/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include <cstring>
#include <ctime>

#include <sys/stat.h>
#include <sys/types.h>
#ifdef _WIN32
#include <direct.h>
#endif /* _WIN32 */

#include "utility.hpp"
#include "opencv2/core.hpp"
#include "opencv2/core/core_c.h"
#include "opencv2/imgcodecs/imgcodecs_c.h"
#include "opencv2/imgproc/imgproc_c.h"
#include "opencv2/highgui/highgui_c.h"
#include "opencv2/calib3d/calib3d_c.h"

#ifndef PATH_MAX
#define PATH_MAX 512
#endif /* PATH_MAX */

#define __BEGIN__ __CV_BEGIN__
#define __END__  __CV_END__
#define EXIT __CV_EXIT__

static int icvMkDir( const char* filename )
{
    char path[PATH_MAX];
    char* p;
    int pos;

#ifdef _WIN32
    struct _stat st;
#else /* _WIN32 */
    struct stat st;
    mode_t mode;

    mode = 0755;
#endif /* _WIN32 */

    strcpy( path, filename );

    p = path;
    for( ; ; )
    {
        pos = (int)strcspn( p, "/\\" );

        if( pos == (int) strlen( p ) ) break;
        if( pos != 0 )
        {
            p[pos] = '\0';

#ifdef _WIN32
            if( p[pos-1] != ':' )
            {
                if( _stat( path, &st ) != 0 )
                {
                    if( _mkdir( path ) != 0 ) return 0;
                }
            }
#else /* _WIN32 */
            if( stat( path, &st ) != 0 )
            {
                if( mkdir( path, mode ) != 0 ) return 0;
            }
#endif /* _WIN32 */
        }

        p[pos] = '/';

        p += pos + 1;
    }

    return 1;
}

static void icvWriteVecHeader( FILE* file, int count, int width, int height )
{
    int vecsize;
    short tmp;

    /* number of samples */
    fwrite( &count, sizeof( count ), 1, file );
    /* vector size */
    vecsize = width * height;
    fwrite( &vecsize, sizeof( vecsize ), 1, file );
    /* min/max values */
    tmp = 0;
    fwrite( &tmp, sizeof( tmp ), 1, file );
    fwrite( &tmp, sizeof( tmp ), 1, file );
}

static void icvWriteVecSample( FILE* file, CvArr* sample )
{
    CvMat* mat, stub;
    int r, c;
    short tmp;
    uchar chartmp;

    mat = cvGetMat( sample, &stub );
    chartmp = 0;
    fwrite( &chartmp, sizeof( chartmp ), 1, file );
    for( r = 0; r < mat->rows; r++ )
    {
        for( c = 0; c < mat->cols; c++ )
        {
            tmp = (short) (CV_MAT_ELEM( *mat, uchar, r, c ));
            fwrite( &tmp, sizeof( tmp ), 1, file );
        }
    }
}

/* Calculates coefficients of perspective transformation
 * which maps <quad> into rectangle ((0,0), (w,0), (w,h), (h,0)):
 *
 *      c00*xi + c01*yi + c02
 * ui = ---------------------
 *      c20*xi + c21*yi + c22
 *
 *      c10*xi + c11*yi + c12
 * vi = ---------------------
 *      c20*xi + c21*yi + c22
 *
 * Coefficients are calculated by solving linear system:
 * / x0 y0  1  0  0  0 -x0*u0 -y0*u0 \ /c00\ /u0\
 * | x1 y1  1  0  0  0 -x1*u1 -y1*u1 | |c01| |u1|
 * | x2 y2  1  0  0  0 -x2*u2 -y2*u2 | |c02| |u2|
 * | x3 y3  1  0  0  0 -x3*u3 -y3*u3 |.|c10|=|u3|,
 * |  0  0  0 x0 y0  1 -x0*v0 -y0*v0 | |c11| |v0|
 * |  0  0  0 x1 y1  1 -x1*v1 -y1*v1 | |c12| |v1|
 * |  0  0  0 x2 y2  1 -x2*v2 -y2*v2 | |c20| |v2|
 * \  0  0  0 x3 y3  1 -x3*v3 -y3*v3 / \c21/ \v3/
 *
 * where:
 *   (xi, yi) = (quad[i][0], quad[i][1])
 *        cij - coeffs[i][j], coeffs[2][2] = 1
 *   (ui, vi) - rectangle vertices
 */
static void cvGetPerspectiveTransform( CvSize src_size, double quad[4][2], double coeffs[3][3] )
{
    //CV_FUNCNAME( "cvWarpPerspective" );

    __BEGIN__;

    double a[8][8];
    double b[8];

    CvMat A = cvMat( 8, 8, CV_64FC1, a );
    CvMat B = cvMat( 8, 1, CV_64FC1, b );
    CvMat X = cvMat( 8, 1, CV_64FC1, coeffs );

    int i;
    for( i = 0; i < 4; ++i )
    {
        a[i][0] = quad[i][0]; a[i][1] = quad[i][1]; a[i][2] = 1;
        a[i][3] = a[i][4] = a[i][5] = a[i][6] = a[i][7] = 0;
        b[i] = 0;
    }
    for( i = 4; i < 8; ++i )
    {
        a[i][3] = quad[i-4][0]; a[i][4] = quad[i-4][1]; a[i][5] = 1;
        a[i][0] = a[i][1] = a[i][2] = a[i][6] = a[i][7] = 0;
        b[i] = 0;
    }

    int u = src_size.width - 1;
    int v = src_size.height - 1;

    a[1][6] = -quad[1][0] * u; a[1][7] = -quad[1][1] * u;
    a[2][6] = -quad[2][0] * u; a[2][7] = -quad[2][1] * u;
    b[1] = b[2] = u;

    a[6][6] = -quad[2][0] * v; a[6][7] = -quad[2][1] * v;
    a[7][6] = -quad[3][0] * v; a[7][7] = -quad[3][1] * v;
    b[6] = b[7] = v;

    cvSolve( &A, &B, &X );

    coeffs[2][2] = 1;

    __END__;
}

/* Warps source into destination by a perspective transform */
static void cvWarpPerspective( CvArr* src, CvArr* dst, double quad[4][2] )
{
    CV_FUNCNAME( "cvWarpPerspective" );

