// // This file is auto-generated. Please don't modify it! // package org.opencv.ml; import org.opencv.core.Mat; import org.opencv.core.TermCriteria; // C++: class EM //javadoc: EM public class EM extends StatModel { protected EM(long addr) { super(addr); } public static final int COV_MAT_SPHERICAL = 0, COV_MAT_DIAGONAL = 1, COV_MAT_GENERIC = 2, COV_MAT_DEFAULT = COV_MAT_DIAGONAL, DEFAULT_NCLUSTERS = 5, DEFAULT_MAX_ITERS = 100, START_E_STEP = 1, START_M_STEP = 2, START_AUTO_STEP = 0; // // C++: int getClustersNumber() // //javadoc: EM::getClustersNumber() public int getClustersNumber() { int retVal = getClustersNumber_0(nativeObj); return retVal; } // // C++: void setClustersNumber(int val) // //javadoc: EM::setClustersNumber(val) public void setClustersNumber(int val) { setClustersNumber_0(nativeObj, val); return; } // // C++: int getCovarianceMatrixType() // //javadoc: EM::getCovarianceMatrixType() public int getCovarianceMatrixType() { int retVal = getCovarianceMatrixType_0(nativeObj); return retVal; } // // C++: void setCovarianceMatrixType(int val) // //javadoc: EM::setCovarianceMatrixType(val) public void setCovarianceMatrixType(int val) { setCovarianceMatrixType_0(nativeObj, val); return; } // // C++: TermCriteria getTermCriteria() // //javadoc: EM::getTermCriteria() public TermCriteria getTermCriteria() { TermCriteria retVal = new TermCriteria(getTermCriteria_0(nativeObj)); return retVal; } // // C++: void setTermCriteria(TermCriteria val) // //javadoc: EM::setTermCriteria(val) public void setTermCriteria(TermCriteria val) { setTermCriteria_0(nativeObj, val.type, val.maxCount, val.epsilon); return; } // // C++: Mat getWeights() // //javadoc: EM::getWeights() public Mat getWeights() { Mat retVal = new Mat(getWeights_0(nativeObj)); return retVal; } // // C++: Mat getMeans() // //javadoc: EM::getMeans() public Mat getMeans() { Mat retVal = new Mat(getMeans_0(nativeObj)); return retVal; } // // C++: Vec2d predict2(Mat sample, Mat& probs) // //javadoc: EM::predict2(sample, probs) public double[] predict2(Mat sample, Mat probs) { double[] retVal = predict2_0(nativeObj, sample.nativeObj, probs.nativeObj); return retVal; } // // C++: bool trainEM(Mat samples, Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat()) // //javadoc: EM::trainEM(samples, logLikelihoods, labels, probs) public boolean trainEM(Mat samples, Mat logLikelihoods, Mat labels, Mat probs) { boolean retVal = trainEM_0(nativeObj, samples.nativeObj, logLikelihoods.nativeObj, labels.nativeObj, probs.nativeObj); return retVal; } //javadoc: EM::trainEM(samples) public boolean trainEM(Mat samples) { boolean retVal = trainEM_1(nativeObj, samples.nativeObj); return retVal; } // // C++: bool trainE(Mat samples, Mat means0, Mat covs0 = Mat(), Mat weights0 = Mat(), Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat()) // //javadoc: EM::trainE(samples, means0, covs0, weights0, logLikelihoods, labels, probs) public boolean trainE(Mat samples, Mat means0, Mat covs0, Mat weights0, Mat logLikelihoods, Mat labels, Mat probs) { boolean retVal = trainE_0(nativeObj, samples.nativeObj, means0.nativeObj, covs0.nativeObj, weights0.nativeObj, logLikelihoods.nativeObj, labels.nativeObj, probs.nativeObj); return retVal; } //javadoc: EM::trainE(samples, means0) public boolean trainE(Mat samples, Mat means0) { boolean retVal = trainE_1(nativeObj, samples.nativeObj, means0.nativeObj); return retVal; } // // C++: bool trainM(Mat samples, Mat probs0, Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat()) // //javadoc: EM::trainM(samples, probs0, logLikelihoods, labels, probs) public boolean trainM(Mat samples, Mat probs0, Mat logLikelihoods, Mat labels, Mat probs) { boolean retVal = trainM_0(nativeObj, samples.nativeObj, probs0.nativeObj, logLikelihoods.nativeObj, labels.nativeObj, probs.nativeObj); return retVal; } //javadoc: EM::trainM(samples, probs0) public boolean trainM(Mat samples, Mat probs0) { boolean retVal = trainM_1(nativeObj, samples.nativeObj, probs0.nativeObj); return retVal; } // // C++: static Ptr_EM create() // //javadoc: EM::create() public static EM create() { EM retVal = new EM(create_0()); return retVal; } @Override protected void finalize() throws Throwable { delete(nativeObj); } // C++: int getClustersNumber() private static native int getClustersNumber_0(long nativeObj); // C++: void setClustersNumber(int val) private static native void setClustersNumber_0(long nativeObj, int val); // C++: int getCovarianceMatrixType() private static native int getCovarianceMatrixType_0(long nativeObj); // C++: void setCovarianceMatrixType(int val) private static native void setCovarianceMatrixType_0(long nativeObj, int val); // C++: TermCriteria getTermCriteria() private static native double[] getTermCriteria_0(long nativeObj); // C++: void setTermCriteria(TermCriteria val) private static native void setTermCriteria_0(long nativeObj, int val_type, int val_maxCount, double val_epsilon); // C++: Mat getWeights() private static native long getWeights_0(long nativeObj); // C++: Mat getMeans() private static native long getMeans_0(long nativeObj); // C++: Vec2d predict2(Mat sample, Mat& probs) private static native double[] predict2_0(long nativeObj, long sample_nativeObj, long probs_nativeObj); // C++: bool trainEM(Mat samples, Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat()) private static native boolean trainEM_0(long nativeObj, long samples_nativeObj, long logLikelihoods_nativeObj, long labels_nativeObj, long probs_nativeObj); private static native boolean trainEM_1(long nativeObj, long samples_nativeObj); // C++: bool trainE(Mat samples, Mat means0, Mat covs0 = Mat(), Mat weights0 = Mat(), Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat()) private static native boolean trainE_0(long nativeObj, long samples_nativeObj, long means0_nativeObj, long covs0_nativeObj, long weights0_nativeObj, long logLikelihoods_nativeObj, long labels_nativeObj, long probs_nativeObj); private static native boolean trainE_1(long nativeObj, long samples_nativeObj, long means0_nativeObj); // C++: bool trainM(Mat samples, Mat probs0, Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat()) private static native boolean trainM_0(long nativeObj, long samples_nativeObj, long probs0_nativeObj, long logLikelihoods_nativeObj, long labels_nativeObj, long probs_nativeObj); private static native boolean trainM_1(long nativeObj, long samples_nativeObj, long probs0_nativeObj); // C++: static Ptr_EM create() private static native long create_0(); // native support for java finalize() private static native void delete(long nativeObj); }