//===--------------------------- Unwind-EHABI.cpp -------------------------===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // // // Implements ARM zero-cost C++ exceptions // //===----------------------------------------------------------------------===// #include "Unwind-EHABI.h" #if _LIBUNWIND_ARM_EHABI #include <stdbool.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <type_traits> #include "config.h" #include "libunwind.h" #include "libunwind_ext.h" #include "unwind.h" namespace { // Strange order: take words in order, but inside word, take from most to least // signinficant byte. uint8_t getByte(const uint32_t* data, size_t offset) { const uint8_t* byteData = reinterpret_cast<const uint8_t*>(data); return byteData[(offset & ~(size_t)0x03) + (3 - (offset & (size_t)0x03))]; } const char* getNextWord(const char* data, uint32_t* out) { *out = *reinterpret_cast<const uint32_t*>(data); return data + 4; } const char* getNextNibble(const char* data, uint32_t* out) { *out = *reinterpret_cast<const uint16_t*>(data); return data + 2; } struct Descriptor { // See # 9.2 typedef enum { SU16 = 0, // Short descriptor, 16-bit entries LU16 = 1, // Long descriptor, 16-bit entries LU32 = 3, // Long descriptor, 32-bit entries RESERVED0 = 4, RESERVED1 = 5, RESERVED2 = 6, RESERVED3 = 7, RESERVED4 = 8, RESERVED5 = 9, RESERVED6 = 10, RESERVED7 = 11, RESERVED8 = 12, RESERVED9 = 13, RESERVED10 = 14, RESERVED11 = 15 } Format; // See # 9.2 typedef enum { CLEANUP = 0x0, FUNC = 0x1, CATCH = 0x2, INVALID = 0x4 } Kind; }; _Unwind_Reason_Code ProcessDescriptors( _Unwind_State state, _Unwind_Control_Block* ucbp, struct _Unwind_Context* context, Descriptor::Format format, const char* descriptorStart, uint32_t flags) { // EHT is inlined in the index using compact form. No descriptors. #5 if (flags & 0x1) return _URC_CONTINUE_UNWIND; // TODO: We should check the state here, and determine whether we need to // perform phase1 or phase2 unwinding. (void)state; const char* descriptor = descriptorStart; uint32_t descriptorWord; getNextWord(descriptor, &descriptorWord); while (descriptorWord) { // Read descriptor based on # 9.2. uint32_t length; uint32_t offset; switch (format) { case Descriptor::LU32: descriptor = getNextWord(descriptor, &length); descriptor = getNextWord(descriptor, &offset); case Descriptor::LU16: descriptor = getNextNibble(descriptor, &length); descriptor = getNextNibble(descriptor, &offset); default: assert(false); return _URC_FAILURE; } // See # 9.2 table for decoding the kind of descriptor. It's a 2-bit value. Descriptor::Kind kind = static_cast<Descriptor::Kind>((length & 0x1) | ((offset & 0x1) << 1)); // Clear off flag from last bit. length &= ~1u; offset &= ~1u; uintptr_t scopeStart = ucbp->pr_cache.fnstart + offset; uintptr_t scopeEnd = scopeStart + length; uintptr_t pc = _Unwind_GetIP(context); bool isInScope = (scopeStart <= pc) && (pc < scopeEnd); switch (kind) { case Descriptor::CLEANUP: { // TODO(ajwong): Handle cleanup descriptors. break; } case Descriptor::FUNC: { // TODO(ajwong): Handle function descriptors. break; } case Descriptor::CATCH: { // Catch descriptors require gobbling one more word. uint32_t landing_pad; descriptor = getNextWord(descriptor, &landing_pad); if (isInScope) { // TODO(ajwong): This is only phase1 compatible logic. Implement // phase2. landing_pad = signExtendPrel31(landing_pad & ~0x80000000); if (landing_pad == 0xffffffff) { return _URC_HANDLER_FOUND; } else if (landing_pad == 0xfffffffe) { return _URC_FAILURE; } else { /* bool is_reference_type = landing_pad & 0x80000000; void* matched_object; if (__cxxabiv1::__cxa_type_match( ucbp, reinterpret_cast<const std::type_info *>(landing_pad), is_reference_type, &matched_object) != __cxxabiv1::ctm_failed) return _URC_HANDLER_FOUND; */ _LIBUNWIND_ABORT("Type matching not implemented"); } } break; } default: _LIBUNWIND_ABORT("Invalid descriptor kind found."); } getNextWord(descriptor, &descriptorWord); } return _URC_CONTINUE_UNWIND; } static _Unwind_Reason_Code unwindOneFrame(_Unwind_State state, _Unwind_Control_Block* ucbp, struct _Unwind_Context* context) { // Read the compact model EHT entry's header # 6.3 const uint32_t* unwindingData = ucbp->pr_cache.ehtp; assert((*unwindingData & 0xf0000000) == 0x80000000 && "Must be a compact entry"); Descriptor::Format format = static_cast<Descriptor::Format>((*unwindingData & 0x0f000000) >> 24); const char *lsda = reinterpret_cast<const char *>(_Unwind_GetLanguageSpecificData(context)); // Handle descriptors before unwinding so they are processed in the context // of the correct stack frame. _Unwind_Reason_Code result = ProcessDescriptors(state, ucbp, context, format, lsda, ucbp->pr_cache.additional); if (result != _URC_CONTINUE_UNWIND) return result; if (unw_step(reinterpret_cast<unw_cursor_t*>(context)) != UNW_STEP_SUCCESS) return _URC_FAILURE; return _URC_CONTINUE_UNWIND; } // Generates mask discriminator for _Unwind_VRS_Pop, e.g. for _UVRSC_CORE / // _UVRSD_UINT32. uint32_t RegisterMask(uint8_t start, uint8_t count_minus_one) { return ((1U << (count_minus_one + 1)) - 1) << start; } // Generates mask discriminator for _Unwind_VRS_Pop, e.g. for _UVRSC_VFP / // _UVRSD_DOUBLE. uint32_t RegisterRange(uint8_t start, uint8_t count_minus_one) { return ((uint32_t)start << 16) | ((uint32_t)count_minus_one + 1); } } // end anonymous namespace /** * Decodes an EHT entry. * * @param data Pointer to EHT. * @param[out] off Offset from return value (in bytes) to begin interpretation. * @param[out] len Number of bytes in unwind code. * @return Pointer to beginning of unwind code. */ extern "C" const uint32_t* decode_eht_entry(const uint32_t* data, size_t* off, size_t* len) { if ((*data & 0x80000000) == 0) { // 6.2: Generic Model // // EHT entry is a prel31 pointing to the PR, followed by data understood // only by the personality routine. Fortunately, all existing assembler // implementations, including GNU assembler, LLVM integrated assembler, // and ARM assembler, assume that the unwind opcodes come after the // personality rountine address. *off = 1; // First byte is size data. *len = (((data[1] >> 24) & 0xff) + 1) * 4; data++; // Skip the first word, which is the prel31 offset. } else { // 6.3: ARM Compact Model // // EHT entries here correspond to the __aeabi_unwind_cpp_pr[012] PRs indeded // by format: Descriptor::Format format = static_cast<Descriptor::Format>((*data & 0x0f000000) >> 24); switch (format) { case Descriptor::SU16: *len = 4; *off = 1; break; case Descriptor::LU16: case Descriptor::LU32: *len = 4 + 4 * ((*data & 0x00ff0000) >> 16); *off = 2; break; default: return nullptr; } } return data; } _Unwind_Reason_Code _Unwind_VRS_Interpret( _Unwind_Context* context, const uint32_t* data, size_t offset, size_t len) { bool wrotePC = false; bool finish = false; while (offset < len && !finish) { uint8_t byte = getByte(data, offset++); if ((byte & 0x80) == 0) { uint32_t sp; _Unwind_VRS_Get(context, _UVRSC_CORE, UNW_ARM_SP, _UVRSD_UINT32, &sp); if (byte & 0x40) sp -= (((uint32_t)byte & 0x3f) << 2) + 4; else sp += ((uint32_t)byte << 2) + 4; _Unwind_VRS_Set(context, _UVRSC_CORE, UNW_ARM_SP, _UVRSD_UINT32, &sp); } else { switch (byte & 0xf0) { case 0x80: { if (offset >= len) return _URC_FAILURE; uint32_t registers = (((uint32_t)byte & 0x0f) << 12) | (((uint32_t)getByte(data, offset++)) << 4); if (!registers) return _URC_FAILURE; if (registers & (1 << 15)) wrotePC = true; _Unwind_VRS_Pop(context, _UVRSC_CORE, registers, _UVRSD_UINT32); break; } case 