    __BEGIN__;

#ifdef __IPL_H__
    IplImage src_stub, dst_stub;
    IplImage* src_img;
    IplImage* dst_img;
    CV_CALL( src_img = cvGetImage( src, &src_stub ) );
    CV_CALL( dst_img = cvGetImage( dst, &dst_stub ) );
    iplWarpPerspectiveQ( src_img, dst_img, quad, IPL_WARP_R_TO_Q,
                         IPL_INTER_CUBIC | IPL_SMOOTH_EDGE );
#else

    int fill_value = 0;

    double c[3][3]; /* transformation coefficients */
    double q[4][2]; /* rearranged quad */

    int left = 0;
    int right = 0;
    int next_right = 0;
    int next_left = 0;
    double y_min = 0;
    double y_max = 0;
    double k_left, b_left, k_right, b_right;

    uchar* src_data;
    int src_step;
    CvSize src_size;

    uchar* dst_data;
    int dst_step;
    CvSize dst_size;

    double d = 0;
    int direction = 0;
    int i;

    if( !src || (!CV_IS_IMAGE( src ) && !CV_IS_MAT( src )) ||
        cvGetElemType( src ) != CV_8UC1 ||
        cvGetDims( src ) != 2 )
    {
        CV_ERROR( CV_StsBadArg,
            "Source must be two-dimensional array of CV_8UC1 type." );
    }
    if( !dst || (!CV_IS_IMAGE( dst ) && !CV_IS_MAT( dst )) ||
        cvGetElemType( dst ) != CV_8UC1 ||
        cvGetDims( dst ) != 2 )
    {
        CV_ERROR( CV_StsBadArg,
            "Destination must be two-dimensional array of CV_8UC1 type." );
    }

    CV_CALL( cvGetRawData( src, &src_data, &src_step, &src_size ) );
    CV_CALL( cvGetRawData( dst, &dst_data, &dst_step, &dst_size ) );

    CV_CALL( cvGetPerspectiveTransform( src_size, quad, c ) );

    /* if direction > 0 then vertices in quad follow in a CW direction,
       otherwise they follow in a CCW direction */
    direction = 0;
    for( i = 0; i < 4; ++i )
    {
        int ni = i + 1; if( ni == 4 ) ni = 0;
        int pi = i - 1; if( pi == -1 ) pi = 3;

        d = (quad[i][0] - quad[pi][0])*(quad[ni][1] - quad[i][1]) -
            (quad[i][1] - quad[pi][1])*(quad[ni][0] - quad[i][0]);
        int cur_direction = CV_SIGN(d);
        if( direction == 0 )
        {
            direction = cur_direction;
        }
        else if( direction * cur_direction < 0 )
        {
            direction = 0;
            break;
        }
    }
    if( direction == 0 )
    {
        CV_ERROR( CV_StsBadArg, "Quadrangle is nonconvex or degenerated." );
    }

    /* <left> is the index of the topmost quad vertice
       if there are two such vertices <left> is the leftmost one */
    left = 0;
    for( i = 1; i < 4; ++i )
    {
        if( (quad[i][1] < quad[left][1]) ||
            ((quad[i][1] == quad[left][1]) && (quad[i][0] < quad[left][0])) )
        {
            left = i;
        }
    }
    /* rearrange <quad> vertices in such way that they follow in a CW
       direction and the first vertice is the topmost one and put them
       into <q> */
    if( direction > 0 )
    {
        for( i = left; i < 4; ++i )
        {
            q[i-left][0] = quad[i][0];
            q[i-left][1] = quad[i][1];
        }
        for( i = 0; i < left; ++i )
        {
            q[4-left+i][0] = quad[i][0];
            q[4-left+i][1] = quad[i][1];
        }
    }
    else
    {
        for( i = left; i >= 0; --i )
        {
            q[left-i][0] = quad[i][0];
            q[left-i][1] = quad[i][1];
        }
        for( i = 3; i > left; --i )
        {
            q[4+left-i][0] = quad[i][0];
            q[4+left-i][1] = quad[i][1];
        }
    }

    left = right = 0;
    /* if there are two topmost points, <right> is the index of the rightmost one
       otherwise <right> */
    if( q[left][1] == q[left+1][1] )
    {
        right = 1;
    }

    /* <next_left> follows <left> in a CCW direction */
    next_left = 3;
    /* <next_right> follows <right> in a CW direction */
    next_right = right + 1;

    /* subtraction of 1 prevents skipping of the first row */
    y_min = q[left][1] - 1;

    /* left edge equation: y = k_left * x + b_left */
    k_left = (q[left][0] - q[next_left][0]) /
               (q[left][1] - q[next_left][1]);
    b_left = (q[left][1] * q[next_left][0] -
               q[left][0] * q[next_left][1]) /
                 (q[left][1] - q[next_left][1]);

    /* right edge equation: y = k_right * x + b_right */
    k_right = (q[right][0] - q[next_right][0]) /
               (q[right][1] - q[next_right][1]);
    b_right = (q[right][1] * q[next_right][0] -
               q[right][0] * q[next_right][1]) /
                 (q[right][1] - q[next_right][1]);

    for(;;)
    {
        int x, y;

        y_max = MIN( q[next_left][1], q[next_right][1] );

        int iy_min = MAX( cvRound(y_min), 0 ) + 1;
        int iy_max = MIN( cvRound(y_max), dst_size.height - 1 );

        double x_min = k_left * iy_min + b_left;
        double x_max = k_right * iy_min + b_right;

        /* walk through the destination quadrangle row by row */
        for( y = iy_min; y <= iy_max; ++y )
        {
            int ix_min = MAX( cvRound( x_min ), 0 );
            int ix_max = MIN( cvRound( x_max ), dst_size.width - 1 );

            for( x = ix_min; x <= ix_max; ++x )
            {
                /* calculate coordinates of the corresponding source array point */
                double div = (c[2][0] * x + c[2][1] * y + c[2][2]);
                double src_x = (c[0][0] * x + c[0][1] * y + c[0][2]) / div;
                double src_y = (c[1][0] * x + c[1][1] * y + c[1][2]) / div;

                int isrc_x = cvFloor( src_x );
                int isrc_y = cvFloor( src_y );
                double delta_x = src_x - isrc_x;
                double delta_y = src_y - isrc_y;

                uchar* s = src_data + isrc_y * src_step + isrc_x;

                int i00, i10, i01, i11;
                i00 = i10 = i01 = i11 = (int) fill_value;

