//===- lli.cpp - LLVM Interpreter / Dynamic compiler ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This utility provides a simple wrapper around the LLVM Execution Engines, // which allow the direct execution of LLVM programs through a Just-In-Time // compiler, or through an interpreter if no JIT is available for this platform. // //===----------------------------------------------------------------------===// #include "llvm/IR/LLVMContext.h" #include "OrcLazyJIT.h" #include "RemoteMemoryManager.h" #include "RemoteTarget.h" #include "RemoteTargetExternal.h" #include "llvm/ADT/Triple.h" #include "llvm/Bitcode/ReaderWriter.h" #include "llvm/CodeGen/LinkAllCodegenComponents.h" #include "llvm/ExecutionEngine/GenericValue.h" #include "llvm/ExecutionEngine/Interpreter.h" #include "llvm/ExecutionEngine/JITEventListener.h" #include "llvm/ExecutionEngine/MCJIT.h" #include "llvm/ExecutionEngine/ObjectCache.h" #include "llvm/ExecutionEngine/OrcMCJITReplacement.h" #include "llvm/ExecutionEngine/SectionMemoryManager.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/IR/TypeBuilder.h" #include "llvm/IRReader/IRReader.h" #include "llvm/Object/Archive.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/DynamicLibrary.h" #include "llvm/Support/Format.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Memory.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/PluginLoader.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/Process.h" #include "llvm/Support/Program.h" #include "llvm/Support/Signals.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Instrumentation.h" #include <cerrno> #ifdef __CYGWIN__ #include <cygwin/version.h> #if defined(CYGWIN_VERSION_DLL_MAJOR) && CYGWIN_VERSION_DLL_MAJOR<1007 #define DO_NOTHING_ATEXIT 1 #endif #endif using namespace llvm; #define DEBUG_TYPE "lli" namespace { enum class JITKind { MCJIT, OrcMCJITReplacement, OrcLazy }; cl::opt<std::string> InputFile(cl::desc("<input bitcode>"), cl::Positional, cl::init("-")); cl::list<std::string> InputArgv(cl::ConsumeAfter, cl::desc("<program arguments>...")); cl::opt<bool> ForceInterpreter("force-interpreter", cl::desc("Force interpretation: disable JIT"), cl::init(false)); cl::opt<JITKind> UseJITKind("jit-kind", cl::desc("Choose underlying JIT kind."), cl::init(JITKind::MCJIT), cl::values( clEnumValN(JITKind::MCJIT, "mcjit", "MCJIT"), clEnumValN(JITKind::OrcMCJITReplacement, "orc-mcjit", "Orc-based MCJIT replacement"), clEnumValN(JITKind::OrcLazy, "orc-lazy", "Orc-based lazy JIT."), clEnumValEnd)); // The MCJIT supports building for a target address space separate from // the JIT compilation process. Use a forked process and a copying // memory manager with IPC to execute using this functionality. cl::opt<bool> RemoteMCJIT("remote-mcjit", cl::desc("Execute MCJIT'ed code in a separate process."), cl::init(false)); // Manually specify the child process for remote execution. This overrides // the simulated remote execution that allocates address space for child // execution. The child process will be executed and will communicate with // lli via stdin/stdout pipes. cl::opt<std::string> ChildExecPath("mcjit-remote-process", cl::desc("Specify the filename of the process to launch " "for remote MCJIT execution. If none is specified," "\n\tremote execution will be simulated in-process."), cl::value_desc("filename"), cl::init("")); // Determine optimization level. cl::opt<char> OptLevel("O", cl::desc("Optimization level. [-O0, -O1, -O2, or -O3] " "(default = '-O2')"), cl::Prefix, cl::ZeroOrMore, cl::init(' ')); cl::opt<std::string> TargetTriple("mtriple", cl::desc("Override target triple for module")); cl::opt<std::string> MArch("march", cl::desc("Architecture to generate assembly for (see --version)")); cl::opt<std::string> MCPU("mcpu", cl::desc("Target a specific cpu type (-mcpu=help for details)"), cl::value_desc("cpu-name"), cl::init("")); cl::list<std::string> MAttrs("mattr", cl::CommaSeparated, cl::desc("Target specific attributes (-mattr=help for details)"), cl::value_desc("a1,+a2,-a3,...")); cl::opt<std::string> EntryFunc("entry-function", cl::desc("Specify the entry function (default = 'main') " "of the