0x90: { uint8_t reg = byte & 0x0f; if (reg == 13 || reg == 15) return _URC_FAILURE; uint32_t sp; _Unwind_VRS_Get(context, _UVRSC_CORE, UNW_ARM_R0 + reg, _UVRSD_UINT32, &sp); _Unwind_VRS_Set(context, _UVRSC_CORE, UNW_ARM_SP, _UVRSD_UINT32, &sp); break; } case 0xa0: { uint32_t registers = RegisterMask(4, byte & 0x07); if (byte & 0x08) registers |= 1 << 14; _Unwind_VRS_Pop(context, _UVRSC_CORE, registers, _UVRSD_UINT32); break; } case 0xb0: { switch (byte) { case 0xb0: finish = true; break; case 0xb1: { if (offset >= len) return _URC_FAILURE; uint8_t registers = getByte(data, offset++); if (registers & 0xf0 || !registers) return _URC_FAILURE; _Unwind_VRS_Pop(context, _UVRSC_CORE, registers, _UVRSD_UINT32); break; } case 0xb2: { uint32_t addend = 0; uint32_t shift = 0; // This decodes a uleb128 value. while (true) { if (offset >= len) return _URC_FAILURE; uint32_t v = getByte(data, offset++); addend |= (v & 0x7f) << shift; if ((v & 0x80) == 0) break; shift += 7; } uint32_t sp; _Unwind_VRS_Get(context, _UVRSC_CORE, UNW_ARM_SP, _UVRSD_UINT32, &sp); sp += 0x204 + (addend << 2); _Unwind_VRS_Set(context, _UVRSC_CORE, UNW_ARM_SP, _UVRSD_UINT32, &sp); break; } case 0xb3: { uint8_t v = getByte(data, offset++); _Unwind_VRS_Pop(context, _UVRSC_VFP, RegisterRange(static_cast<uint8_t>(v >> 4), v & 0x0f), _UVRSD_VFPX); break; } case 0xb4: case 0xb5: case 0xb6: case 0xb7: return _URC_FAILURE; default: _Unwind_VRS_Pop(context, _UVRSC_VFP, RegisterRange(8, byte & 0x07), _UVRSD_VFPX); break; } break; } case 0xc0: { switch (byte) { case 0xc0: case 0xc1: case 0xc2: case 0xc3: case 0xc4: case 0xc5: _Unwind_VRS_Pop(context, _UVRSC_WMMXD, RegisterRange(10, byte & 0x7), _UVRSD_DOUBLE); break; case 0xc6: { uint8_t v = getByte(data, offset++); uint8_t start = static_cast<uint8_t>(v >> 4); uint8_t count_minus_one = v & 0xf; if (start + count_minus_one >= 16) return _URC_FAILURE; _Unwind_VRS_Pop(context, _UVRSC_WMMXD, RegisterRange(start, count_minus_one), _UVRSD_DOUBLE); break; } case 0xc7: { uint8_t v = getByte(data, offset++); if (!v || v & 0xf0) return _URC_FAILURE; _Unwind_VRS_Pop(context, _UVRSC_WMMXC, v, _UVRSD_DOUBLE); break; } case 0xc8: case 0xc9: { uint8_t v = getByte(data, offset++); uint8_t start = static_cast<uint8_t>(((byte == 0xc8) ? 16 : 0) + (v >> 4)); uint8_t count_minus_one = v & 0xf; if (start + count_minus_one >= 32) return _URC_FAILURE; _Unwind_VRS_Pop(context, _UVRSC_VFP, RegisterRange(start, count_minus_one), _UVRSD_DOUBLE); break; } default: return _URC_FAILURE; } break; } case 0xd0: { if (byte & 0x08) return _URC_FAILURE; _Unwind_VRS_Pop(context, _UVRSC_VFP, RegisterRange(8, byte & 0x7), _UVRSD_DOUBLE); break; } default: return _URC_FAILURE; } } } if (!wrotePC) { uint32_t lr; _Unwind_VRS_Get(context, _UVRSC_CORE, UNW_ARM_LR, _UVRSD_UINT32, &lr); _Unwind_VRS_Set(context, _UVRSC_CORE, UNW_ARM_IP, _UVRSD_UINT32, &lr); } return _URC_CONTINUE_UNWIND; } extern "C" _Unwind_Reason_Code __aeabi_unwind_cpp_pr0( _Unwind_State state, _Unwind_Control_Block *ucbp, _Unwind_Context *context) { return unwindOneFrame(state, ucbp, context); } extern "C" _Unwind_Reason_Code __aeabi_unwind_cpp_pr1( _Unwind_State state, _Unwind_Control_Block *ucbp, _Unwind_Context *context) { return unwindOneFrame(state, ucbp, context); } extern "C" _Unwind_Reason_Code __aeabi_unwind_cpp_pr2( _Unwind_State state, _Unwind_Control_Block *ucbp, _Unwind_Context *context) { return unwindOneFrame(state, ucbp, context); } static _Unwind_Reason_Code unwind_phase1(unw_context_t *uc, _Unwind_Exception *exception_object) { // EHABI #7.3 discusses preserving the VRS in a "temporary VRS" during // phase 1 and then restoring it to the "primary VRS" for phase 2. The // effect is phase 2 doesn't see any of the VRS manipulations from phase 1. // In this implementation, the phases don't share the VRS backing store. // Instead, they are passed the original |uc| and they create a new VRS // from scratch thus achieving the same effect. unw_cursor_t cursor1; unw_init_local(&cursor1, uc); // Walk each frame looking for a place to stop. for (bool handlerNotFound = true; handlerNotFound;) { #if !