/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "opencv2/ts/cuda_test.hpp" #include <stdexcept> using namespace cv; using namespace cv::cuda; using namespace cvtest; using namespace testing; using namespace testing::internal; namespace perf { CV_EXPORTS void printCudaInfo(); } namespace cvtest { ////////////////////////////////////////////////////////////////////// // random generators int randomInt(int minVal, int maxVal) { RNG& rng = TS::ptr()->get_rng(); return rng.uniform(minVal, maxVal); } double randomDouble(double minVal, double maxVal) { RNG& rng = TS::ptr()->get_rng(); return rng.uniform(minVal, maxVal); } Size randomSize(int minVal, int maxVal) { return Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal)); } Scalar randomScalar(double minVal, double maxVal) { return Scalar(randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal)); } Mat randomMat(Size size, int type, double minVal, double maxVal) { return randomMat(TS::ptr()->get_rng(), size, type, minVal, maxVal, false); } ////////////////////////////////////////////////////////////////////// // GpuMat create GpuMat createMat(Size size, int type, bool useRoi) { Size size0 = size; if (useRoi) { size0.width += randomInt(5, 15); size0.height += randomInt(5, 15); } GpuMat d_m(size0, type); if (size0 != size) d_m = d_m(Rect((size0.width - size.width) / 2, (size0.height - size.height) / 2, size.width, size.height)); return d_m; } GpuMat loadMat(const Mat& m, bool useRoi) { GpuMat d_m = createMat(m.size(), m.type(), useRoi); d_m.upload(m); return d_m; } ////////////////////////////////////////////////////////////////////// // Image load Mat readImage(const std::string& fileName, int flags) { return imread(TS::ptr()->get_data_path() + fileName, flags); } Mat readImageType(const std::string& fname, int type) { Mat src = readImage(fname, CV_MAT_CN(type) == 1 ? IMREAD_GRAYSCALE : IMREAD_COLOR); if (CV_MAT_CN(type) == 4) { Mat temp; cvtColor(src, temp, COLOR_BGR2BGRA); swap(src, temp); } src.convertTo(src, CV_MAT_DEPTH(type), CV_MAT_DEPTH(type) == CV_32F ? 1.0 / 255.0 : 1.0); return src; } ////////////////////////////////////////////////////////////////////// // Gpu devices bool supportFeature(const DeviceInfo& info, FeatureSet feature) { return TargetArchs::builtWith(feature) && info.supports(feature); } DeviceManager& DeviceManager::instance() { static DeviceManager obj; return obj; } void DeviceManager::load(int i) { devices_.clear(); devices_.reserve(1); std::ostringstream msg; if (i < 0 || i >= getCudaEnabledDeviceCount()) { msg << "Incorrect device number - " << i; throw std::runtime_error(msg.str()); } DeviceInfo info(i); if (!info.isCompatible()) { msg << "Device " << i << " [" << info.name() << "] is NOT compatible with current CUDA module build"; throw std::runtime_error(msg.str()); } devices_.push_back(info); } void DeviceManager::loadAll() { int deviceCount = getCudaEnabledDeviceCount(); devices_.clear(); devices_.reserve(deviceCount); for (int i = 0; i < deviceCount; ++i) { DeviceInfo info(i); if (info.isCompatible()) { devices_.push_back(info); } } } void parseCudaDeviceOptions(int argc, char **argv) { cv::CommandLineParser cmd(argc, argv, "{ cuda_device | -1 | CUDA device on which tests will be executed (-1 means all devices) }" "{ h help | false | Print help info }" ); if (cmd.has("help")) { std::cout << "\nAvailable options besides google test option: \n"; cmd.printMessage(); } int device = cmd.get<int>("cuda_device"); if (device < 0) { cvtest::DeviceManager::instance().loadAll(); std::cout << "Run tests on all supported CUDA devices \n" << std::endl; } else { cvtest::DeviceManager::instance().load(device); cv::cuda::DeviceInfo info(device); std::cout << "Run tests on CUDA device " << device << " [" << info.name() << "] \n" << std::endl; } } ////////////////////////////////////////////////////////////////////// // Additional