executable"), cl::value_desc("function"), cl::init("main")); cl::list<std::string> ExtraModules("extra-module", cl::desc("Extra modules to be loaded"), cl::value_desc("input bitcode")); cl::list<std::string> ExtraObjects("extra-object", cl::desc("Extra object files to be loaded"), cl::value_desc("input object")); cl::list<std::string> ExtraArchives("extra-archive", cl::desc("Extra archive files to be loaded"), cl::value_desc("input archive")); cl::opt<bool> EnableCacheManager("enable-cache-manager", cl::desc("Use cache manager to save/load mdoules"), cl::init(false)); cl::opt<std::string> ObjectCacheDir("object-cache-dir", cl::desc("Directory to store cached object files " "(must be user writable)"), cl::init("")); cl::opt<std::string> FakeArgv0("fake-argv0", cl::desc("Override the 'argv[0]' value passed into the executing" " program"), cl::value_desc("executable")); cl::opt<bool> DisableCoreFiles("disable-core-files", cl::Hidden, cl::desc("Disable emission of core files if possible")); cl::opt<bool> NoLazyCompilation("disable-lazy-compilation", cl::desc("Disable JIT lazy compilation"), cl::init(false)); cl::opt<Reloc::Model> RelocModel("relocation-model", cl::desc("Choose relocation model"), cl::init(Reloc::Default), cl::values( clEnumValN(Reloc::Default, "default", "Target default relocation model"), clEnumValN(Reloc::Static, "static", "Non-relocatable code"), clEnumValN(Reloc::PIC_, "pic", "Fully relocatable, position independent code"), clEnumValN(Reloc::DynamicNoPIC, "dynamic-no-pic", "Relocatable external references, non-relocatable code"), clEnumValEnd)); cl::opt<llvm::CodeModel::Model> CMModel("code-model", cl::desc("Choose code model"), cl::init(CodeModel::JITDefault), cl::values(clEnumValN(CodeModel::JITDefault, "default", "Target default JIT code model"), clEnumValN(CodeModel::Small, "small", "Small code model"), clEnumValN(CodeModel::Kernel, "kernel", "Kernel code model"), clEnumValN(CodeModel::Medium, "medium", "Medium code model"), clEnumValN(CodeModel::Large, "large", "Large code model"), clEnumValEnd)); cl::opt<bool> GenerateSoftFloatCalls("soft-float", cl::desc("Generate software floating point library calls"), cl::init(false)); cl::opt<llvm::FloatABI::ABIType> FloatABIForCalls("float-abi", cl::desc("Choose float ABI type"), cl::init(FloatABI::Default), cl::values( clEnumValN(FloatABI::Default, "default", "Target default float ABI type"), clEnumValN(FloatABI::Soft, "soft", "Soft float ABI (implied by -soft-float)"), clEnumValN(FloatABI::Hard, "hard", "Hard float ABI (uses FP registers)"), clEnumValEnd)); } //===----------------------------------------------------------------------===// // Object cache // // This object cache implementation writes cached objects to disk to the // directory specified by CacheDir, using a filename provided in the module // descriptor. The cache tries to load a saved object using that path if the // file exists. CacheDir defaults to "", in which case objects are cached // alongside their originating bitcodes. // class LLIObjectCache : public ObjectCache { public: LLIObjectCache(const std::string& CacheDir) : CacheDir(CacheDir) { // Add trailing '/' to cache dir if necessary. if (!this->CacheDir.empty() && this->CacheDir[this->CacheDir.size() - 1] != '/') this->CacheDir += '/'; } ~LLIObjectCache() override {} void notifyObjectCompiled(const Module *M, MemoryBufferRef Obj) override { const std::string ModuleID = M->getModuleIdentifier(); std::string CacheName; if (!getCacheFilename(ModuleID, CacheName)) return; if (!CacheDir.empty()) { // Create user-defined cache dir. SmallString<128> dir(sys::path::parent_path(CacheName)); sys::fs::create_directories(Twine(dir)); } std::error_code EC; raw_fd_ostream outfile(CacheName, EC, sys::fs::F_None); outfile.write(Obj.getBufferStart(), Obj.getBufferSize()); outfile.close(); } std::unique_ptr<MemoryBuffer> getObject(const Module* M) override { const std::string ModuleID = M->getModuleIdentifier(); std::string CacheName; if (!getCacheFilename(ModuleID, CacheName)) return nullptr; // Load the object from the cache filename ErrorOr<std::unique_ptr<MemoryBuffer>> IRObjectBuffer = MemoryBuffer::getFile(CacheName.c_str(), -1, false); // If the file isn't