_LIBUNWIND_ARM_EHABI // Ask libuwind to get next frame (skip over first which is // _Unwind_RaiseException). int stepResult = unw_step(&cursor1); if (stepResult == 0) { _LIBUNWIND_TRACE_UNWINDING("unwind_phase1(ex_ojb=%p): unw_step() reached " "bottom => _URC_END_OF_STACK\n", static_cast<void *>(exception_object)); return _URC_END_OF_STACK; } else if (stepResult < 0) { _LIBUNWIND_TRACE_UNWINDING("unwind_phase1(ex_ojb=%p): unw_step failed => " "_URC_FATAL_PHASE1_ERROR\n", static_cast<void *>(exception_object)); return _URC_FATAL_PHASE1_ERROR; } #endif // See if frame has code to run (has personality routine). unw_proc_info_t frameInfo; if (unw_get_proc_info(&cursor1, &frameInfo) != UNW_ESUCCESS) { _LIBUNWIND_TRACE_UNWINDING("unwind_phase1(ex_ojb=%p): unw_get_proc_info " "failed => _URC_FATAL_PHASE1_ERROR\n", static_cast<void *>(exception_object)); return _URC_FATAL_PHASE1_ERROR; } // When tracing, print state information. if (_LIBUNWIND_TRACING_UNWINDING) { char functionBuf[512]; const char *functionName = functionBuf; unw_word_t offset; if ((unw_get_proc_name(&cursor1, functionBuf, sizeof(functionBuf), &offset) != UNW_ESUCCESS) || (frameInfo.start_ip + offset > frameInfo.end_ip)) functionName = ".anonymous."; unw_word_t pc; unw_get_reg(&cursor1, UNW_REG_IP, &pc); _LIBUNWIND_TRACE_UNWINDING( "unwind_phase1(ex_ojb=%p): pc=0x%llX, start_ip=0x%llX, func=%s, " "lsda=0x%llX, personality=0x%llX\n", static_cast<void *>(exception_object), (long long)pc, (long long)frameInfo.start_ip, functionName, (long long)frameInfo.lsda, (long long)frameInfo.handler); } // If there is a personality routine, ask it if it will want to stop at // this frame. if (frameInfo.handler != 0) { __personality_routine p = (__personality_routine)(long)(frameInfo.handler); _LIBUNWIND_TRACE_UNWINDING( "unwind_phase1(ex_ojb=%p): calling personality function %p\n", static_cast<void *>(exception_object), reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(p))); struct _Unwind_Context *context = (struct _Unwind_Context *)(&cursor1); exception_object->pr_cache.fnstart = frameInfo.start_ip; exception_object->pr_cache.ehtp = (_Unwind_EHT_Header *)frameInfo.unwind_info; exception_object->pr_cache.additional = frameInfo.flags; _Unwind_Reason_Code personalityResult = (*p)(_US_VIRTUAL_UNWIND_FRAME, exception_object, context); _LIBUNWIND_TRACE_UNWINDING( "unwind_phase1(ex_ojb=%p): personality result %d start_ip %x ehtp %p " "additional %x\n", static_cast<void *>(exception_object), personalityResult, exception_object->pr_cache.fnstart, static_cast<void *>(exception_object->pr_cache.ehtp), exception_object->pr_cache.additional); switch (personalityResult) { case _URC_HANDLER_FOUND: // found a catch clause or locals that need destructing in this frame // stop search and remember stack pointer at the frame handlerNotFound = false; // p should have initialized barrier_cache. EHABI #7.3.5 _LIBUNWIND_TRACE_UNWINDING( "unwind_phase1(ex_ojb=%p): _URC_HANDLER_FOUND \n", static_cast<void *>(exception_object)); return _URC_NO_REASON; case _URC_CONTINUE_UNWIND: _LIBUNWIND_TRACE_UNWINDING( "unwind_phase1(ex_ojb=%p): _URC_CONTINUE_UNWIND\n", static_cast<void *>(exception_object)); // continue unwinding break; // EHABI #7.3.3 case _URC_FAILURE: return _URC_FAILURE; default: // something went wrong _LIBUNWIND_TRACE_UNWINDING( "unwind_phase1(ex_ojb=%p): _URC_FATAL_PHASE1_ERROR\n", static_cast<void *>(exception_object)); return _URC_FATAL_PHASE1_ERROR; } } } return _URC_NO_REASON; } static _Unwind_Reason_Code unwind_phase2(unw_context_t *uc, _Unwind_Exception *exception_object, bool resume) { // See comment at the start of unwind_phase1 regarding VRS integrity. unw_cursor_t cursor2; unw_init_local(&cursor2, uc); _LIBUNWIND_TRACE_UNWINDING("unwind_phase2(ex_ojb=%p)\n", static_cast<void *>(exception_object)); int frame_count = 0; // Walk each frame until we reach where search phase said to stop. while (true) { // Ask libuwind to get next frame (skip over first which is // _Unwind_RaiseException or _Unwind_Resume). // // Resume only ever makes sense for 1 frame. _Unwind_State state = resume ? _US_UNWIND_FRAME_RESUME : _US_UNWIND_FRAME_STARTING; if (resume && frame_count == 1) { // On a resume, first unwind the _Unwind_Resume() frame. The next frame // is now the landing pad for the cleanup from a previous execution of // phase2. To continue unwindingly correctly, replace VRS[15] with the // IP of the frame that the previous run of phase2 installed the context // for. After this, continue unwinding as if normal. // // See #7.4.6 for details. unw_set_reg(&cursor2, UNW_REG_IP, exception_object->unwinder_cache.reserved2); resume = false; } #if !_LIBUNWIND_ARM_EHABI int stepResult = unw_step(&cursor2); if (stepResult == 0) { _LIBUNWIND_TRACE_UNWINDING("unwind_phase2(ex_ojb=%p): unw_step() reached " "bottom => _URC_END_OF_STACK\n", static_cast<void *>(exception_object)); return _URC_END_OF_STACK; } else if (stepResult < 0) { _LIBUNWIND_TRACE_UNWINDING("unwind_phase2(ex_ojb=%p): unw_step failed => " "_URC_FATAL_PHASE1_ERROR\n", static_cast<void *>(exception_object)); return _URC_FATAL_PHASE2_ERROR; } #endif // Get info about this frame. unw_word_t sp; unw_proc_info_t frameInfo; unw_get_reg(&cursor2, UNW_REG_SP, &sp); if (unw_get_proc_info(&cursor2, &frameInfo) != UNW_ESUCCESS) { _LIBUNWIND_TRACE_UNWINDING("unwind_phase2(ex_ojb=%p): unw_get_proc_info " "failed => _URC_FATAL_PHASE1_ERROR\n", static_cast<void *>(exception_object)); return _URC_FATAL_PHASE2_ERROR; } // When tracing, print state information. if (_LIBUNWIND_TRACING_UNWINDING) { char functionBuf[512]; const char *functionName = functionBuf; unw_word_t offset; if ((unw_get_proc_name(&cursor2, functionBuf, sizeof(functionBuf), &offset) != UNW_ESUCCESS) || (frameInfo.start_ip + offset > frameInfo.end_ip)) functionName = ".anonymous."; _LIBUNWIND_TRACE_UNWINDING( "unwind_phase2(ex_ojb=%p): start_ip=0x%llX, func=%s, sp=0x%llX, " "lsda=0x%llX, personality=0x%llX\n", static_cast<void *>(exception_object), (long long)frameInfo.start_ip, functionName, (long long)sp, (long long)frameInfo.lsda, (long long)frameInfo.handler); } // If there is a personality routine, tell it we are unwinding. if (frameInfo.handler != 0) { __personality_routine p = (__personality_routine)(long)(frameInfo.handler); struct _Unwind_Context *context = (struct _Unwind_Context *)(&cursor2); // EHABI #7.2 exception_object->pr_cache.fnstart = frameInfo.start_ip; exception_object->pr_cache.ehtp = (_Unwind_EHT_Header *)frameInfo.unwind_info; exception_object->pr_cache.additional = frameInfo.flags; _Unwind_Reason_Code personalityResult = (*p)(state, exception_object, context); switch (personalityResult) { case _URC_CONTINUE_UNWIND: // Continue unwinding _LIBUNWIND_TRACE_UNWINDING( "unwind_phase2(ex_ojb=%p): _URC_CONTINUE_UNWIND\n", static_cast<void *>(exception_object)); // EHABI #7.2 if (sp == exception_object->barrier_cache.sp) { // Phase 1 said we would stop at this frame, but we did not... _LIBUNWIND_ABORT("during phase1 personality function said it would " "stop