                /* linear interpolation using 2x2 neighborhood */
                if( isrc_x >= 0 && isrc_x <= src_size.width &&
                    isrc_y >= 0 && isrc_y <= src_size.height )
                {
                    i00 = s[0];
                }
                if( isrc_x >= -1 && isrc_x < src_size.width &&
                    isrc_y >= 0 && isrc_y <= src_size.height )
                {
                    i10 = s[1];
                }
                if( isrc_x >= 0 && isrc_x <= src_size.width &&
                    isrc_y >= -1 && isrc_y < src_size.height )
                {
                    i01 = s[src_step];
                }
                if( isrc_x >= -1 && isrc_x < src_size.width &&
                    isrc_y >= -1 && isrc_y < src_size.height )
                {
                    i11 = s[src_step+1];
                }

                double i0 = i00 + (i10 - i00)*delta_x;
                double i1 = i01 + (i11 - i01)*delta_x;

                ((uchar*)(dst_data + y * dst_step))[x] = (uchar) (i0 + (i1 - i0)*delta_y);
            }
            x_min += k_left;
            x_max += k_right;
        }

        if( (next_left == next_right) ||
            (next_left+1 == next_right && q[next_left][1] == q[next_right][1]) )
        {
            break;
        }

        if( y_max == q[next_left][1] )
        {
            left = next_left;
            next_left = left - 1;

            k_left = (q[left][0] - q[next_left][0]) /
                       (q[left][1] - q[next_left][1]);
            b_left = (q[left][1] * q[next_left][0] -
                       q[left][0] * q[next_left][1]) /
                         (q[left][1] - q[next_left][1]);
        }
        if( y_max == q[next_right][1] )
        {
            right = next_right;
            next_right = right + 1;

            k_right = (q[right][0] - q[next_right][0]) /
                       (q[right][1] - q[next_right][1]);
            b_right = (q[right][1] * q[next_right][0] -
                       q[right][0] * q[next_right][1]) /
                         (q[right][1] - q[next_right][1]);
        }
        y_min = y_max;
    }
#endif /* #ifndef __IPL_H__ */

    __END__;
}

static
void icvRandomQuad( int width, int height, double quad[4][2],
                    double maxxangle,
                    double maxyangle,
                    double maxzangle )
{
    double distfactor = 3.0;
    double distfactor2 = 1.0;

    double halfw, halfh;
    int i;

    double rotVectData[3];
    double vectData[3];
    double rotMatData[9];

    CvMat rotVect;
    CvMat rotMat;
    CvMat vect;

    double d;

    rotVect = cvMat( 3, 1, CV_64FC1, &rotVectData[0] );
    rotMat = cvMat( 3, 3, CV_64FC1, &rotMatData[0] );
    vect = cvMat( 3, 1, CV_64FC1, &vectData[0] );

    rotVectData[0] = maxxangle * (2.0 * rand() / RAND_MAX - 1.0);
    rotVectData[1] = ( maxyangle - fabs( rotVectData[0] ) )
        * (2.0 * rand() / RAND_MAX - 1.0);
    rotVectData[2] = maxzangle * (2.0 * rand() / RAND_MAX - 1.0);
    d = (distfactor + distfactor2 * (2.0 * rand() / RAND_MAX - 1.0)) * width;

/*
    rotVectData[0] = maxxangle;
    rotVectData[1] = maxyangle;
    rotVectData[2] = maxzangle;

    d = distfactor * width;
*/

    cvRodrigues2( &rotVect, &rotMat );

    halfw = 0.5 * width;
    halfh = 0.5 * height;

    quad[0][0] = -halfw;
    quad[0][1] = -halfh;
    quad[1][0] =  halfw;
    quad[1][1] = -halfh;
    quad[2][0] =  halfw;
    quad[2][1] =  halfh;
    quad[3][0] = -halfw;
    quad[3][1] =  halfh;

    for( i = 0; i < 4; i++ )
    {
        rotVectData[0] = quad[i][0];
        rotVectData[1] = quad[i][1];
        rotVectData[2] = 0.0;
        cvMatMulAdd( &rotMat, &rotVect, 0, &vect );
        quad[i][0] = vectData[0] * d / (d + vectData[2]) + halfw;
        quad[i][1] = vectData[1] * d / (d + vectData[2]) + halfh;

        /*
        quad[i][0] += halfw;
        quad[i][1] += halfh;
        */
    }
}


typedef struct CvSampleDistortionData
{
    IplImage* src;
    IplImage* erode;
    IplImage* dilate;
    IplImage* mask;
    IplImage* img;
    IplImage* maskimg;
    int dx;
    int dy;
    int bgcolor;
} CvSampleDistortionData;

#if defined CV_OPENMP && (defined _MSC_VER || defined CV_ICC)
#define CV_OPENMP 1
#else
#undef CV_OPENMP
#endif

typedef struct CvBackgroundData
{
    int    count;
    char** filename;
    int    last;
    int    round;
    CvSize winsize;
} CvBackgroundData;

typedef struct CvBackgroundReader
{
    CvMat   src;
    CvMat   img;
    CvPoint offset;
    float   scale;
    float   scalefactor;
    float   stepfactor;
    CvPoint point;
} CvBackgroundReader;

/*
 * Background reader
 * Created in each thread
 */
CvBackgroundReader* cvbgreader = NULL;

#if defined CV_OPENMP
#pragma omp threadprivate(cvbgreader)
#endif

CvBackgroundData* cvbgdata = NULL;

static int icvStartSampleDistortion( const char* imgfilename, int bgcolor, int bgthreshold,
                              CvSampleDistortionData* data )
{
    memset( data, 0, sizeof( *data ) );
    data->src = cvLoadImage( imgfilename, 0 );
    if( data->src != NULL && data->src->nChannels == 1
        && data->src->depth == IPL_DEPTH_8U )
    {
        int r, c;
        uchar* pmask;
        uchar* psrc;
        uchar* perode;
        uchar* pdilate;
        uchar dd, de;

        data->dx = data->src->width / 2;
        data->dy = data->src->height / 2;
        data->bgcolor = bgcolor;

        data->mask = cvCloneImage( data->src );
        data->erode = cvCloneImage( data->src );
        data->dilate = cvCloneImage( data->src );