there, that's OK. if (!IRObjectBuffer) return nullptr; // MCJIT will want to write into this buffer, and we don't want that // because the file has probably just been mmapped. Instead we make // a copy. The filed-based buffer will be released when it goes // out of scope. return MemoryBuffer::getMemBufferCopy(IRObjectBuffer.get()->getBuffer()); } private: std::string CacheDir; bool getCacheFilename(const std::string &ModID, std::string &CacheName) { std::string Prefix("file:"); size_t PrefixLength = Prefix.length(); if (ModID.substr(0, PrefixLength) != Prefix) return false; std::string CacheSubdir = ModID.substr(PrefixLength); #if defined(_WIN32) // Transform "X:\foo" => "/X\foo" for convenience. if (isalpha(CacheSubdir[0]) && CacheSubdir[1] == ':') { CacheSubdir[1] = CacheSubdir[0]; CacheSubdir[0] = '/'; } #endif CacheName = CacheDir + CacheSubdir; size_t pos = CacheName.rfind('.'); CacheName.replace(pos, CacheName.length() - pos, ".o"); return true; } }; static ExecutionEngine *EE = nullptr; static LLIObjectCache *CacheManager = nullptr; static void do_shutdown() { // Cygwin-1.5 invokes DLL's dtors before atexit handler. #ifndef DO_NOTHING_ATEXIT delete EE; if (CacheManager) delete CacheManager; llvm_shutdown(); #endif } // On Mingw and Cygwin, an external symbol named '__main' is called from the // generated 'main' function to allow static intialization. To avoid linking // problems with remote targets (because lli's remote target support does not // currently handle external linking) we add a secondary module which defines // an empty '__main' function. static void addCygMingExtraModule(ExecutionEngine *EE, LLVMContext &Context, StringRef TargetTripleStr) { IRBuilder<> Builder(Context); Triple TargetTriple(TargetTripleStr); // Create a new module. std::unique_ptr<Module> M = make_unique<Module>("CygMingHelper", Context); M->setTargetTriple(TargetTripleStr); // Create an empty function named "__main". Function *Result; if (TargetTriple.isArch64Bit()) { Result = Function::Create( TypeBuilder<int64_t(void), false>::get(Context), GlobalValue::ExternalLinkage, "__main", M.get()); } else { Result = Function::Create( TypeBuilder<int32_t(void), false>::get(Context), GlobalValue::ExternalLinkage, "__main", M.get()); } BasicBlock *BB = BasicBlock::Create(Context, "__main", Result); Builder.SetInsertPoint(BB); Value *ReturnVal; if (TargetTriple.isArch64Bit()) ReturnVal = ConstantInt::get(Context, APInt(64, 0)); else ReturnVal = ConstantInt::get(Context, APInt(32, 0)); Builder.CreateRet(ReturnVal); // Add this new module to the ExecutionEngine. EE->addModule(std::move(M)); } CodeGenOpt::Level getOptLevel() { switch (OptLevel) { default: errs() << "lli: Invalid optimization level.\n"; exit(1); case '0': return CodeGenOpt::None; case '1': return CodeGenOpt::Less; case ' ': case '2': return CodeGenOpt::Default; case '3': return CodeGenOpt::Aggressive; } llvm_unreachable("Unrecognized opt level."); } //===----------------------------------------------------------------------===// // main Driver function // int main(int argc, char **argv, char * const *envp) { sys::PrintStackTraceOnErrorSignal(); PrettyStackTraceProgram X(argc, argv); LLVMContext &Context = getGlobalContext(); atexit(do_shutdown); // Call llvm_shutdown() on exit. // If we have a native target, initialize it to ensure it is linked in and // usable by the JIT. InitializeNativeTarget(); InitializeNativeTargetAsmPrinter(); InitializeNativeTargetAsmParser(); cl::ParseCommandLineOptions(argc, argv, "llvm interpreter & dynamic compiler\n"); // If the user doesn't want core files, disable them. if (DisableCoreFiles) sys::Process::PreventCoreFiles(); // Load the bitcode... SMDiagnostic Err; std::unique_ptr<Module> Owner = parseIRFile(InputFile, Err, Context); Module *Mod = Owner.get(); if (!Mod) { Err.print(argv[0], errs()); return 1; } if (UseJITKind == JITKind::OrcLazy) return runOrcLazyJIT(std::move(Owner), argc, argv); if (EnableCacheManager) { std::string CacheName("file:"); CacheName.append(InputFile); Mod->setModuleIdentifier(CacheName); } // If not jitting lazily, load the whole bitcode file eagerly too. if (NoLazyCompilation) { if (std::error_code EC = Mod->materializeAll()) { errs() << argv[0] << ": bitcode didn't read correctly.