vendor_and_language); scan_results results; if (actions & _UA_SEARCH_PHASE) { // Phase 1 search: All we're looking for in phase 1 is a handler that // halts unwinding scan_eh_tab(results, actions, native_exception, unwind_exception, context); if (results.reason == _URC_HANDLER_FOUND) { // Found one. Can we cache the results somewhere to optimize phase 2? if (native_exception) { __cxa_exception* exception_header = (__cxa_exception*)(unwind_exception+1) - 1; exception_header->handlerSwitchValue = static_cast<int>(results.ttypeIndex); exception_header->actionRecord = results.actionRecord; exception_header->languageSpecificData = results.languageSpecificData; exception_header->catchTemp = reinterpret_cast<void*>(results.landingPad); exception_header->adjustedPtr = results.adjustedPtr; } return _URC_HANDLER_FOUND; } // Did not find a catching-handler. Return the results of the scan // (normally _URC_CONTINUE_UNWIND, but could have been _URC_FATAL_PHASE1_ERROR // if we were called improperly). return results.reason; } if (actions & _UA_CLEANUP_PHASE) { // Phase 2 search: // Did we find a catching handler in phase 1? if (actions & _UA_HANDLER_FRAME) { // Yes, phase 1 said we have a catching handler here. // Did we cache the results of the scan? if (native_exception) { // Yes, reload the results from the cache. __cxa_exception* exception_header = (__cxa_exception*)(unwind_exception+1) - 1; results.ttypeIndex = exception_header->handlerSwitchValue; results.actionRecord = exception_header->actionRecord; results.languageSpecificData = exception_header->languageSpecificData; results.landingPad = reinterpret_cast<uintptr_t>(exception_header->catchTemp); results.adjustedPtr = exception_header->adjustedPtr; } else { // No, do the scan again to reload the results. scan_eh_tab(results, actions, native_exception, unwind_exception, context); // Phase 1 told us we would find a handler. Now in Phase 2 we // didn't find a handler. The eh table should not be changing! if (results.reason != _URC_HANDLER_FOUND) call_terminate(native_exception, unwind_exception); } // Jump to the handler set_registers(unwind_exception, context, results); return _URC_INSTALL_CONTEXT; } // Either we didn't do a phase 1 search (due to forced unwinding), or // phase 1 reported no catching-handlers. // Search for a (non-catching) cleanup scan_eh_tab(results, actions, native_exception, unwind_exception, context); if (results.reason == _URC_HANDLER_FOUND) { // Found a non-catching handler. Jump to it: set_registers(unwind_exception, context, results); return _URC_INSTALL_CONTEXT; } // Did not find a cleanup. Return the results of the scan // (normally _URC_CONTINUE_UNWIND, but could have been _URC_FATAL_PHASE2_ERROR // if we were called improperly). return results.reason; } // We were called improperly: neither a phase 1 or phase 2 search return _URC_FATAL_PHASE1_ERROR; } #else extern "C" _Unwind_Reason_Code __gnu_unwind_frame(_Unwind_Exception*, _Unwind_Context*); // Helper function to unwind one frame. // ARM EHABI 7.3 and 7.4: If the personality function returns _URC_CONTINUE_UNWIND, the // personality routine should update the virtual register set (VRS) according to the // corresponding frame unwinding instructions (ARM EHABI 9.3.) static _Unwind_Reason_Code continue_unwind(_Unwind_Exception* unwind_exception, _Unwind_Context* context) { if (__gnu_unwind_frame(unwind_exception, context) != _URC_OK) return _URC_FAILURE; return _URC_CONTINUE_UNWIND; } // ARM register names #if !LIBCXXABI_USE_LLVM_UNWINDER static const uint32_t REG_UCB = 12; // Register to save _Unwind_Control_Block #endif static const uint32_t REG_SP = 13; static void save_results_to_barrier_cache(_Unwind_Exception* unwind_exception, const scan_results& results) { unwind_exception->barrier_cache.bitpattern[0] = (uint32_t)results.adjustedPtr; unwind_exception->barrier_cache.bitpattern[1] = (uint32_t)results.actionRecord; unwind_exception->barrier_cache.bitpattern[2] = (uint32_t)results.languageSpecificData; unwind_exception->barrier_cache.bitpattern[3] = (uint32_t)results.landingPad; unwind_exception->barrier_cache.bitpattern[4] = (uint32_t)results.ttypeIndex; } static void load_results_from_barrier_cache(scan_results& results, const _Unwind_Exception* unwind_exception) { results.adjustedPtr = (void*)unwind_exception->barrier_cache.bitpattern[0]; results.actionRecord = (const uint8_t*)unwind_exception->barrier_cache.bitpattern[1]; results.languageSpecificData = (const uint8_t*)unwind_exception->barrier_cache.bitpattern[2]; results.landingPad = (uintptr_t)unwind_exception->barrier_cache.bitpattern[3]; results.ttypeIndex = (int64_t)(int32_t)unwind_exception->barrier_cache.bitpattern[4]; } extern "C" _Unwind_Reason_Code __gxx_personality_v0(_Unwind_State state, _Unwind_Exception* unwind_exception, _Unwind_Context* context) { if (unwind_exception == 0 || context == 0) return _URC_FATAL_PHASE1_ERROR; bool native_exception = (unwind_exception->exception_class & get_vendor_and_language) == (kOurExceptionClass & get_vendor_and_language); #if !LIBCXXABI_USE_LLVM_UNWINDER // Copy the address of _Unwind_Control_Block to r12 so that // _Unwind_GetLanguageSpecificData() and _Unwind_GetRegionStart() can // return correct address. _Unwind_SetGR(context, REG_UCB, reinterpret_cast<uint32_t>(unwind_exception)); #endif // Check the undocumented force unwinding behavior bool is_force_unwinding = state & _US_FORCE_UNWIND; state &= ~_US_FORCE_UNWIND; scan_results results; switch (state) { case _US_VIRTUAL_UNWIND_FRAME: if (is_force_unwinding) return continue_unwind(unwind_exception, context); // Phase 1 search: All we're looking for in phase 1 is a handler that halts unwinding scan_eh_tab(results, _UA_SEARCH_PHASE, native_exception, unwind_exception, context); if (results.reason == _URC_HANDLER_FOUND) { unwind_exception->barrier_cache.sp = _Unwind_GetGR(context, REG_SP); if (native_exception) save_results_to_barrier_cache(unwind_exception, results); return _URC_HANDLER_FOUND; } // Did not find the catch handler if (results.reason == _URC_CONTINUE_UNWIND) return continue_unwind(unwind_exception, context); return results.reason; case _US_UNWIND_FRAME_STARTING: // TODO: Support force unwinding in the phase 2 search. // NOTE: In order to call the cleanup functions, _Unwind_ForcedUnwind() // will call this personality function with (_US_FORCE_UNWIND | // _US_UNWIND_FRAME_STARTING). // Phase 2 search if (unwind_exception->barrier_cache.sp == _Unwind_GetGR(context, REG_SP)) { // Found a catching handler in phase 1 if (native_exception) { // Load the result from the native exception barrier cache. load_results_from_barrier_cache(results, unwind_exception); results.reason = _URC_HANDLER_FOUND; } else { // Search for the catching handler again for the foreign exception. scan_eh_tab(results, static_cast<_Unwind_Action>(_UA_CLEANUP_PHASE | _UA_HANDLER_FRAME), native_exception, unwind_exception, context); if (results.reason != _URC_HANDLER_FOUND) // phase1 search should guarantee to find one call_terminate(native_exception, unwind_exception); } // Install the context for the catching handler set_registers(unwind_exception, context, results); return _URC_INSTALL_CONTEXT; } // Either we didn't do a phase 1 search (due to forced unwinding), or // phase 1 reported no catching-handlers. // Search for a (non-catching) cleanup scan_eh_tab(results, _UA_CLEANUP_PHASE, native_exception, unwind_exception, context); if (results.reason == _URC_HANDLER_FOUND) { // Found a non-catching handler // ARM EHABI 8.4.2: Before we can jump to the cleanup handler, we have to setup some // internal data structures, so that __cxa_end_cleanup() can get unwind_exception from // __cxa_get_globals(). __cxa_begin_cleanup(unwind_exception); // Install the context for the cleanup handler set_registers(unwind_exception, context, results); return _URC_INSTALL_CONTEXT; } // Did not find any handler if (results.reason == _URC_CONTINUE_UNWIND) return continue_unwind(unwind_exception, context); return results.reason; case _US_UNWIND_FRAME_RESUME: return continue_unwind(unwind_exception, context); } // We were called improperly: neither a phase 1 or phase 2 search return _URC_FATAL_PHASE1_ERROR; } #endif __attribute__((noreturn)) void __cxa_call_unexpected(void* arg) { _Unwind_Exception* unwind_exception = static_cast<_Unwind_Exception*>(arg); if (unwind_exception == 0) call_terminate(false, unwind_exception); __cxa_begin_catch(unwind_exception); bool native_old_exception = (unwind_exception->exception_class & get_vendor_and_language) == (kOurExceptionClass & get_vendor_and_language); std::unexpected_handler