        /* make mask image */
        for( r = 0; r < data->mask->height; r++ )
        {
            for( c = 0; c < data->mask->width; c++ )
            {
                pmask = ( (uchar*) (data->mask->imageData + r * data->mask->widthStep)
                        + c );
                if( bgcolor - bgthreshold <= (int) (*pmask) &&
                    (int) (*pmask) <= bgcolor + bgthreshold )
                {
                    *pmask = (uchar) 0;
                }
                else
                {
                    *pmask = (uchar) 255;
                }
            }
        }

        /* extend borders of source image */
        cvErode( data->src, data->erode, 0, 1 );
        cvDilate( data->src, data->dilate, 0, 1 );
        for( r = 0; r < data->mask->height; r++ )
        {
            for( c = 0; c < data->mask->width; c++ )
            {
                pmask = ( (uchar*) (data->mask->imageData + r * data->mask->widthStep)
                        + c );
                if( (*pmask) == 0 )
                {
                    psrc = ( (uchar*) (data->src->imageData + r * data->src->widthStep)
                           + c );
                    perode =
                        ( (uchar*) (data->erode->imageData + r * data->erode->widthStep)
                                + c );
                    pdilate =
                        ( (uchar*)(data->dilate->imageData + r * data->dilate->widthStep)
                                + c );
                    de = (uchar)(bgcolor - (*perode));
                    dd = (uchar)((*pdilate) - bgcolor);
                    if( de >= dd && de > bgthreshold )
                    {
                        (*psrc) = (*perode);
                    }
                    if( dd > de && dd > bgthreshold )
                    {
                        (*psrc) = (*pdilate);
                    }
                }
            }
        }

        data->img = cvCreateImage( cvSize( data->src->width + 2 * data->dx,
                                           data->src->height + 2 * data->dy ),
                                   IPL_DEPTH_8U, 1 );
        data->maskimg = cvCloneImage( data->img );

        return 1;
    }

    return 0;
}

static
void icvPlaceDistortedSample( CvArr* background,
                              int inverse, int maxintensitydev,
                              double maxxangle, double maxyangle, double maxzangle,
                              int inscribe, double maxshiftf, double maxscalef,
                              CvSampleDistortionData* data )
{
    double quad[4][2];
    int r, c;
    uchar* pimg;
    uchar* pbg;
    uchar* palpha;
    uchar chartmp;
    int forecolordev;
    float scale;
    IplImage* img;
    IplImage* maskimg;
    CvMat  stub;
    CvMat* bgimg;

    CvRect cr;
    CvRect roi;

    double xshift, yshift, randscale;

    icvRandomQuad( data->src->width, data->src->height, quad,
                   maxxangle, maxyangle, maxzangle );
    quad[0][0] += (double) data->dx;
    quad[0][1] += (double) data->dy;
    quad[1][0] += (double) data->dx;
    quad[1][1] += (double) data->dy;
    quad[2][0] += (double) data->dx;
    quad[2][1] += (double) data->dy;
    quad[3][0] += (double) data->dx;
    quad[3][1] += (double) data->dy;

    cvSet( data->img, cvScalar( data->bgcolor ) );
    cvSet( data->maskimg, cvScalar( 0.0 ) );

    cvWarpPerspective( data->src, data->img, quad );
    cvWarpPerspective( data->mask, data->maskimg, quad );

    cvSmooth( data->maskimg, data->maskimg, CV_GAUSSIAN, 3, 3 );

    bgimg = cvGetMat( background, &stub );

    cr.x = data->dx;
    cr.y = data->dy;
    cr.width = data->src->width;
    cr.height = data->src->height;

    if( inscribe )
    {
        /* quad's circumscribing rectangle */
        cr.x = (int) MIN( quad[0][0], quad[3][0] );
        cr.y = (int) MIN( quad[0][1], quad[1][1] );
        cr.width  = (int) (MAX( quad[1][0], quad[2][0] ) + 0.5F ) - cr.x;
        cr.height = (int) (MAX( quad[2][1], quad[3][1] ) + 0.5F ) - cr.y;
    }

    xshift = maxshiftf * rand() / RAND_MAX;
    yshift = maxshiftf * rand() / RAND_MAX;

    cr.x -= (int) ( xshift * cr.width  );
    cr.y -= (int) ( yshift * cr.height );
    cr.width  = (int) ((1.0 + maxshiftf) * cr.width );
    cr.height = (int) ((1.0 + maxshiftf) * cr.height);

    randscale = maxscalef * rand() / RAND_MAX;
    cr.x -= (int) ( 0.5 * randscale * cr.width  );
    cr.y -= (int) ( 0.5 * randscale * cr.height );
    cr.width  = (int) ((1.0 + randscale) * cr.width );
    cr.height = (int) ((1.0 + randscale) * cr.height);

    scale = MAX( ((float) cr.width) / bgimg->cols, ((float) cr.height) / bgimg->rows );

    roi.x = (int) (-0.5F * (scale * bgimg->cols - cr.width) + cr.x);
    roi.y = (int) (-0.5F * (scale * bgimg->rows - cr.height) + cr.y);
    roi.width  = (int) (scale * bgimg->cols);
    roi.height = (int) (scale * bgimg->rows);

    img = cvCreateImage( cvSize( bgimg->cols, bgimg->rows ), IPL_DEPTH_8U, 1 );
    maskimg = cvCreateImage( cvSize( bgimg->cols, bgimg->rows ), IPL_DEPTH_8U, 1 );

    cvSetImageROI( data->img, roi );
    cvResize( data->img, img );
    cvResetImageROI( data->img );
    cvSetImageROI( data->maskimg, roi );
    cvResize( data->maskimg, maskimg );
    cvResetImageROI( data->maskimg );

    forecolordev = (int) (maxintensitydev * (2.0 * rand() / RAND_MAX - 1.0));

    for( r = 0; r < img->height; r++ )
    {
        for( c = 0; c < img->width; c++ )
        {
            pimg = (uchar*) img->imageData + r * img->widthStep + c;
            pbg = (uchar*) bgimg->data.ptr + r * bgimg->step + c;
            palpha = (uchar*) maskimg->imageData + r * maskimg->widthStep + c;
            chartmp = (uchar) MAX( 0, MIN( 255, forecolordev + (*pimg) ) );
            if( inverse )
            {
                chartmp ^= 0xFF;
            }
            *pbg = (uchar) (( chartmp*(*palpha )+(255 - (*palpha) )*(*pbg) ) / 255);
        }
    }