\n"; errs() << "Reason: " << EC.message() << "\n"; exit(1); } } std::string ErrorMsg; EngineBuilder builder(std::move(Owner)); builder.setMArch(MArch); builder.setMCPU(MCPU); builder.setMAttrs(MAttrs); builder.setRelocationModel(RelocModel); builder.setCodeModel(CMModel); builder.setErrorStr(&ErrorMsg); builder.setEngineKind(ForceInterpreter ? EngineKind::Interpreter : EngineKind::JIT); builder.setUseOrcMCJITReplacement(UseJITKind == JITKind::OrcMCJITReplacement); // If we are supposed to override the target triple, do so now. if (!TargetTriple.empty()) Mod->setTargetTriple(Triple::normalize(TargetTriple)); // Enable MCJIT if desired. RTDyldMemoryManager *RTDyldMM = nullptr; if (!ForceInterpreter) { if (RemoteMCJIT) RTDyldMM = new RemoteMemoryManager(); else RTDyldMM = new SectionMemoryManager(); // Deliberately construct a temp std::unique_ptr to pass in. Do not null out // RTDyldMM: We still use it below, even though we don't own it. builder.setMCJITMemoryManager( std::unique_ptr<RTDyldMemoryManager>(RTDyldMM)); } else if (RemoteMCJIT) { errs() << "error: Remote process execution does not work with the " "interpreter.\n"; exit(1); } builder.setOptLevel(getOptLevel()); TargetOptions Options; if (FloatABIForCalls != FloatABI::Default) Options.FloatABIType = FloatABIForCalls; builder.setTargetOptions(Options); EE = builder.create(); if (!EE) { if (!ErrorMsg.empty()) errs() << argv[0] << ": error creating EE: " << ErrorMsg << "\n"; else errs() << argv[0] << ": unknown error creating EE!\n"; exit(1); } if (EnableCacheManager) { CacheManager = new LLIObjectCache(ObjectCacheDir); EE->setObjectCache(CacheManager); } // Load any additional modules specified on the command line. for (unsigned i = 0, e = ExtraModules.size(); i != e; ++i) { std::unique_ptr<Module> XMod = parseIRFile(ExtraModules[i], Err, Context); if (!XMod) { Err.print(argv[0], errs()); return 1; } if (EnableCacheManager) { std::string CacheName("file:"); CacheName.append(ExtraModules[i]); XMod->setModuleIdentifier(CacheName); } EE->addModule(std::move(XMod)); } for (unsigned i = 0, e = ExtraObjects.size(); i != e; ++i) { ErrorOr<object::OwningBinary<object::ObjectFile>> Obj = object::ObjectFile::createObjectFile(ExtraObjects[i]); if (!Obj) { Err.print(argv[0], errs()); return 1; } object::OwningBinary<object::ObjectFile> &O = Obj.get(); EE->addObjectFile(std::move(O)); } for (unsigned i = 0, e = ExtraArchives.size(); i != e; ++i) { ErrorOr<std::unique_ptr<MemoryBuffer>> ArBufOrErr = MemoryBuffer::getFileOrSTDIN(ExtraArchives[i]); if (!ArBufOrErr) { Err.print(argv[0], errs()); return 1; } std::unique_ptr<MemoryBuffer> &ArBuf = ArBufOrErr.get(); ErrorOr<std::unique_ptr<object::Archive>> ArOrErr = object::Archive::create(ArBuf->getMemBufferRef()); if (std::error_code EC = ArOrErr.getError()) { errs() << EC.message(); return 1; } std::unique_ptr<object::Archive> &Ar = ArOrErr.get(); object::OwningBinary<object::Archive> OB(std::move(Ar), std::move(ArBuf)); EE->addArchive(std::move(OB)); } // If the target is Cygwin/MingW and we are generating remote code, we // need an extra module to help out with linking. if (RemoteMCJIT && Triple(Mod->getTargetTriple()).isOSCygMing()) { addCygMingExtraModule(EE, Context, Mod->getTargetTriple()); } // The following functions have no effect if their respective profiling // support wasn't enabled in the build configuration. EE->RegisterJITEventListener( JITEventListener::createOProfileJITEventListener()); EE->RegisterJITEventListener( JITEventListener::createIntelJITEventListener()); if (!NoLazyCompilation && RemoteMCJIT) { errs() << "warning: remote mcjit does not support lazy compilation\n"; NoLazyCompilation = true; } EE->DisableLazyCompilation(NoLazyCompilation); // If the user specifically requested an argv[0] to pass into the program, // do it now. if (!FakeArgv0.empty()) { InputFile = static_cast<std::string>(FakeArgv0); } else { // Otherwise, if there is a .bc suffix on the executable strip it off, it // might confuse the program. if (StringRef(InputFile).endswith(".bc")) InputFile.erase(InputFile.length() - 3); } // Add the module's name to the start of the vector of arguments to main(). InputArgv.insert(InputArgv.begin(), InputFile); // Call the main function from M as if its signature were: // int main (int argc, char **argv, const char **envp) // using the contents of Args to determine argc & argv, and the contents of // EnvVars to determine envp. // Function *EntryFn = Mod->getFunction(EntryFunc); if (!EntryFn) { errs() << '\'' << EntryFunc << "\' function not found in module.