u_handler; std::terminate_handler t_handler; __cxa_exception* old_exception_header = 0; int64_t ttypeIndex; const uint8_t* lsda; if (native_old_exception) { old_exception_header = (__cxa_exception*)(unwind_exception+1) - 1; t_handler = old_exception_header->terminateHandler; u_handler = old_exception_header->unexpectedHandler; // If std::__unexpected(u_handler) rethrows the same exception, // these values get overwritten by the rethrow. So save them now: #if LIBCXXABI_ARM_EHABI ttypeIndex = (int64_t)(int32_t)unwind_exception->barrier_cache.bitpattern[4]; lsda = (const uint8_t*)unwind_exception->barrier_cache.bitpattern[2]; #else ttypeIndex = old_exception_header->handlerSwitchValue; lsda = old_exception_header->languageSpecificData; #endif } else { t_handler = std::get_terminate(); u_handler = std::get_unexpected(); } try { std::__unexpected(u_handler); } catch (...) { // If the old exception is foreign, then all we can do is terminate. // We have no way to recover the needed old exception spec. There's // no way to pass that information here. And the personality routine // can't call us directly and do anything but terminate() if we throw // from here. if (native_old_exception) { // Have: // old_exception_header->languageSpecificData // old_exception_header->actionRecord // Need // const uint8_t* classInfo // uint8_t ttypeEncoding uint8_t lpStartEncoding = *lsda++; const uint8_t* lpStart = (const uint8_t*)readEncodedPointer(&lsda, lpStartEncoding); (void)lpStart; // purposefully unused. Just needed to increment lsda. uint8_t ttypeEncoding = *lsda++; if (ttypeEncoding == DW_EH_PE_omit) std::__terminate(t_handler); uintptr_t classInfoOffset = readULEB128(&lsda); const uint8_t* classInfo = lsda + classInfoOffset; // Is this new exception catchable by the exception spec at ttypeIndex? // The answer is obviously yes if the new and old exceptions are the same exception // If no // throw; __cxa_eh_globals* globals = __cxa_get_globals_fast(); __cxa_exception* new_exception_header = globals->caughtExceptions; if (new_exception_header == 0) // This shouldn't be able to happen! std::__terminate(t_handler); bool native_new_exception = (new_exception_header->unwindHeader.exception_class & get_vendor_and_language) == (kOurExceptionClass & get_vendor_and_language); void* adjustedPtr; if (native_new_exception && (new_exception_header != old_exception_header)) { const __shim_type_info* excpType = static_cast<const __shim_type_info*>(new_exception_header->exceptionType); adjustedPtr = new_exception_header->unwindHeader.exception_class == kOurDependentExceptionClass ? ((__cxa_dependent_exception*)new_exception_header)->primaryException : new_exception_header + 1; if (!exception_spec_can_catch(ttypeIndex, classInfo, ttypeEncoding, excpType, adjustedPtr, unwind_exception)) { // We need to __cxa_end_catch, but for the old exception, // not the new one. This is a little tricky ... // Disguise new_exception_header as a rethrown exception, but // don't actually rethrow it. This means you can temporarily // end the catch clause enclosing new_exception_header without // __cxa_end_catch destroying new_exception_header. new_exception_header->handlerCount = -new_exception_header->handlerCount; globals->uncaughtExceptions += 1; // Call __cxa_end_catch for new_exception_header __cxa_end_catch(); // Call __cxa_end_catch for old_exception_header __cxa_end_catch(); // Renter this catch clause with new_exception_header __cxa_begin_catch(&new_exception_header->unwindHeader); // Rethrow new_exception_header throw; } } // Will a std::bad_exception be catchable by the exception spec at // ttypeIndex? // If no // throw std::bad_exception(); const __shim_type_info* excpType = static_cast<const __shim_type_info*>(&typeid(std::bad_exception)); std::bad_exception be; adjustedPtr = &be; if (!exception_spec_can_catch(ttypeIndex, classInfo, ttypeEncoding, excpType, adjustedPtr, unwind_exception)) { // We need to __cxa_end_catch for both the old exception and the // new exception. Technically we should do it in that order. // But it is expedient to do it in the opposite order: // Call __cxa_end_catch for new_exception_header __cxa_end_catch(); // Throw std::bad_exception will __cxa_end_catch for // old_exception_header throw be; } } } std::__terminate(t_handler); } } // extern "C" } // __cxxabiv1