assertion namespace { template <typename T, typename OutT> std::string printMatValImpl(const Mat& m, Point p) { const int cn = m.channels(); std::ostringstream ostr; ostr << "("; p.x /= cn; ostr << static_cast<OutT>(m.at<T>(p.y, p.x * cn)); for (int c = 1; c < m.channels(); ++c) { ostr << ", " << static_cast<OutT>(m.at<T>(p.y, p.x * cn + c)); } ostr << ")"; return ostr.str(); } std::string printMatVal(const Mat& m, Point p) { typedef std::string (*func_t)(const Mat& m, Point p); static const func_t funcs[] = { printMatValImpl<uchar, int>, printMatValImpl<schar, int>, printMatValImpl<ushort, int>, printMatValImpl<short, int>, printMatValImpl<int, int>, printMatValImpl<float, float>, printMatValImpl<double, double> }; return funcs[m.depth()](m, p); } } void minMaxLocGold(const Mat& src, double* minVal_, double* maxVal_, Point* minLoc_, Point* maxLoc_, const Mat& mask) { if (src.depth() != CV_8S) { minMaxLoc(src, minVal_, maxVal_, minLoc_, maxLoc_, mask); return; } // OpenCV's minMaxLoc doesn't support CV_8S type double minVal = std::numeric_limits<double>::max(); Point minLoc(-1, -1); double maxVal = -std::numeric_limits<double>::max(); Point maxLoc(-1, -1); for (int y = 0; y < src.rows; ++y) { const schar* src_row = src.ptr<schar>(y); const uchar* mask_row = mask.empty() ? 0 : mask.ptr<uchar>(y); for (int x = 0; x < src.cols; ++x) { if (!mask_row || mask_row[x]) { schar val = src_row[x]; if (val < minVal) { minVal = val; minLoc = cv::Point(x, y); } if (val > maxVal) { maxVal = val; maxLoc = cv::Point(x, y); } } } } if (minVal_) *minVal_ = minVal; if (maxVal_) *maxVal_ = maxVal; if (minLoc_) *minLoc_ = minLoc; if (maxLoc_) *maxLoc_ = maxLoc; } Mat getMat(InputArray arr) { if (arr.kind() == _InputArray::CUDA_GPU_MAT) { Mat m; arr.getGpuMat().download(m); return m; } return arr.getMat(); } AssertionResult assertMatNear(const char* expr1, const char* expr2, const char* eps_expr, InputArray m1_, InputArray m2_, double eps) { Mat m1 = getMat(m1_); Mat m2 = getMat(m2_); if (m1.size() != m2.size()) { return AssertionFailure() << "Matrices \"" << expr1 << "\" and \"" << expr2 << "\" have different sizes : \"" << expr1 << "\" [" << PrintToString(m1.size()) << "] vs \"" << expr2 << "\" [" << PrintToString(m2.size()) << "]"; } if (m1.type() != m2.type()) { return AssertionFailure() << "Matrices \"" << expr1 << "\" and \"" << expr2 << "\" have different types : \"" << expr1 << "\" [" << PrintToString(MatType(m1.type())) << "] vs \"" << expr2 << "\" [" << PrintToString(MatType(m2.type())) << "]"; } Mat diff; absdiff(m1.reshape(1), m2.reshape(1), diff); double maxVal = 0.0; Point maxLoc; minMaxLocGold(diff, 0, &maxVal, 0, &maxLoc); if (maxVal > eps) { return AssertionFailure() << "The max difference between matrices \"" << expr1 << "\" and \"" << expr2 << "\" is " << maxVal << " at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ")" << ", which exceeds \"" << eps_expr << "\", where \"" << expr1 << "\" at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ") evaluates to " << printMatVal(m1, maxLoc) << ", \"" << expr2 << "\" at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ") evaluates to " << printMatVal(m2, maxLoc) << ", \"" << eps_expr << "\" evaluates to " << eps; } return AssertionSuccess(); } double checkSimilarity(InputArray m1, InputArray m2) { Mat diff; matchTemplate(getMat(m1), getMat(m2), diff, TM_CCORR_NORMED); return std::abs(diff.at<float>(0, 0) - 1.f); } ////////////////////////////////////////////////////////////////////// // Helper structs for value-parameterized tests vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end) { vector<MatType> v; v.reserve((depth_end - depth_start + 1) * (cn_end - cn_start + 1)); for (int depth = depth_start; depth <= depth_end; ++depth) { for (int cn = cn_start; cn <= cn_end; ++cn) { v.push_back(MatType(CV_MAKE_TYPE(depth, cn))); } } return