\n"; return -1; } // Reset errno to zero on entry to main. errno = 0; int Result; if (!RemoteMCJIT) { // If the program doesn't explicitly call exit, we will need the Exit // function later on to make an explicit call, so get the function now. Constant *Exit = Mod->getOrInsertFunction("exit", Type::getVoidTy(Context), Type::getInt32Ty(Context), nullptr); // Run static constructors. if (!ForceInterpreter) { // Give MCJIT a chance to apply relocations and set page permissions. EE->finalizeObject(); } EE->runStaticConstructorsDestructors(false); // Trigger compilation separately so code regions that need to be // invalidated will be known. (void)EE->getPointerToFunction(EntryFn); // Clear instruction cache before code will be executed. if (RTDyldMM) static_cast<SectionMemoryManager*>(RTDyldMM)->invalidateInstructionCache(); // Run main. Result = EE->runFunctionAsMain(EntryFn, InputArgv, envp); // Run static destructors. EE->runStaticConstructorsDestructors(true); // If the program didn't call exit explicitly, we should call it now. // This ensures that any atexit handlers get called correctly. if (Function *ExitF = dyn_cast<Function>(Exit)) { std::vector<GenericValue> Args; GenericValue ResultGV; ResultGV.IntVal = APInt(32, Result); Args.push_back(ResultGV); EE->runFunction(ExitF, Args); errs() << "ERROR: exit(" << Result << ") returned!\n"; abort(); } else { errs() << "ERROR: exit defined with wrong prototype!\n"; abort(); } } else { // else == "if (RemoteMCJIT)" // Remote target MCJIT doesn't (yet) support static constructors. No reason // it couldn't. This is a limitation of the LLI implemantation, not the // MCJIT itself. FIXME. // RemoteMemoryManager *MM = static_cast<RemoteMemoryManager*>(RTDyldMM); // Everything is prepared now, so lay out our program for the target // address space, assign the section addresses to resolve any relocations, // and send it to the target. std::unique_ptr<RemoteTarget> Target; if (!ChildExecPath.empty()) { // Remote execution on a child process #ifndef LLVM_ON_UNIX // FIXME: Remove this pointless fallback mode which causes tests to "pass" // on platforms where they should XFAIL. errs() << "Warning: host does not support external remote targets.\n" << " Defaulting to simulated remote execution\n"; Target.reset(new RemoteTarget); #else if (!sys::fs::can_execute(ChildExecPath)) { errs() << "Unable to find usable child executable: '" << ChildExecPath << "'\n"; return -1; } Target.reset(new RemoteTargetExternal(ChildExecPath)); #endif } else { // No child process name provided, use simulated remote execution. Target.reset(new RemoteTarget); } // Give the memory manager a pointer to our remote target interface object. MM->setRemoteTarget(Target.get()); // Create the remote target. if (!Target->create()) { errs() << "ERROR: " << Target->getErrorMsg() << "\n"; return EXIT_FAILURE; } // Since we're executing in a (at least simulated) remote address space, // we can't use the ExecutionEngine::runFunctionAsMain(). We have to // grab the function address directly here and tell the remote target // to execute the function. // // Our memory manager will map generated code into the remote address // space as it is loaded and copy the bits over during the finalizeMemory // operation. // // FIXME: argv and envp handling. uint64_t Entry = EE->getFunctionAddress(EntryFn->getName().str()); DEBUG(dbgs() << "Executing '" << EntryFn->getName() << "' at 0x" << format("%llx", Entry) << "\n"); if (!Target->executeCode(Entry, Result)) errs() << "ERROR: " << Target->getErrorMsg() << "\n"; // Like static constructors, the remote target MCJIT support doesn't handle // this yet. It could. FIXME. // Stop the remote target Target->stop(); } return Result; }