here, but now in phase2 it did not stop here"); } break; case _URC_INSTALL_CONTEXT: _LIBUNWIND_TRACE_UNWINDING( "unwind_phase2(ex_ojb=%p): _URC_INSTALL_CONTEXT\n", static_cast<void *>(exception_object)); // Personality routine says to transfer control to landing pad. // We may get control back if landing pad calls _Unwind_Resume(). if (_LIBUNWIND_TRACING_UNWINDING) { unw_word_t pc; unw_get_reg(&cursor2, UNW_REG_IP, &pc); unw_get_reg(&cursor2, UNW_REG_SP, &sp); _LIBUNWIND_TRACE_UNWINDING("unwind_phase2(ex_ojb=%p): re-entering " "user code with ip=0x%llX, sp=0x%llX\n", static_cast<void *>(exception_object), (long long)pc, (long long)sp); } { // EHABI #7.4.1 says we need to preserve pc for when _Unwind_Resume // is called back, to find this same frame. unw_word_t pc; unw_get_reg(&cursor2, UNW_REG_IP, &pc); exception_object->unwinder_cache.reserved2 = (uint32_t)pc; } unw_resume(&cursor2); // unw_resume() only returns if there was an error. return _URC_FATAL_PHASE2_ERROR; // # EHABI #7.4.3 case _URC_FAILURE: abort(); default: // Personality routine returned an unknown result code. _LIBUNWIND_DEBUG_LOG("personality function returned unknown result %d", personalityResult); return _URC_FATAL_PHASE2_ERROR; } } frame_count++; } // Clean up phase did not resume at the frame that the search phase // said it would... return _URC_FATAL_PHASE2_ERROR; } /// Called by __cxa_throw. Only returns if there is a fatal error. _LIBUNWIND_EXPORT _Unwind_Reason_Code _Unwind_RaiseException(_Unwind_Exception *exception_object) { _LIBUNWIND_TRACE_API("_Unwind_RaiseException(ex_obj=%p)\n", static_cast<void *>(exception_object)); unw_context_t uc; unw_getcontext(&uc); // This field for is for compatibility with GCC to say this isn't a forced // unwind. EHABI #7.2 exception_object->unwinder_cache.reserved1 = 0; // phase 1: the search phase _Unwind_Reason_Code phase1 = unwind_phase1(&uc, exception_object); if (phase1 != _URC_NO_REASON) return phase1; // phase 2: the clean up phase return unwind_phase2(&uc, exception_object, false); } _LIBUNWIND_EXPORT void _Unwind_Complete(_Unwind_Exception* exception_object) { // This is to be called when exception handling completes to give us a chance // to perform any housekeeping. EHABI #7.2. But we have nothing to do here. (void)exception_object; } /// When _Unwind_RaiseException() is in phase2, it hands control /// to the personality function at each frame. The personality /// may force a jump to a landing pad in that function, the landing /// pad code may then call _Unwind_Resume() to continue with the /// unwinding. Note: the call to _Unwind_Resume() is from compiler /// geneated user code. All other _Unwind_* routines are called /// by the C++ runtime __cxa_* routines. /// /// Note: re-throwing an exception (as opposed to continuing the unwind) /// is implemented by having the code call __cxa_rethrow() which /// in turn calls _Unwind_Resume_or_Rethrow(). _LIBUNWIND_EXPORT void _Unwind_Resume(_Unwind_Exception *exception_object) { _LIBUNWIND_TRACE_API("_Unwind_Resume(ex_obj=%p)\n", static_cast<void *>(exception_object)); unw_context_t uc; unw_getcontext(&uc); // _Unwind_RaiseException on EHABI will always set the reserved1 field to 0, // which is in the same position as private_1 below. // TODO(ajwong): Who wronte the above? Why is it true? unwind_phase2(&uc, exception_object, true); // Clients assume _Unwind_Resume() does not return, so all we can do is abort. _LIBUNWIND_ABORT("_Unwind_Resume() can't return"); } /// Called by personality handler during phase 2 to get LSDA for current frame. _LIBUNWIND_EXPORT uintptr_t _Unwind_GetLanguageSpecificData(struct _Unwind_Context *context) { unw_cursor_t *cursor = (unw_cursor_t *)context; unw_proc_info_t