// // This file is auto-generated. Please don't modify it! // package org.opencv.ml; import org.opencv.core.Mat; import org.opencv.core.TermCriteria; // C++: class LogisticRegression //javadoc: LogisticRegression public class LogisticRegression extends StatModel { protected LogisticRegression(long addr) { super(addr); } public static final int REG_DISABLE = -1, REG_L1 = 0, REG_L2 = 1, BATCH = 0, MINI_BATCH = 1; // // C++: double getLearningRate() // //javadoc: LogisticRegression::getLearningRate() public double getLearningRate() { double retVal = getLearningRate_0(nativeObj); return retVal; } // // C++: void setLearningRate(double val) // //javadoc: LogisticRegression::setLearningRate(val) public void setLearningRate(double val) { setLearningRate_0(nativeObj, val); return; } // // C++: int getIterations() // //javadoc: LogisticRegression::getIterations() public int getIterations() { int retVal = getIterations_0(nativeObj); return retVal; } // // C++: void setIterations(int val) // //javadoc: LogisticRegression::setIterations(val) public void setIterations(int val) { setIterations_0(nativeObj, val); return; } // // C++: int getRegularization() // //javadoc: LogisticRegression::getRegularization() public int getRegularization() { int retVal = getRegularization_0(nativeObj); return retVal; } // // C++: void setRegularization(int val) // //javadoc: LogisticRegression::setRegularization(val) public void setRegularization(int val) { setRegularization_0(nativeObj, val); return; } // // C++: int getTrainMethod() // //javadoc: LogisticRegression::getTrainMethod() public int getTrainMethod() { int retVal = getTrainMethod_0(nativeObj); return retVal; } // // C++: void setTrainMethod(int val) // //javadoc: LogisticRegression::setTrainMethod(val) public void setTrainMethod(int val) { setTrainMethod_0(nativeObj, val); return; } // // C++: int getMiniBatchSize() // //javadoc: LogisticRegression::getMiniBatchSize() public int getMiniBatchSize() { int retVal = getMiniBatchSize_0(nativeObj); return retVal; } // // C++: void setMiniBatchSize(int val) // //javadoc: LogisticRegression::setMiniBatchSize(val) public void setMiniBatchSize(int val) { setMiniBatchSize_0(nativeObj, val); return; } // // C++: TermCriteria getTermCriteria() // //javadoc: LogisticRegression::getTermCriteria() public TermCriteria getTermCriteria() { TermCriteria retVal = new TermCriteria(getTermCriteria_0(nativeObj)); return retVal; } // // C++: void setTermCriteria(TermCriteria val) // //javadoc: LogisticRegression::setTermCriteria(val) public void setTermCriteria(TermCriteria val) { setTermCriteria_0(nativeObj, val.type, val.maxCount, val.epsilon); return; } // // C++: float predict(Mat samples, Mat& results = Mat(), int flags = 0) // //javadoc: LogisticRegression::predict(samples, results, flags) public float predict(Mat samples, Mat results, int flags) { float retVal = predict_0(nativeObj, samples.nativeObj, results.nativeObj, flags); return retVal; } //javadoc: LogisticRegression::predict(samples) public float predict(Mat samples) { float retVal = predict_1(nativeObj, samples.nativeObj); return retVal; } // // C++: Mat get_learnt_thetas() // //javadoc: LogisticRegression::get_learnt_thetas() public Mat get_learnt_thetas() { Mat retVal = new Mat(get_learnt_thetas_0(nativeObj)); return retVal; } // // C++: static Ptr_LogisticRegression create() // //javadoc: LogisticRegression::create() public static LogisticRegression create() { LogisticRegression retVal = new LogisticRegression(create_0()); return retVal; } @Override protected void finalize() throws Throwable { delete(nativeObj); } // C++: double getLearningRate() private static native double getLearningRate_0(long nativeObj); // C++: void setLearningRate(double val) private static native void setLearningRate_0(long nativeObj, double val); // C++: int getIterations() private static native int getIterations_0(long nativeObj); // C++: void setIterations(int val) private static native void setIterations_0(long nativeObj, int val); // C++: int getRegularization() private static native int getRegularization_0(long nativeObj); // C++: void setRegularization(int val) private static native void setRegularization_0(long nativeObj, int val); // C++: int getTrainMethod() private static native int getTrainMethod_0(long nativeObj); // C++: void setTrainMethod(int val) private static native void setTrainMethod_0(long nativeObj, int val); // C++: int getMiniBatchSize() private static native int getMiniBatchSize_0(long nativeObj); // C++: void setMiniBatchSize(int val) private static native void setMiniBatchSize_0(long nativeObj, int val); // C++: TermCriteria getTermCriteria() private static native double[] getTermCriteria_0(long nativeObj); // C++: void setTermCriteria(TermCriteria val) private static native void setTermCriteria_0(long nativeObj, int val_type, int val_maxCount, double val_epsilon); // C++: float predict(Mat samples, Mat& results = Mat(), int flags = 0) private static native float predict_0(long nativeObj, long samples_nativeObj, long results_nativeObj, int flags); private static native float predict_1(long nativeObj, long samples_nativeObj); // C++: Mat get_learnt_thetas() private static native long get_learnt_thetas_0(long nativeObj); // C++: static Ptr_LogisticRegression create() private static native long create_0(); // native support for java finalize() private static native void delete(long nativeObj); }