    cvReleaseImage( &img );
    cvReleaseImage( &maskimg );
}

static
void icvEndSampleDistortion( CvSampleDistortionData* data )
{
    if( data->src )
    {
        cvReleaseImage( &data->src );
    }
    if( data->mask )
    {
        cvReleaseImage( &data->mask );
    }
    if( data->erode )
    {
        cvReleaseImage( &data->erode );
    }
    if( data->dilate )
    {
        cvReleaseImage( &data->dilate );
    }
    if( data->img )
    {
        cvReleaseImage( &data->img );
    }
    if( data->maskimg )
    {
        cvReleaseImage( &data->maskimg );
    }
}

static
CvBackgroundData* icvCreateBackgroundData( const char* filename, CvSize winsize )
{
    CvBackgroundData* data = NULL;

    const char* dir = NULL;
    char full[PATH_MAX];
    char* imgfilename = NULL;
    size_t datasize = 0;
    int    count = 0;
    FILE*  input = NULL;
    char*  tmp   = NULL;
    int    len   = 0;

    assert( filename != NULL );

    dir = strrchr( filename, '\\' );
    if( dir == NULL )
    {
        dir = strrchr( filename, '/' );
    }
    if( dir == NULL )
    {
        imgfilename = &(full[0]);
    }
    else
    {
        strncpy( &(full[0]), filename, (dir - filename + 1) );
        imgfilename = &(full[(dir - filename + 1)]);
    }

    input = fopen( filename, "r" );
    if( input != NULL )
    {
        count = 0;
        datasize = 0;

        /* count */
        while( !feof( input ) )
        {
            *imgfilename = '\0';
            if( !fgets( imgfilename, PATH_MAX - (int)(imgfilename - full) - 1, input ))
                break;
            len = (int)strlen( imgfilename );
            for( ; len > 0 && isspace(imgfilename[len-1]); len-- )
                imgfilename[len-1] = '\0';
            if( len > 0 )
            {
                if( (*imgfilename) == '#' ) continue; /* comment */
                count++;
                datasize += sizeof( char ) * (strlen( &(full[0]) ) + 1);
            }
        }
        if( count > 0 )
        {
            //rewind( input );
            fseek( input, 0, SEEK_SET );
            datasize += sizeof( *data ) + sizeof( char* ) * count;
            data = (CvBackgroundData*) cvAlloc( datasize );
            memset( (void*) data, 0, datasize );
            data->count = count;
            data->filename = (char**) (data + 1);
            data->last = 0;
            data->round = 0;
            data->winsize = winsize;
            tmp = (char*) (data->filename + data->count);
            count = 0;
            while( !feof( input ) )
            {
                *imgfilename = '\0';
                if( !fgets( imgfilename, PATH_MAX - (int)(imgfilename - full) - 1, input ))
                    break;
                len = (int)strlen( imgfilename );
                if( len > 0 && imgfilename[len-1] == '\n' )
                    imgfilename[len-1] = 0, len--;
                if( len > 0 )
                {
                    if( (*imgfilename) == '#' ) continue; /* comment */
                    data->filename[count++] = tmp;
                    strcpy( tmp, &(full[0]) );
                    tmp += strlen( &(full[0]) ) + 1;
                }
            }
        }
        fclose( input );
    }

    return data;
}

static
void icvReleaseBackgroundData( CvBackgroundData** data )
{
    assert( data != NULL && (*data) != NULL );

    cvFree( data );
}

static
CvBackgroundReader* icvCreateBackgroundReader()
{
    CvBackgroundReader* reader = NULL;

    reader = (CvBackgroundReader*) cvAlloc( sizeof( *reader ) );
    memset( (void*) reader, 0, sizeof( *reader ) );
    reader->src = cvMat( 0, 0, CV_8UC1, NULL );
    reader->img = cvMat( 0, 0, CV_8UC1, NULL );
    reader->offset = cvPoint( 0, 0 );
    reader->scale       = 1.0F;
    reader->scalefactor = 1.4142135623730950488016887242097F;
    reader->stepfactor  = 0.5F;
    reader->point = reader->offset;

    return reader;
}

static
void icvReleaseBackgroundReader( CvBackgroundReader** reader )
{
    assert( reader != NULL && (*reader) != NULL );

    if( (*reader)->src.data.ptr != NULL )
    {
        cvFree( &((*reader)->src.data.ptr) );
    }
    if( (*reader)->img.data.ptr != NULL )
    {
        cvFree( &((*reader)->img.data.ptr) );
    }

    cvFree( reader );
}

static
void icvGetNextFromBackgroundData( CvBackgroundData* data,
                                   CvBackgroundReader* reader )
{
    IplImage* img = NULL;
    size_t datasize = 0;
    int round = 0;
    int i = 0;
    CvPoint offset = cvPoint(0,0);

    assert( data != NULL && reader != NULL );

    if( reader->src.data.ptr != NULL )
    {
        cvFree( &(reader->src.data.ptr) );
        reader->src.data.ptr = NULL;
    }
    if( reader->img.data.ptr != NULL )
    {
        cvFree( &(reader->img.data.ptr) );
        reader->img.data.ptr = NULL;
    }

    #ifdef CV_OPENMP
    #pragma omp critical(c_background_data)
    #endif /* CV_OPENMP */
    {
        for( i = 0; i < data->count; i++ )
        {
            round = data->round;

#ifdef CV_VERBOSE
            printf( "Open background image: %s\n", data->filename[data->last] );
#endif /* CV_VERBOSE */

            data->last = rand() % data->count;
            data->last %= data->count;
            img = cvLoadImage( data->filename[data->last], 0 );
            if( !img )
                continue;
            data->round += data->last / data->count;
            data->round = data->round % (data->winsize.width * data->winsize.height);

            offset.x = round % data->winsize.width;
            offset.y = round / data->winsize.width;

            offset.x = MIN( offset.x, img->width - data->winsize.width );
            offset.y = MIN( offset.y, img->height - data->winsize.height );

            if( img != NULL && img->depth == IPL_DEPTH_8U && img->nChannels == 1 &&
                offset.x >= 0 && offset.y >= 0 )
            {
                break;
            }
            if( img != NULL )
                cvReleaseImage( &img );
            img = NULL;
        }
    }
    if( img == NULL )
    {
        /* no appropriate image */