frameInfo; uintptr_t result = 0; if (unw_get_proc_info(cursor, &frameInfo) == UNW_ESUCCESS) result = (uintptr_t)frameInfo.lsda; _LIBUNWIND_TRACE_API( "_Unwind_GetLanguageSpecificData(context=%p) => 0x%llx\n", static_cast<void *>(context), (long long)result); return result; } static uint64_t ValueAsBitPattern(_Unwind_VRS_DataRepresentation representation, void* valuep) { uint64_t value = 0; switch (representation) { case _UVRSD_UINT32: case _UVRSD_FLOAT: memcpy(&value, valuep, sizeof(uint32_t)); break; case _UVRSD_VFPX: case _UVRSD_UINT64: case _UVRSD_DOUBLE: memcpy(&value, valuep, sizeof(uint64_t)); break; } return value; } _Unwind_VRS_Result _Unwind_VRS_Set(_Unwind_Context *context, _Unwind_VRS_RegClass regclass, uint32_t regno, _Unwind_VRS_DataRepresentation representation, void *valuep) { _LIBUNWIND_TRACE_API("_Unwind_VRS_Set(context=%p, regclass=%d, reg=%d, " "rep=%d, value=0x%llX)\n", static_cast<void *>(context), regclass, regno, representation, ValueAsBitPattern(representation, valuep)); unw_cursor_t *cursor = (unw_cursor_t *)context; switch (regclass) { case _UVRSC_CORE: if (representation != _UVRSD_UINT32 || regno > 15) return _UVRSR_FAILED; return unw_set_reg(cursor, (unw_regnum_t)(UNW_ARM_R0 + regno), *(unw_word_t *)valuep) == UNW_ESUCCESS ? _UVRSR_OK : _UVRSR_FAILED; case _UVRSC_WMMXC: if (representation != _UVRSD_UINT32 || regno > 3) return _UVRSR_FAILED; return unw_set_reg(cursor, (unw_regnum_t)(UNW_ARM_WC0 + regno), *(unw_word_t *)valuep) == UNW_ESUCCESS ? _UVRSR_OK : _UVRSR_FAILED; case _UVRSC_VFP: if (representation != _UVRSD_VFPX && representation != _UVRSD_DOUBLE) return _UVRSR_FAILED; if (representation == _UVRSD_VFPX) { // Can only touch d0-15 with FSTMFDX. if (regno > 15) return _UVRSR_FAILED; unw_save_vfp_as_X(cursor); } else { if (regno > 31) return _UVRSR_FAILED; } return unw_set_fpreg(cursor, (unw_regnum_t)(UNW_ARM_D0 + regno), *(unw_fpreg_t *)valuep) == UNW_ESUCCESS ? _UVRSR_OK : _UVRSR_FAILED; case _UVRSC_WMMXD: if (representation != _UVRSD_DOUBLE || regno > 31) return _UVRSR_FAILED; return unw_set_fpreg(cursor, (unw_regnum_t)(UNW_ARM_WR0 + regno), *(unw_fpreg_t *)valuep) == UNW_ESUCCESS ? _UVRSR_OK : _UVRSR_FAILED; } _LIBUNWIND_ABORT("unsupported register class"); } static _Unwind_VRS_Result _Unwind_VRS_Get_Internal(_Unwind_Context *context, _Unwind_VRS_RegClass regclass, uint32_t regno, _Unwind_VRS_DataRepresentation representation, void *valuep) { unw_cursor_t *cursor = (unw_cursor_t *)context; switch (regclass) { case _UVRSC_CORE: if (representation != _UVRSD_UINT32 || regno > 15) return _UVRSR_FAILED; return unw_get_reg(cursor, (unw_regnum_t)(UNW_ARM_R0 + regno), (unw_word_t *)valuep) == UNW_ESUCCESS ? _UVRSR_OK : _UVRSR_FAILED; case _UVRSC_WMMXC: if (representation != _UVRSD_UINT32 || regno > 3) return _UVRSR_FAILED; return unw_get_reg(cursor, (unw_regnum_t)(UNW_ARM_WC0 + regno), (unw_word_t *)valuep) == UNW_ESUCCESS ? _UVRSR_OK : _UVRSR_FAILED; case _UVRSC_VFP: if (representation != _UVRSD_VFPX && representation != _UVRSD_DOUBLE) return _UVRSR_FAILED; if (representation == _UVRSD_VFPX) { // Can only touch d0-15 with FSTMFDX. if (regno > 15) return _UVRSR_FAILED; unw_save_vfp_as_X(cursor); } else { if (regno > 31) return _UVRSR_FAILED; } return unw_get_fpreg(cursor, (unw_regnum_t)(UNW_ARM_D0 + regno), (unw_fpreg_t *)valuep) == UNW_ESUCCESS ? _UVRSR_OK : _UVRSR_FAILED; case _UVRSC_WMMXD: if (representation != _UVRSD_DOUBLE || regno > 31) return _UVRSR_FAILED; return unw_get_fpreg(cursor, (unw_regnum_t)(UNW_ARM_WR0 + regno), (unw_fpreg_t *)valuep) == UNW_ESUCCESS ? _UVRSR_OK : _UVRSR_FAILED; } _LIBUNWIND_ABORT("unsupported register class"); } _Unwind_VRS_Result _Unwind_VRS_Get( _Unwind_Context *context, _Unwind_VRS_RegClass regclass, uint32_t