v; } const vector<MatType>& all_types() { static vector<MatType> v = types(CV_8U, CV_64F, 1, 4); return v; } void PrintTo(const UseRoi& useRoi, std::ostream* os) { if (useRoi) (*os) << "sub matrix"; else (*os) << "whole matrix"; } void PrintTo(const Inverse& inverse, std::ostream* os) { if (inverse) (*os) << "inverse"; else (*os) << "direct"; } ////////////////////////////////////////////////////////////////////// // Other void dumpImage(const std::string& fileName, const Mat& image) { imwrite(TS::ptr()->get_data_path() + fileName, image); } void showDiff(InputArray gold_, InputArray actual_, double eps) { Mat gold = getMat(gold_); Mat actual = getMat(actual_); Mat diff; absdiff(gold, actual, diff); threshold(diff, diff, eps, 255.0, cv::THRESH_BINARY); namedWindow("gold", WINDOW_NORMAL); namedWindow("actual", WINDOW_NORMAL); namedWindow("diff", WINDOW_NORMAL); imshow("gold", gold); imshow("actual", actual); imshow("diff", diff); waitKey(); } namespace { bool keyPointsEquals(const cv::KeyPoint& p1, const cv::KeyPoint& p2) { const double maxPtDif = 1.0; const double maxSizeDif = 1.0; const double maxAngleDif = 2.0; const double maxResponseDif = 0.1; double dist = cv::norm(p1.pt - p2.pt); if (dist < maxPtDif && fabs(p1.size - p2.size) < maxSizeDif && abs(p1.angle - p2.angle) < maxAngleDif && abs(p1.response - p2.response) < maxResponseDif && p1.octave == p2.octave && p1.class_id == p2.class_id) { return true; } return false; } struct KeyPointLess : std::binary_function<cv::KeyPoint, cv::KeyPoint, bool> { bool operator()(const cv::KeyPoint& kp1, const cv::KeyPoint& kp2) const { return kp1.pt.y < kp2.pt.y || (kp1.pt.y == kp2.pt.y && kp1.pt.x < kp2.pt.x); } }; } testing::AssertionResult assertKeyPointsEquals(const char* gold_expr, const char* actual_expr, std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual) { if (gold.size() != actual.size()) { return testing::AssertionFailure() << "KeyPoints size mistmach\n" << "\"" << gold_expr << "\" : " << gold.size() << "\n" << "\"" << actual_expr << "\" : " << actual.size(); } std::sort(actual.begin(), actual.end(), KeyPointLess()); std::sort(gold.begin(), gold.end(), KeyPointLess()); for (size_t i = 0; i < gold.size(); ++i) { const cv::KeyPoint& p1 = gold[i]; const cv::KeyPoint& p2 = actual[i]; if (!keyPointsEquals(p1, p2)) { return testing::AssertionFailure() << "KeyPoints differ at " << i << "\n" << "\"" << gold_expr << "\" vs \"" << actual_expr << "\" : \n" << "pt : " << testing::PrintToString(p1.pt) << " vs " << testing::PrintToString(p2.pt) << "\n" << "size : " << p1.size << " vs " << p2.size << "\n" << "angle : " << p1.angle << " vs " << p2.angle << "\n" << "response : " << p1.response << " vs " << p2.response << "\n" << "octave : " << p1.octave << " vs " << p2.octave << "\n" << "class_id : " << p1.class_id << " vs " << p2.class_id; } } return ::testing::AssertionSuccess(); } int getMatchedPointsCount(std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual) { std::sort(actual.begin(), actual.end(), KeyPointLess()); std::sort(gold.begin(), gold.end(), KeyPointLess()); int validCount = 0; for (size_t i = 0; i < gold.size(); ++i) { const cv::KeyPoint& p1 = gold[i]; const cv::KeyPoint& p2 = actual[i]; if (keyPointsEquals(p1, p2)) ++validCount; } return validCount; } int getMatchedPointsCount(const std::vector<cv::KeyPoint>& keypoints1, const std::vector<cv::KeyPoint>& keypoints2, const std::vector<cv::DMatch>& matches) { int validCount = 0; for (size_t i = 0; i < matches.size(); ++i) { const cv::DMatch& m = matches[i]; const cv::KeyPoint& p1 = keypoints1[m.queryIdx]; const cv::KeyPoint& p2 = keypoints2[m.trainIdx]; if (keyPointsEquals(p1, p2)) ++validCount; } return validCount; } void printCudaInfo() { perf::printCudaInfo(); } } void cv::cuda::PrintTo(const DeviceInfo& info, std::ostream* os) { (*os) << info.name(); }