#ifdef CV_VERBOSE
        printf( "Invalid background description file.\n" );
#endif /* CV_VERBOSE */

        assert( 0 );
        exit( 1 );
    }
    datasize = sizeof( uchar ) * img->width * img->height;
    reader->src = cvMat( img->height, img->width, CV_8UC1, (void*) cvAlloc( datasize ) );
    cvCopy( img, &reader->src, NULL );
    cvReleaseImage( &img );
    img = NULL;

    //reader->offset.x = round % data->winsize.width;
    //reader->offset.y = round / data->winsize.width;
    reader->offset = offset;
    reader->point = reader->offset;
    reader->scale = MAX(
        ((float) data->winsize.width + reader->point.x) / ((float) reader->src.cols),
        ((float) data->winsize.height + reader->point.y) / ((float) reader->src.rows) );

    reader->img = cvMat( (int) (reader->scale * reader->src.rows + 0.5F),
                         (int) (reader->scale * reader->src.cols + 0.5F),
                          CV_8UC1, (void*) cvAlloc( datasize ) );
    cvResize( &(reader->src), &(reader->img) );
}

/*
 * icvGetBackgroundImage
 *
 * Get an image from background
 * <img> must be allocated and have size, previously passed to icvInitBackgroundReaders
 *
 * Usage example:
 * icvInitBackgroundReaders( "bg.txt", cvSize( 24, 24 ) );
 * ...
 * #pragma omp parallel
 * {
 *     ...
 *     icvGetBackgourndImage( cvbgdata, cvbgreader, img );
 *     ...
 * }
 * ...
 * icvDestroyBackgroundReaders();
 */
static
void icvGetBackgroundImage( CvBackgroundData* data,
                            CvBackgroundReader* reader,
                            CvMat* img )
{
    CvMat mat;

    assert( data != NULL && reader != NULL && img != NULL );
    assert( CV_MAT_TYPE( img->type ) == CV_8UC1 );
    assert( img->cols == data->winsize.width );
    assert( img->rows == data->winsize.height );

    if( reader->img.data.ptr == NULL )
    {
        icvGetNextFromBackgroundData( data, reader );
    }

    mat = cvMat( data->winsize.height, data->winsize.width, CV_8UC1 );
    cvSetData( &mat, (void*) (reader->img.data.ptr + reader->point.y * reader->img.step
                              + reader->point.x * sizeof( uchar )), reader->img.step );

    cvCopy( &mat, img, 0 );
    if( (int) ( reader->point.x + (1.0F + reader->stepfactor ) * data->winsize.width )
            < reader->img.cols )
    {
        reader->point.x += (int) (reader->stepfactor * data->winsize.width);
    }
    else
    {
        reader->point.x = reader->offset.x;
        if( (int) ( reader->point.y + (1.0F + reader->stepfactor ) * data->winsize.height )
                < reader->img.rows )
        {
            reader->point.y += (int) (reader->stepfactor * data->winsize.height);
        }
        else
        {
            reader->point.y = reader->offset.y;
            reader->scale *= reader->scalefactor;
            if( reader->scale <= 1.0F )
            {
                reader->img = cvMat( (int) (reader->scale * reader->src.rows),
                                     (int) (reader->scale * reader->src.cols),
                                      CV_8UC1, (void*) (reader->img.data.ptr) );
                cvResize( &(reader->src), &(reader->img) );
            }
            else
            {
                icvGetNextFromBackgroundData( data, reader );
            }
        }
    }
}

/*
 * icvInitBackgroundReaders
 *
 * Initialize background reading process.
 * <cvbgreader> and <cvbgdata> are initialized.
 * Must be called before any usage of background
 *
 * filename - name of background description file
 * winsize  - size of images will be obtained from background
 *
 * return 1 on success, 0 otherwise.
 */
static int icvInitBackgroundReaders( const char* filename, CvSize winsize )
{
    if( cvbgdata == NULL && filename != NULL )
    {
        cvbgdata = icvCreateBackgroundData( filename, winsize );
    }

    if( cvbgdata )
    {

        #ifdef CV_OPENMP
        #pragma omp parallel
        #endif /* CV_OPENMP */
        {
            #ifdef CV_OPENMP
            #pragma omp critical(c_create_bg_data)
            #endif /* CV_OPENMP */
            {
                if( cvbgreader == NULL )
                {
                    cvbgreader = icvCreateBackgroundReader();
                }
            }
        }

    }

    return (cvbgdata != NULL);
}

/*
 * icvDestroyBackgroundReaders
 *
 * Finish backgournd reading process
 */
static
void icvDestroyBackgroundReaders()
{
    /* release background reader in each thread */
    #ifdef CV_OPENMP
    #pragma omp parallel
    #endif /* CV_OPENMP */
    {
        #ifdef CV_OPENMP
        #pragma omp critical(c_release_bg_data)
        #endif /* CV_OPENMP */
        {
            if( cvbgreader != NULL )
            {
                icvReleaseBackgroundReader( &cvbgreader );
                cvbgreader = NULL;
            }
        }
    }

    if( cvbgdata != NULL )
    {
        icvReleaseBackgroundData( &cvbgdata );
        cvbgdata = NULL;
    }
}

void cvCreateTrainingSamples( const char* filename,
                              const char* imgfilename, int bgcolor, int bgthreshold,
                              const char* bgfilename, int count,
                              int invert, int maxintensitydev,
                              double maxxangle, double maxyangle, double maxzangle,
                              int showsamples,
                              int winwidth, int winheight )
{
    CvSampleDistortionData data;

    assert( filename != NULL );
    assert( imgfilename != NULL );

    if( !icvMkDir( filename ) )
    {
        fprintf( stderr, "Unable to create output file: %s\n", filename );
        return;
    }
    if( icvStartSampleDistortion( imgfilename, bgcolor, bgthreshold, &data ) )
    {
        FILE* output = NULL;

        output = fopen( filename, "wb" );
        if( output != NULL )
        {
            int hasbg;
            int i;
            CvMat sample;
            int inverse;

            hasbg = 0;
            hasbg = (bgfilename != NULL && icvInitBackgroundReaders( bgfilename,
                     cvSize( winwidth,winheight ) ) );

            sample = cvMat( winheight, winwidth, CV_8UC1, cvAlloc( sizeof( uchar ) *
                            winheight * winwidth ) );