regno, _Unwind_VRS_DataRepresentation representation, void *valuep) { _Unwind_VRS_Result result = _Unwind_VRS_Get_Internal(context, regclass, regno, representation, valuep); _LIBUNWIND_TRACE_API("_Unwind_VRS_Get(context=%p, regclass=%d, reg=%d, " "rep=%d, value=0x%llX, result = %d)\n", static_cast<void *>(context), regclass, regno, representation, ValueAsBitPattern(representation, valuep), result); return result; } _Unwind_VRS_Result _Unwind_VRS_Pop(_Unwind_Context *context, _Unwind_VRS_RegClass regclass, uint32_t discriminator, _Unwind_VRS_DataRepresentation representation) { _LIBUNWIND_TRACE_API("_Unwind_VRS_Pop(context=%p, regclass=%d, " "discriminator=%d, representation=%d)\n", static_cast<void *>(context), regclass, discriminator, representation); switch (regclass) { case _UVRSC_CORE: case _UVRSC_WMMXC: { if (representation != _UVRSD_UINT32) return _UVRSR_FAILED; // When popping SP from the stack, we don't want to override it from the // computed new stack location. See EHABI #7.5.4 table 3. bool poppedSP = false; uint32_t* sp; if (_Unwind_VRS_Get(context, _UVRSC_CORE, UNW_ARM_SP, _UVRSD_UINT32, &sp) != _UVRSR_OK) { return _UVRSR_FAILED; } for (uint32_t i = 0; i < 16; ++i) { if (!(discriminator & static_cast<uint32_t>(1 << i))) continue; uint32_t value = *sp++; if (regclass == _UVRSC_CORE && i == 13) poppedSP = true; if (_Unwind_VRS_Set(context, regclass, i, _UVRSD_UINT32, &value) != _UVRSR_OK) { return _UVRSR_FAILED; } } if (!poppedSP) { return _Unwind_VRS_Set(context, _UVRSC_CORE, UNW_ARM_SP, _UVRSD_UINT32, &sp); } return _UVRSR_OK; } case _UVRSC_VFP: case _UVRSC_WMMXD: { if (representation != _UVRSD_VFPX && representation != _UVRSD_DOUBLE) return _UVRSR_FAILED; uint32_t first = discriminator >> 16; uint32_t count = discriminator & 0xffff; uint32_t end = first+count; uint32_t* sp; if (_Unwind_VRS_Get(context, _UVRSC_CORE, UNW_ARM_SP, _UVRSD_UINT32, &sp) != _UVRSR_OK) { return _UVRSR_FAILED; } // For _UVRSD_VFPX, we're assuming the data is stored in FSTMX "standard // format 1", which is equivalent to FSTMD + a padding word. for (uint32_t i = first; i < end; ++i) { // SP is only 32-bit aligned so don't copy 64-bit at a time. uint64_t value = *sp++; value |= ((uint64_t)(*sp++)) << 32; if (_Unwind_VRS_Set(context, regclass, i, representation, &value) != _UVRSR_OK) return _UVRSR_FAILED; } if (representation == _UVRSD_VFPX) ++sp; return _Unwind_VRS_Set(context, _UVRSC_CORE, UNW_ARM_SP, _UVRSD_UINT32, &sp); } } _LIBUNWIND_ABORT("unsupported register class"); } /// Called by personality handler during phase 2 to find the start of the /// function. _LIBUNWIND_EXPORT uintptr_t _Unwind_GetRegionStart(struct _Unwind_Context *context) { unw_cursor_t *cursor = (unw_cursor_t *)context; unw_proc_info_t frameInfo; uintptr_t result = 0; if (unw_get_proc_info(cursor, &frameInfo) == UNW_ESUCCESS) result = (uintptr_t)frameInfo.start_ip; _LIBUNWIND_TRACE_API("_Unwind_GetRegionStart(context=%p) => 0x%llX\n", static_cast<void *>(context), (long long)result); return result; } /// Called by personality handler during phase 2 if a foreign exception // is caught. _LIBUNWIND_EXPORT void _Unwind_DeleteException(_Unwind_Exception *exception_object) { _LIBUNWIND_TRACE_API("_Unwind_DeleteException(ex_obj=%p)\n", static_cast<void *>(exception_object)); if (exception_object->exception_cleanup != NULL) (*exception_object->exception_cleanup)(_URC_FOREIGN_EXCEPTION_CAUGHT, exception_object); } extern "C" _LIBUNWIND_EXPORT _Unwind_Reason_Code __gnu_unwind_frame(_Unwind_Exception *exception_object, struct _Unwind_Context *context) { unw_cursor_t *cursor = (unw_cursor_t *)context; if (unw_step(cursor) != UNW_STEP_SUCCESS) return _URC_FAILURE; return _URC_OK; } #endif // _LIBUNWIND_ARM_EHABI