            icvWriteVecHeader( output, count, sample.cols, sample.rows );

            if( showsamples )
            {
                cvNamedWindow( "Sample", CV_WINDOW_AUTOSIZE );
            }

            inverse = invert;
            for( i = 0; i < count; i++ )
            {
                if( hasbg )
                {
                    icvGetBackgroundImage( cvbgdata, cvbgreader, &sample );
                }
                else
                {
                    cvSet( &sample, cvScalar( bgcolor ) );
                }

                if( invert == CV_RANDOM_INVERT )
                {
                    inverse = (rand() > (RAND_MAX/2));
                }
                icvPlaceDistortedSample( &sample, inverse, maxintensitydev,
                    maxxangle, maxyangle, maxzangle,
                    0   /* nonzero means placing image without cut offs */,
                    0.0 /* nozero adds random shifting                  */,
                    0.0 /* nozero adds random scaling                   */,
                    &data );

                if( showsamples )
                {
                    cvShowImage( "Sample", &sample );
                    if( cvWaitKey( 0 ) == 27 )
                    {
                        showsamples = 0;
                    }
                }

                icvWriteVecSample( output, &sample );

#ifdef CV_VERBOSE
                if( i % 500 == 0 )
                {
                    printf( "\r%3d%%", 100 * i / count );
                }
#endif /* CV_VERBOSE */
            }
            icvDestroyBackgroundReaders();
            cvFree( &(sample.data.ptr) );
            fclose( output );
        } /* if( output != NULL ) */

        icvEndSampleDistortion( &data );
    }

#ifdef CV_VERBOSE
    printf( "\r      \r" );
#endif /* CV_VERBOSE */

}

#define CV_INFO_FILENAME "info.dat"

void cvCreateTestSamples( const char* infoname,
                          const char* imgfilename, int bgcolor, int bgthreshold,
                          const char* bgfilename, int count,
                          int invert, int maxintensitydev,
                          double maxxangle, double maxyangle, double maxzangle,
                          int showsamples,
                          int winwidth, int winheight )
{
    CvSampleDistortionData data;

    assert( infoname != NULL );
    assert( imgfilename != NULL );
    assert( bgfilename != NULL );

    if( !icvMkDir( infoname ) )
    {

#if CV_VERBOSE
        fprintf( stderr, "Unable to create directory hierarchy: %s\n", infoname );
#endif /* CV_VERBOSE */

        return;
    }
    if( icvStartSampleDistortion( imgfilename, bgcolor, bgthreshold, &data ) )
    {
        char fullname[PATH_MAX];
        char* filename;
        CvMat win;
        FILE* info;

        if( icvInitBackgroundReaders( bgfilename, cvSize( 10, 10 ) ) )
        {
            int i;
            int x, y, width, height;
            float scale;
            float maxscale;
            int inverse;

            if( showsamples )
            {
                cvNamedWindow( "Image", CV_WINDOW_AUTOSIZE );
            }

            info = fopen( infoname, "w" );
            strcpy( fullname, infoname );
            filename = strrchr( fullname, '\\' );
            if( filename == NULL )
            {
                filename = strrchr( fullname, '/' );
            }
            if( filename == NULL )
            {
                filename = fullname;
            }
            else
            {
                filename++;
            }

            count = MIN( count, cvbgdata->count );
            inverse = invert;
            for( i = 0; i < count; i++ )
            {
                icvGetNextFromBackgroundData( cvbgdata, cvbgreader );

                maxscale = MIN( 0.7F * cvbgreader->src.cols / winwidth,
                                   0.7F * cvbgreader->src.rows / winheight );
                if( maxscale < 1.0F ) continue;

                scale = (maxscale - 1.0F) * rand() / RAND_MAX + 1.0F;
                width = (int) (scale * winwidth);
                height = (int) (scale * winheight);
                x = (int) ((0.1+0.8 * rand()/RAND_MAX) * (cvbgreader->src.cols - width));
                y = (int) ((0.1+0.8 * rand()/RAND_MAX) * (cvbgreader->src.rows - height));

                cvGetSubArr( &cvbgreader->src, &win, cvRect( x, y ,width, height ) );
                if( invert == CV_RANDOM_INVERT )
                {
                    inverse = (rand() > (RAND_MAX/2));
                }
                icvPlaceDistortedSample( &win, inverse, maxintensitydev,
                                         maxxangle, maxyangle, maxzangle,
                                         1, 0.0, 0.0, &data );


                sprintf( filename, "%04d_%04d_%04d_%04d_%04d.jpg",
                         (i + 1), x, y, width, height );

                if( info )
                {
                    fprintf( info, "%s %d %d %d %d %d\n",
                        filename, 1, x, y, width, height );
                }

                cvSaveImage( fullname, &cvbgreader->src );
                if( showsamples )
                {
                    cvShowImage( "Image", &cvbgreader->src );
                    if( cvWaitKey( 0 ) == 27 )
                    {
                        showsamples = 0;
                    }
                }
            }
            if( info ) fclose( info );
            icvDestroyBackgroundReaders();
        }
        icvEndSampleDistortion( &data );
    }
}


int cvCreateTrainingSamplesFromInfo( const char* infoname, const char* vecfilename,
                                     int num,
                                     int showsamples,
                                     int winwidth, int winheight )
{
    char fullname[PATH_MAX];
    char* filename;

    FILE* info;
    FILE* vec;
    IplImage* src=0;
    IplImage* sample;
    int line;
    int error;
    int i;
    int x, y, width, height;
    int total;

    assert( infoname != NULL );
    assert( vecfilename != NULL );

    total = 0;
    if( !icvMkDir( vecfilename ) )
    {

#if CV_VERBOSE
        fprintf( stderr, "Unable to create directory hierarchy: %s\n", vecfilename );
#endif /* CV_VERBOSE */

        return total;
    }

    info = fopen( infoname, "r" );
    if( info == NULL )
    {

#if CV_VERBOSE
        fprintf( stderr, "Unable to open file: %s\n", infoname );
#endif /* CV_VERBOSE */

        return total;
    }

    vec = fopen( vecfilename, "wb" );
    if( vec == NULL )
    {

#if CV_VERBOSE
        fprintf( stderr, "Unable to open file: %s\n", vecfilename );
#endif /* CV_VERBOSE */

        fclose( info );

        return total;
    }

    sample = cvCreateImage( cvSize( winwidth, winheight ), IPL_DEPTH_8U, 1 );

    icvWriteVecHeader( vec, num, sample->width, sample->height );

    if( showsamples )
    {
        cvNamedWindow( "Sample", CV_WINDOW_AUTOSIZE );
    }

    strcpy( fullname, infoname );
    filename = strrchr( fullname, '\\' );
    if( filename == NULL )
    {
        filename = strrchr( fullname, '/' );
    }
    if( filename == NULL )
    {
        filename = fullname;
    }
    else
    {
        filename++;
    }

    for( line = 1, error = 0, total = 0; total < num ;line++ )
    {
        int count;

        error = ( fscanf( info, "%s %d", filename, &count ) != 2 );
        if( !error )
        {
            src = cvLoadImage( fullname, 0 );
            error = ( src == NULL );
            if( error )
            {

#if CV_VERBOSE
                fprintf( stderr, "Unable to open image: %s\n", fullname );
#endif /* CV_VERBOSE */

            }
        }
        for( i = 0; (i < count) && (total < num); i++, total++ )
        {
            error = ( fscanf( info, "%d %d %d %d", &x, &y, &width, &height ) != 4 );
            if( error ) break;
            cvSetImageROI( src, cvRect( x, y, width, height ) );
            cvResize( src, sample, width >= sample->width &&
                      height >= sample->height ? CV_INTER_AREA : CV_INTER_LINEAR );

            if( showsamples )
            {
                cvShowImage( "Sample", sample );
                if( cvWaitKey( 0 ) == 27 )
                {
                    showsamples = 0;
                }
            }
            icvWriteVecSample( vec, sample );
        }

        if( src )
        {
            cvReleaseImage( &src );
        }

        if( error )
        {

#if CV_VERBOSE
            fprintf( stderr, "%s(%d) : parse error", infoname, line );
#endif /* CV_VERBOSE */

            break;
        }
    }

    if( sample )
    {
        cvReleaseImage( &sample );
    }

    fclose( vec );
    fclose( info );

    return total;
}

typedef struct CvVecFile
{
    FILE*  input;
    int    count;
    int    vecsize;
    int    last;
    short* vector;
} CvVecFile;

static
int icvGetTraininDataFromVec( CvMat* img, void* userdata )
{
    uchar tmp = 0;
    int r = 0;
    int c = 0;

    assert( img->rows * img->cols == ((CvVecFile*) userdata)->vecsize );

    size_t elements_read = fread( &tmp, sizeof( tmp ), 1, ((CvVecFile*) userdata)->input );
    CV_Assert(elements_read == 1);
    elements_read = fread( ((CvVecFile*) userdata)->vector, sizeof( short ),
           ((CvVecFile*) userdata)->vecsize, ((CvVecFile*) userdata)->input );
    CV_Assert(elements_read == (size_t)((CvVecFile*) userdata)->vecsize);

    if( feof( ((CvVecFile*) userdata)->input ) ||
        (((CvVecFile*) userdata)->last)++ >= ((CvVecFile*) userdata)->count )
    {
        return 0;
    }

    for( r = 0; r < img->rows; r++ )
    {
        for( c = 0; c < img->cols; c++ )
        {
            CV_MAT_ELEM( *img, uchar, r, c ) =
                (uchar) ( ((CvVecFile*) userdata)->vector[r * img->cols + c] );
        }
    }

    return 1;
}
void cvShowVecSamples( const char* filename, int winwidth, int winheight,
                       double scale )
{
    CvVecFile file;
    short tmp;
    int i;
    CvMat* sample;

    tmp = 0;
    file.input = fopen( filename, "rb" );

    if( file.input != NULL )
    {
        size_t elements_read1 = fread( &file.count, sizeof( file.count ), 1, file.input );
        size_t elements_read2 = fread( &file.vecsize, sizeof( file.vecsize ), 1, file.input );
        size_t elements_read3 = fread( &tmp, sizeof( tmp ), 1, file.input );
        size_t elements_read4 = fread( &tmp, sizeof( tmp ), 1, file.input );
        CV_Assert(elements_read1 == 1 && elements_read2 == 1 && elements_read3 == 1 && elements_read4 == 1);

        if( file.vecsize != winwidth * winheight )
        {
            int guessed_w = 0;
            int guessed_h = 0;

            fprintf( stderr, "Warning: specified sample width=%d and height=%d "
                "does not correspond to .vec file vector size=%d.\n",
                winwidth, winheight, file.vecsize );
            if( file.vecsize > 0 )
            {
                guessed_w = cvFloor( sqrt( (float) file.vecsize ) );
                if( guessed_w > 0 )
                {
                    guessed_h = file.vecsize / guessed_w;
                }
            }

            if( guessed_w <= 0 || guessed_h <= 0 || guessed_w * guessed_h != file.vecsize)
            {
                fprintf( stderr, "Error: failed to guess sample width and height\n" );
                fclose( file.input );

                return;
            }
            else
            {
                winwidth = guessed_w;
                winheight = guessed_h;
                fprintf( stderr, "Guessed width=%d, guessed height=%d\n",
                    winwidth, winheight );
            }
        }

        if( !feof( file.input ) && scale > 0 )
        {
            CvMat* scaled_sample = 0;

            file.last = 0;
            file.vector = (short*) cvAlloc( sizeof( *file.vector ) * file.vecsize );
            sample = scaled_sample = cvCreateMat( winheight, winwidth, CV_8UC1 );
            if( scale != 1.0 )
            {
                scaled_sample = cvCreateMat( MAX( 1, cvCeil( scale * winheight ) ),
                                             MAX( 1, cvCeil( scale * winwidth ) ),
                                             CV_8UC1 );
            }
            cvNamedWindow( "Sample", CV_WINDOW_AUTOSIZE );
            for( i = 0; i < file.count; i++ )
            {
                icvGetTraininDataFromVec( sample, &file );
                if( scale != 1.0 ) cvResize( sample, scaled_sample, CV_INTER_LINEAR);
                cvShowImage( "Sample", scaled_sample );
                if( cvWaitKey( 0 ) == 27 ) break;
            }
            if( scaled_sample && scaled_sample != sample ) cvReleaseMat( &scaled_sample );
            cvReleaseMat( &sample );
            cvFree( &file.vector );
        }
        fclose( file.input );
    }
}